import os from scipy.io.wavfile import write from parakeet.g2p.en import text_to_sequence import numpy as np from tqdm import tqdm from tensorboardX import SummaryWriter from ruamel import yaml import paddle.fluid as fluid import paddle.fluid.dygraph as dg from pathlib import Path import argparse from parse import add_config_options_to_parser from pprint import pprint from collections import OrderedDict from parakeet import audio from parakeet.models.transformer_tts.vocoder import Vocoder from parakeet.models.transformer_tts.transformer_tts import TransformerTTS def load_checkpoint(step, model_path): model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) new_state_dict = OrderedDict() for param in model_dict: if param.startswith('_layers.'): new_state_dict[param[8:]] = model_dict[param] else: new_state_dict[param] = model_dict[param] return new_state_dict def synthesis(text_input, args): place = (fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()) with open(args.config_path) as f: cfg = yaml.load(f, Loader=yaml.Loader) # tensorboard if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) path = os.path.join(args.log_dir,'synthesis') writer = SummaryWriter(path) with dg.guard(place): with fluid.unique_name.guard(): model = TransformerTTS(cfg) model.set_dict(load_checkpoint(str(args.transformer_step), os.path.join(args.checkpoint_path, "transformer"))) model.eval() with fluid.unique_name.guard(): model_vocoder = Vocoder(cfg, args.batch_size) model_vocoder.set_dict(load_checkpoint(str(args.vocoder_step), os.path.join(args.checkpoint_path, "vocoder"))) model_vocoder.eval() # init input text = np.asarray(text_to_sequence(text_input)) text = fluid.layers.unsqueeze(dg.to_variable(text),[0]) mel_input = dg.to_variable(np.zeros([1,1,80])).astype(np.float32) pos_text = np.arange(1, text.shape[1]+1) pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0]) pbar = tqdm(range(args.max_len)) for i in pbar: pos_mel = np.arange(1, mel_input.shape[1]+1) pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel),[0]) mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(text, mel_input, pos_text, pos_mel) mel_input = fluid.layers.concat([mel_input, postnet_pred[:,-1:,:]], axis=1) mag_pred = model_vocoder(postnet_pred) _ljspeech_processor = audio.AudioProcessor( sample_rate=cfg['audio']['sr'], num_mels=cfg['audio']['num_mels'], min_level_db=cfg['audio']['min_level_db'], ref_level_db=cfg['audio']['ref_level_db'], n_fft=cfg['audio']['n_fft'], win_length= cfg['audio']['win_length'], hop_length= cfg['audio']['hop_length'], power=cfg['audio']['power'], preemphasis=cfg['audio']['preemphasis'], signal_norm=True, symmetric_norm=False, max_norm=1., mel_fmin=0, mel_fmax=None, clip_norm=True, griffin_lim_iters=60, do_trim_silence=False, sound_norm=False) wav = _ljspeech_processor.inv_spectrogram(fluid.layers.transpose(fluid.layers.squeeze(mag_pred,[0]), [1,0]).numpy()) writer.add_audio(text_input, wav, 0, cfg['audio']['sr']) if not os.path.exists(args.sample_path): os.mkdir(args.sample_path) write(os.path.join(args.sample_path,'test.wav'), cfg['audio']['sr'], wav) writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Synthesis model") add_config_options_to_parser(parser) args = parser.parse_args() synthesis("Transformer model is so fast!", args)