import os from tqdm import tqdm from tensorboardX import SummaryWriter from pathlib import Path from collections import OrderedDict import jsonargparse from parse import add_config_options_to_parser from pprint import pprint from matplotlib import cm import paddle.fluid.dygraph as dg import paddle.fluid.layers as layers from parakeet.modules.utils import cross_entropy from parakeet.models.dataloader.ljspeech import LJSpeechLoader from network import * def load_checkpoint(step, model_path): model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) new_state_dict = OrderedDict() for param in model_dict: if param.startswith('_layers.'): new_state_dict[param[8:]] = model_dict[param] else: new_state_dict[param] = model_dict[param] return new_state_dict, opti_dict def main(cfg): local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0 nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1 if local_rank == 0: # Print the whole config setting. pprint(jsonargparse.namespace_to_dict(cfg)) global_step = 0 place = (fluid.CUDAPlace(dg.parallel.Env().dev_id) if cfg.use_data_parallel else fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()) if not os.path.exists(cfg.log_dir): os.mkdir(cfg.log_dir) path = os.path.join(cfg.log_dir,'transformer') writer = SummaryWriter(path) if local_rank == 0 else None with dg.guard(place): model = TransformerTTS(cfg) model.train() optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg.warm_up_step *( cfg.lr ** 2)), cfg.warm_up_step), parameter_list=model.parameters()) reader = LJSpeechLoader(cfg, nranks, local_rank, shuffle=True).reader() if cfg.checkpoint_path is not None: model_dict, opti_dict = load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "transformer")) model.set_dict(model_dict) optimizer.set_dict(opti_dict) global_step = cfg.transformer_step print("load checkpoint!!!") if cfg.use_data_parallel: strategy = dg.parallel.prepare_context() model = fluid.dygraph.parallel.DataParallel(model, strategy) for epoch in range(cfg.epochs): pbar = tqdm(reader) for i, data in enumerate(pbar): pbar.set_description('Processing at epoch %d'%epoch) character, mel, mel_input, pos_text, pos_mel, text_length, _ = data global_step += 1 mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel) label = (pos_mel == 0).astype(np.float32) mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel))) post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel))) loss = mel_loss + post_mel_loss # Note: When used stop token loss the learning did not work. if cfg.stop_token: stop_loss = cross_entropy(stop_preds, label) loss = loss + stop_loss if local_rank==0: writer.add_scalars('training_loss', { 'mel_loss':mel_loss.numpy(), 'post_mel_loss':post_mel_loss.numpy(), 'stop_loss':stop_loss.numpy() }, global_step) writer.add_scalars('alphas', { 'encoder_alpha':model.encoder.alpha.numpy(), 'decoder_alpha':model.decoder.alpha.numpy(), }, global_step) writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step) if global_step % cfg.image_step == 1: for i, prob in enumerate(attn_probs): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255) writer.add_image('Attention_%d_0'%global_step, x, i*4+j, dataformats="HWC") for i, prob in enumerate(attn_enc): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255) writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC") for i, prob in enumerate(attn_dec): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255) writer.add_image('Attention_dec_%d_0'%global_step, x, i*4+j, dataformats="HWC") if cfg.use_data_parallel: loss = model.scale_loss(loss) loss.backward() model.apply_collective_grads() else: loss.backward() optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg.grad_clip_thresh)) model.clear_gradients() # save checkpoint if local_rank==0 and global_step % cfg.save_step == 0: if not os.path.exists(cfg.save_path): os.mkdir(cfg.save_path) save_path = os.path.join(cfg.save_path,'transformer/%d' % global_step) dg.save_dygraph(model.state_dict(), save_path) dg.save_dygraph(optimizer.state_dict(), save_path) if local_rank==0: writer.close() if __name__ =='__main__': parser = jsonargparse.ArgumentParser(description="Train TransformerTTS model", formatter_class='default_argparse') add_config_options_to_parser(parser) cfg = parser.parse_args('-c ./config/train_transformer.yaml'.split()) main(cfg)