# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from tqdm import tqdm from tensorboardX import SummaryWriter from collections import OrderedDict import argparse from pprint import pprint from ruamel import yaml from matplotlib import cm import numpy as np import paddle.fluid as fluid import paddle.fluid.dygraph as dg import paddle.fluid.layers as layers from parakeet.models.transformer_tts.utils import cross_entropy from data import LJSpeechLoader from parakeet.models.transformer_tts import TransformerTTS from parakeet.utils import io def add_config_options_to_parser(parser): parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--use_gpu", type=int, default=0, help="device to use") parser.add_argument("--data", type=str, help="path of LJspeech dataset") g = parser.add_mutually_exclusive_group() g.add_argument("--checkpoint", type=str, help="checkpoint to resume from") g.add_argument( "--iteration", type=int, help="the iteration of the checkpoint to load from output directory") parser.add_argument( "--output", type=str, default="experiment", help="path to save experiment results") def main(args): local_rank = dg.parallel.Env().local_rank nranks = dg.parallel.Env().nranks parallel = nranks > 1 with open(args.config) as f: cfg = yaml.load(f, Loader=yaml.Loader) global_step = 0 place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace() if not os.path.exists(args.output): os.mkdir(args.output) writer = SummaryWriter(os.path.join(args.output, 'log')) if local_rank == 0 else None fluid.enable_dygraph(place) network_cfg = cfg['network'] model = TransformerTTS( network_cfg['embedding_size'], network_cfg['hidden_size'], network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'], cfg['audio']['num_mels'], network_cfg['outputs_per_step'], network_cfg['decoder_num_head'], network_cfg['decoder_n_layers']) model.train() optimizer = fluid.optimizer.AdamOptimizer( learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] * (cfg['train']['learning_rate']**2)), cfg['train']['warm_up_step']), parameter_list=model.parameters(), grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][ 'grad_clip_thresh'])) # Load parameters. global_step = io.load_parameters( model=model, optimizer=optimizer, checkpoint_dir=os.path.join(args.output, 'checkpoints'), iteration=args.iteration, checkpoint_path=args.checkpoint) print("Rank {}: checkpoint loaded.".format(local_rank)) if parallel: strategy = dg.parallel.prepare_context() model = fluid.dygraph.parallel.DataParallel(model, strategy) reader = LJSpeechLoader( cfg['audio'], place, args.data, cfg['train']['batch_size'], nranks, local_rank, shuffle=True).reader iterator = iter(tqdm(reader)) global_step += 1 while global_step <= cfg['train']['max_iteration']: try: batch = next(iterator) except StopIteration as e: iterator = iter(tqdm(reader)) batch = next(iterator) character, mel, mel_input, pos_text, pos_mel, stop_tokens = batch mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model( character, mel_input, pos_text, pos_mel) mel_loss = layers.mean( layers.abs(layers.elementwise_sub(mel_pred, mel))) post_mel_loss = layers.mean( layers.abs(layers.elementwise_sub(postnet_pred, mel))) loss = mel_loss + post_mel_loss stop_loss = cross_entropy( stop_preds, stop_tokens, weight=cfg['network']['stop_loss_weight']) loss = loss + stop_loss if local_rank == 0: writer.add_scalars('training_loss', { 'mel_loss': mel_loss.numpy(), 'post_mel_loss': post_mel_loss.numpy() }, global_step) writer.add_scalar('stop_loss', stop_loss.numpy(), global_step) if parallel: writer.add_scalars('alphas', { 'encoder_alpha': model._layers.encoder.alpha.numpy(), 'decoder_alpha': model._layers.decoder.alpha.numpy(), }, global_step) else: writer.add_scalars('alphas', { 'encoder_alpha': model.encoder.alpha.numpy(), 'decoder_alpha': model.decoder.alpha.numpy(), }, global_step) writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step) if global_step % cfg['train']['image_interval'] == 1: for i, prob in enumerate(attn_probs): for j in range(cfg['network']['decoder_num_head']): x = np.uint8( cm.viridis(prob.numpy()[j * cfg['train'][ 'batch_size'] // nranks]) * 255) writer.add_image( 'Attention_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") for i, prob in enumerate(attn_enc): for j in range(cfg['network']['encoder_num_head']): x = np.uint8( cm.viridis(prob.numpy()[j * cfg['train'][ 'batch_size'] // nranks]) * 255) writer.add_image( 'Attention_enc_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") for i, prob in enumerate(attn_dec): for j in range(cfg['network']['decoder_num_head']): x = np.uint8( cm.viridis(prob.numpy()[j * cfg['train'][ 'batch_size'] // nranks]) * 255) writer.add_image( 'Attention_dec_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") if parallel: loss = model.scale_loss(loss) loss.backward() model.apply_collective_grads() else: loss.backward() optimizer.minimize(loss) model.clear_gradients() # save checkpoint if local_rank == 0 and global_step % cfg['train'][ 'checkpoint_interval'] == 0: io.save_parameters( os.path.join(args.output, 'checkpoints'), global_step, model, optimizer) global_step += 1 if local_rank == 0: writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Train TransformerTTS model") add_config_options_to_parser(parser) args = parser.parse_args() # Print the whole config setting. pprint(vars(args)) main(args)