# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import argparse import os import time import math from pathlib import Path from pprint import pprint from ruamel import yaml from tqdm import tqdm from matplotlib import cm from collections import OrderedDict from visualdl import LogWriter import paddle.fluid.dygraph as dg import paddle.fluid.layers as layers import paddle.fluid as fluid from parakeet.models.fastspeech.fastspeech import FastSpeech from parakeet.models.fastspeech.utils import get_alignment from data import LJSpeechLoader from parakeet.utils import io def add_config_options_to_parser(parser): parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--use_gpu", type=int, default=0, help="device to use") parser.add_argument("--data", type=str, help="path of LJspeech dataset") parser.add_argument( "--alignments_path", type=str, help="path of alignments") g = parser.add_mutually_exclusive_group() g.add_argument("--checkpoint", type=str, help="checkpoint to resume from") g.add_argument( "--iteration", type=int, help="the iteration of the checkpoint to load from output directory") parser.add_argument( "--output", type=str, default="experiment", help="path to save experiment results") def main(args): local_rank = dg.parallel.Env().local_rank nranks = dg.parallel.Env().nranks parallel = nranks > 1 with open(args.config) as f: cfg = yaml.load(f, Loader=yaml.Loader) global_step = 0 place = fluid.CUDAPlace(dg.parallel.Env() .dev_id) if args.use_gpu else fluid.CPUPlace() fluid.enable_dygraph(place) if not os.path.exists(args.output): os.mkdir(args.output) writer = LogWriter(os.path.join(args.output, 'log')) if local_rank == 0 else None model = FastSpeech(cfg['network'], num_mels=cfg['audio']['num_mels']) model.train() optimizer = fluid.optimizer.AdamOptimizer( learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] * (cfg['train']['learning_rate']**2)), cfg['train']['warm_up_step']), parameter_list=model.parameters(), grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][ 'grad_clip_thresh'])) reader = LJSpeechLoader( cfg['audio'], place, args.data, args.alignments_path, cfg['train']['batch_size'], nranks, local_rank, shuffle=True).reader iterator = iter(tqdm(reader)) # Load parameters. global_step = io.load_parameters( model=model, optimizer=optimizer, checkpoint_dir=os.path.join(args.output, 'checkpoints'), iteration=args.iteration, checkpoint_path=args.checkpoint) print("Rank {}: checkpoint loaded.".format(local_rank)) if parallel: strategy = dg.parallel.prepare_context() model = fluid.dygraph.parallel.DataParallel(model, strategy) while global_step <= cfg['train']['max_iteration']: try: batch = next(iterator) except StopIteration as e: iterator = iter(tqdm(reader)) batch = next(iterator) (character, mel, pos_text, pos_mel, alignment) = batch global_step += 1 #Forward result = model( character, pos_text, mel_pos=pos_mel, length_target=alignment) mel_output, mel_output_postnet, duration_predictor_output, _, _ = result mel_loss = layers.mse_loss(mel_output, mel) mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel) duration_loss = layers.mean( layers.abs( layers.elementwise_sub(duration_predictor_output, alignment))) total_loss = mel_loss + mel_postnet_loss + duration_loss if local_rank == 0: writer.add_scalar('mel_loss', mel_loss.numpy(), global_step) writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step) writer.add_scalar('duration_loss', duration_loss.numpy(), global_step) writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step) if parallel: total_loss = model.scale_loss(total_loss) total_loss.backward() model.apply_collective_grads() else: total_loss.backward() optimizer.minimize(total_loss) model.clear_gradients() # save checkpoint if local_rank == 0 and global_step % cfg['train'][ 'checkpoint_interval'] == 0: io.save_parameters( os.path.join(args.output, 'checkpoints'), global_step, model, optimizer) if local_rank == 0: writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Train Fastspeech model") add_config_options_to_parser(parser) args = parser.parse_args() # Print the whole config setting. pprint(vars(args)) main(args)