# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid.dygraph as dg import paddle.fluid as fluid from parakeet.modules.customized import Conv1D from parakeet.models.transformer_tts.utils import * from parakeet.models.transformer_tts.cbhg import CBHG class Vocoder(dg.Layer): def __init__(self, config, batch_size): """CBHG Network (mel -> linear) Args: config: the yaml configs used in Vocoder model. batch_size (int): the batch size of input. """ super(Vocoder, self).__init__() self.pre_proj = Conv1D( num_channels=config['audio']['num_mels'], num_filters=config['hidden_size'], filter_size=1) self.cbhg = CBHG(config['hidden_size'], batch_size) self.post_proj = Conv1D( num_channels=config['hidden_size'], num_filters=(config['audio']['n_fft'] // 2) + 1, filter_size=1) def forward(self, mel): """ Compute mel spectrum to linear spectrum. Args: mel (Variable): shape(B, C, T), dtype float32, the input mel spectrum. Returns: mag_pred (Variable): shape(B, T, C), the linear output. """ mel = layers.transpose(mel, [0, 2, 1]) mel = self.pre_proj(mel) mel = self.cbhg(mel) mag_pred = self.post_proj(mel) mag_pred = layers.transpose(mag_pred, [0, 2, 1]) return mag_pred