# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid.dygraph as dg import paddle.fluid as fluid import paddle.fluid.layers as layers from parakeet.modules.customized import Conv1D class PostConvNet(dg.Layer): def __init__(self, n_mels=80, num_hidden=512, filter_size=5, padding=0, num_conv=5, outputs_per_step=1, use_cudnn=True, dropout=0.1, batchnorm_last=False): """Decocder post conv net of TransformerTTS. Args: n_mels (int, optional): the number of mel bands when calculating mel spectrograms. Defaults to 80. num_hidden (int, optional): the size of hidden layer in network. Defaults to 512. filter_size (int, optional): the filter size of Conv. Defaults to 5. padding (int, optional): the padding size of Conv. Defaults to 0. num_conv (int, optional): the num of Conv layers in network. Defaults to 5. outputs_per_step (int, optional): the num of output frames per step . Defaults to 1. use_cudnn (bool, optional): use cudnn in Conv or not. Defaults to True. dropout (float, optional): dropout probability. Defaults to 0.1. batchnorm_last (bool, optional): if batchnorm at last layer or not. Defaults to False. """ super(PostConvNet, self).__init__() self.dropout = dropout self.num_conv = num_conv self.batchnorm_last = batchnorm_last self.conv_list = [] k = math.sqrt(1 / (n_mels * outputs_per_step)) self.conv_list.append( Conv1D( num_channels=n_mels * outputs_per_step, num_filters=num_hidden, filter_size=filter_size, padding=padding, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-k, high=k)), use_cudnn=use_cudnn)) k = math.sqrt(1 / num_hidden) for _ in range(1, num_conv - 1): self.conv_list.append( Conv1D( num_channels=num_hidden, num_filters=num_hidden, filter_size=filter_size, padding=padding, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-k, high=k)), use_cudnn=use_cudnn)) self.conv_list.append( Conv1D( num_channels=num_hidden, num_filters=n_mels * outputs_per_step, filter_size=filter_size, padding=padding, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-k, high=k)), use_cudnn=use_cudnn)) for i, layer in enumerate(self.conv_list): self.add_sublayer("conv_list_{}".format(i), layer) self.batch_norm_list = [ dg.BatchNorm( num_hidden, data_layout='NCHW') for _ in range(num_conv - 1) ] if self.batchnorm_last: self.batch_norm_list.append( dg.BatchNorm( n_mels * outputs_per_step, data_layout='NCHW')) for i, layer in enumerate(self.batch_norm_list): self.add_sublayer("batch_norm_list_{}".format(i), layer) def forward(self, input): """ Compute the mel spectrum. Args: input (Variable): shape(B, T, C), dtype float32, the result of mel linear projection. Returns: output (Variable): shape(B, T, C), the result after postconvnet. """ input = layers.transpose(input, [0, 2, 1]) len = input.shape[-1] for i in range(self.num_conv - 1): batch_norm = self.batch_norm_list[i] conv = self.conv_list[i] input = layers.dropout( layers.tanh(batch_norm(conv(input)[:, :, :len])), self.dropout, dropout_implementation='upscale_in_train') conv = self.conv_list[self.num_conv - 1] input = conv(input)[:, :, :len] if self.batchnorm_last: batch_norm = self.batch_norm_list[self.num_conv - 1] input = layers.dropout( batch_norm(input), self.dropout, dropout_implementation='upscale_in_train') output = layers.transpose(input, [0, 2, 1]) return output