import math import paddle.fluid.dygraph as dg import paddle.fluid as fluid from parakeet.g2p.text.symbols import symbols from parakeet.models.transformer_tts.post_convnet import PostConvNet from parakeet.models.fastspeech.LengthRegulator import LengthRegulator from parakeet.models.fastspeech.encoder import Encoder from parakeet.models.fastspeech.decoder import Decoder class FastSpeech(dg.Layer): def __init__(self, cfg): " FastSpeech" super(FastSpeech, self).__init__() self.encoder = Encoder(n_src_vocab=len(symbols)+1, len_max_seq=cfg['max_seq_len'], n_layers=cfg['encoder_n_layer'], n_head=cfg['encoder_head'], d_k=cfg['fs_hidden_size'] // cfg['encoder_head'], d_v=cfg['fs_hidden_size'] // cfg['encoder_head'], d_model=cfg['fs_hidden_size'], d_inner=cfg['encoder_conv1d_filter_size'], fft_conv1d_kernel=cfg['fft_conv1d_filter'], fft_conv1d_padding=cfg['fft_conv1d_padding'], dropout=0.1) self.length_regulator = LengthRegulator(input_size=cfg['fs_hidden_size'], out_channels=cfg['duration_predictor_output_size'], filter_size=cfg['duration_predictor_filter_size'], dropout=cfg['dropout']) self.decoder = Decoder(len_max_seq=cfg['max_seq_len'], n_layers=cfg['decoder_n_layer'], n_head=cfg['decoder_head'], d_k=cfg['fs_hidden_size'] // cfg['decoder_head'], d_v=cfg['fs_hidden_size'] // cfg['decoder_head'], d_model=cfg['fs_hidden_size'], d_inner=cfg['decoder_conv1d_filter_size'], fft_conv1d_kernel=cfg['fft_conv1d_filter'], fft_conv1d_padding=cfg['fft_conv1d_padding'], dropout=0.1) self.weight = fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()) k = math.sqrt(1 / cfg['fs_hidden_size']) self.bias = fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)) self.mel_linear = dg.Linear(cfg['fs_hidden_size'], cfg['audio']['num_mels']* cfg['audio']['outputs_per_step'], param_attr = self.weight, bias_attr = self.bias,) self.postnet = PostConvNet(n_mels=cfg['audio']['num_mels'], num_hidden=512, filter_size=5, padding=int(5 / 2), num_conv=5, outputs_per_step=cfg['audio']['outputs_per_step'], use_cudnn=True, dropout=0.1, batchnorm_last=True) def forward(self, character, text_pos, mel_pos=None, length_target=None, alpha=1.0): """ FastSpeech model. Args: character (Variable): Shape(B, T_text), dtype: float32. The input text characters. T_text means the timesteps of input characters. text_pos (Variable): Shape(B, T_text), dtype: int64. The input text position. T_text means the timesteps of input characters. mel_pos (Variable, optional): Shape(B, T_mel), dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum. length_target (Variable, optional): Shape(B, T_text), dtype: int64. The duration of phoneme compute from pretrained transformerTTS. alpha (Constant): dtype: float32. The hyperparameter to determine the length of the expanded sequence mel, thereby controlling the voice speed. Returns: mel_output (Variable), Shape(B, mel_T, C), the mel output before postnet. mel_output_postnet (Variable), Shape(B, mel_T, C), the mel output after postnet. duration_predictor_output (Variable), Shape(B, text_T), the duration of phoneme compute with duration predictor. enc_slf_attn_list (Variable), Shape(B, text_T, text_T), the encoder self attention list. dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list. """ encoder_output, non_pad_mask, enc_slf_attn_list = self.encoder(character, text_pos) if fluid.framework._dygraph_tracer()._train_mode: length_regulator_output, duration_predictor_output = self.length_regulator(encoder_output, target=length_target, alpha=alpha) decoder_output, dec_slf_attn_list = self.decoder(length_regulator_output, mel_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list else: length_regulator_output, decoder_pos = self.length_regulator(encoder_output, alpha=alpha) decoder_output, _ = self.decoder(length_regulator_output, decoder_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output return mel_output, mel_output_postnet