# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import time import librosa import numpy as np import paddle.fluid.dygraph as dg from paddle import fluid import utils from data import LJSpeech from wavenet_modules import WaveNetModule class WaveNet(): def __init__(self, config, checkpoint_dir, parallel=False, rank=0, nranks=1, tb_logger=None): # Process config to calculate the context size dilations = list( itertools.islice( itertools.cycle(config.dilation_block), config.layers)) config.context_size = sum(dilations) + 1 self.config = config self.checkpoint_dir = checkpoint_dir self.parallel = parallel self.rank = rank self.nranks = nranks self.tb_logger = tb_logger def build(self, training=True): config = self.config dataset = LJSpeech(config, self.nranks, self.rank) self.trainloader = dataset.trainloader self.validloader = dataset.validloader wavenet = WaveNetModule("wavenet", config, self.rank) # Dry run once to create and initalize all necessary parameters. audio = dg.to_variable(np.random.randn(1, 20000).astype(np.float32)) mel = dg.to_variable( np.random.randn(1, 100, self.config.mel_bands).astype(np.float32)) audio_start = dg.to_variable(np.array([0], dtype=np.int32)) wavenet(audio, mel, audio_start) if training: # Create Learning rate scheduler. lr_scheduler = dg.ExponentialDecay( learning_rate=config.learning_rate, decay_steps=config.anneal.every, decay_rate=config.anneal.rate, staircase=True) optimizer = fluid.optimizer.AdamOptimizer( learning_rate=lr_scheduler) clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm( config.gradient_max_norm) # Load parameters. utils.load_parameters( self.checkpoint_dir, self.rank, wavenet, optimizer, iteration=config.iteration, file_path=config.checkpoint) print("Rank {}: checkpoint loaded.".format(self.rank)) # Data parallelism. if self.parallel: strategy = dg.parallel.prepare_context() wavenet = dg.parallel.DataParallel(wavenet, strategy) self.wavenet = wavenet self.optimizer = optimizer self.clipper = clipper else: # Load parameters. utils.load_parameters( self.checkpoint_dir, self.rank, wavenet, iteration=config.iteration, file_path=config.checkpoint) print("Rank {}: checkpoint loaded.".format(self.rank)) self.wavenet = wavenet def train_step(self, iteration): self.wavenet.train() start_time = time.time() audios, mels, audio_starts = next(self.trainloader) load_time = time.time() loss, _ = self.wavenet(audios, mels, audio_starts) if self.parallel: # loss = loss / num_trainers loss = self.wavenet.scale_loss(loss) loss.backward() self.wavenet.apply_collective_grads() else: loss.backward() if isinstance(self.optimizer._learning_rate, fluid.optimizer.LearningRateDecay): current_lr = self.optimizer._learning_rate.step().numpy() else: current_lr = self.optimizer._learning_rate self.optimizer.minimize( loss, grad_clip=self.clipper, parameter_list=self.wavenet.parameters()) self.wavenet.clear_gradients() graph_time = time.time() if self.rank == 0: loss_val = float(loss.numpy()) * self.nranks log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \ "Time: {:.3f}/{:.3f}".format( self.rank, iteration, loss_val, load_time - start_time, graph_time - load_time) print(log) tb = self.tb_logger tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration) tb.add_scalar("Learning-Rate", current_lr, iteration) @dg.no_grad def valid_step(self, iteration): self.wavenet.eval() total_loss = [] sample_audios = [] start_time = time.time() for audios, mels, audio_starts in self.validloader(): loss, sample_audio = self.wavenet(audios, mels, audio_starts, True) total_loss.append(float(loss.numpy())) sample_audios.append(sample_audio) total_time = time.time() - start_time if self.rank == 0: loss_val = np.mean(total_loss) log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format( self.rank, loss_val, total_time) print(log) tb = self.tb_logger tb.add_scalar("Valid-Avg-Loss", loss_val, iteration) tb.add_audio( "Teacher-Forced-Audio-0", sample_audios[0].numpy(), iteration, sample_rate=self.config.sample_rate) tb.add_audio( "Teacher-Forced-Audio-1", sample_audios[1].numpy(), iteration, sample_rate=self.config.sample_rate) @dg.no_grad def infer(self, iteration): self.wavenet.eval() config = self.config sample = config.sample output = "{}/{}/iter-{}".format(config.output, config.name, iteration) os.makedirs(output, exist_ok=True) filename = "{}/valid_{}.wav".format(output, sample) print("Synthesize sample {}, save as {}".format(sample, filename)) mels_list = [mels for _, mels, _ in self.validloader()] start_time = time.time() syn_audio = self.wavenet.synthesize(mels_list[sample]) syn_time = time.time() - start_time print("audio shape {}, synthesis time {}".format(syn_audio.shape, syn_time)) librosa.output.write_wav(filename, syn_audio, sr=config.sample_rate) def save(self, iteration): utils.save_latest_parameters(self.checkpoint_dir, iteration, self.wavenet, self.optimizer) utils.save_latest_checkpoint(self.checkpoint_dir, iteration)