from .sampler import SequentialSampler, RandomSampler, BatchSampler class DataCargo(object): def __init__(self, dataset, batch_size=1, sampler=None, shuffle=False, batch_sampler=None, drop_last=False): self.dataset = dataset if batch_sampler is not None: # auto_collation with custom batch_sampler if batch_size != 1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler option is mutually exclusive ' 'with batch_size, shuffle, sampler, and ' 'drop_last') batch_size = None drop_last = False shuffle = False elif batch_size is None: raise ValueError('batch sampler is none. then batch size must not be none.') elif sampler is None: if shuffle: sampler = RandomSampler(dataset) else: sampler = SequentialSampler(dataset) # auto_collation without custom batch_sampler batch_sampler = BatchSampler(sampler, batch_size, drop_last) self.batch_size = batch_size self.drop_last = drop_last self.sampler = sampler self.batch_sampler = batch_sampler def __iter__(self): return DataIterator(self) def __call__(self): return DataIterator(self) @property def _auto_collation(self): # we will auto batching return self.batch_sampler is not None @property def _index_sampler(self): if self._auto_collation: return self.batch_sampler else: return self.sampler def __len__(self): return len(self._index_sampler) class DataIterator(object): def __init__(self, loader): self.loader = loader self._dataset = loader.dataset self._index_sampler = loader._index_sampler self._sampler_iter = iter(self._index_sampler) def __iter__(self): return self def __next__(self): index = self._next_index() # may raise StopIteration, TODO(chenfeiyu): use dynamic batch size minibatch = [self._dataset[i] for i in index] # we can abstract it, too to use dynamic batch size minibatch = self._dataset._batch_examples(minibatch) # list[Example] -> Batch return minibatch def _next_index(self): return next(self._sampler_iter) def __len__(self): return len(self._index_sampler)