# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import ruamel.yaml import argparse import tqdm from tensorboardX import SummaryWriter from paddle import fluid fluid.require_version('1.8.0') import paddle.fluid.dygraph as dg from parakeet.data import SliceDataset, TransformDataset, CacheDataset, DataCargo, SequentialSampler, RandomSampler from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet from parakeet.utils.layer_tools import summary from parakeet.utils import io from data import LJSpeechMetaData, Transform, DataCollector from utils import make_output_tree, valid_model if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a WaveNet model with LJSpeech.") parser.add_argument( "--data", type=str, help="path of the LJspeech dataset") parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--device", type=int, default=-1, help="device to use") g = parser.add_mutually_exclusive_group() g.add_argument("--checkpoint", type=str, help="checkpoint to resume from") g.add_argument( "--iteration", type=int, help="the iteration of the checkpoint to load from output directory") parser.add_argument( "output", type=str, default="experiment", help="path to save results") args = parser.parse_args() with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) if args.device == -1: place = fluid.CPUPlace() else: place = fluid.CUDAPlace(args.device) dg.enable_dygraph(place) print("Command Line Args: ") for k, v in vars(args).items(): print("{}: {}".format(k, v)) ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] sample_rate = data_config["sample_rate"] n_fft = data_config["n_fft"] win_length = data_config["win_length"] hop_length = data_config["hop_length"] n_mels = data_config["n_mels"] train_clip_seconds = data_config["train_clip_seconds"] transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels) ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] ljspeech_valid = CacheDataset(SliceDataset(ljspeech, 0, valid_size)) ljspeech_train = CacheDataset( SliceDataset(ljspeech, valid_size, len(ljspeech))) model_config = config["model"] n_loop = model_config["n_loop"] n_layer = model_config["n_layer"] filter_size = model_config["filter_size"] context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)]) print("context size is {} samples".format(context_size)) train_batch_fn = DataCollector(context_size, sample_rate, hop_length, train_clip_seconds) valid_batch_fn = DataCollector( context_size, sample_rate, hop_length, train_clip_seconds, valid=True) batch_size = data_config["batch_size"] train_cargo = DataCargo( ljspeech_train, train_batch_fn, batch_size, sampler=RandomSampler(ljspeech_train)) # only batch=1 for validation is enabled valid_cargo = DataCargo( ljspeech_valid, valid_batch_fn, batch_size=1, sampler=SequentialSampler(ljspeech_valid)) make_output_tree(args.output) if args.device == -1: place = fluid.CPUPlace() else: place = fluid.CUDAPlace(args.device) model_config = config["model"] upsampling_factors = model_config["upsampling_factors"] encoder = UpsampleNet(upsampling_factors) n_loop = model_config["n_loop"] n_layer = model_config["n_layer"] residual_channels = model_config["residual_channels"] output_dim = model_config["output_dim"] loss_type = model_config["loss_type"] log_scale_min = model_config["log_scale_min"] decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, filter_size, loss_type, log_scale_min) model = ConditionalWavenet(encoder, decoder) summary(model) train_config = config["train"] learning_rate = train_config["learning_rate"] anneal_rate = train_config["anneal_rate"] anneal_interval = train_config["anneal_interval"] lr_scheduler = dg.ExponentialDecay( learning_rate, anneal_interval, anneal_rate, staircase=True) gradiant_max_norm = train_config["gradient_max_norm"] optim = fluid.optimizer.Adam( lr_scheduler, parameter_list=model.parameters(), grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) train_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) train_loader.set_batch_generator(train_cargo, place) valid_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) valid_loader.set_batch_generator(valid_cargo, place) max_iterations = train_config["max_iterations"] checkpoint_interval = train_config["checkpoint_interval"] snap_interval = train_config["snap_interval"] eval_interval = train_config["eval_interval"] checkpoint_dir = os.path.join(args.output, "checkpoints") log_dir = os.path.join(args.output, "log") writer = SummaryWriter(log_dir) # load parameters and optimizer, and update iterations done so far if args.checkpoint is not None: iteration = io.load_parameters( model, optim, checkpoint_path=args.checkpoint) else: iteration = io.load_parameters( model, optim, checkpoint_dir=checkpoint_dir, iteration=args.iteration) global_step = iteration + 1 iterator = iter(tqdm.tqdm(train_loader)) while global_step <= max_iterations: try: batch = next(iterator) except StopIteration as e: iterator = iter(tqdm.tqdm(train_loader)) batch = next(iterator) audio_clips, mel_specs, audio_starts = batch model.train() y_var = model(audio_clips, mel_specs, audio_starts) loss_var = model.loss(y_var, audio_clips) loss_var.backward() loss_np = loss_var.numpy() writer.add_scalar("loss", loss_np[0], global_step) writer.add_scalar("learning_rate", optim._learning_rate.step().numpy()[0], global_step) optim.minimize(loss_var) optim.clear_gradients() print("global_step: {}\tloss: {:<8.6f}".format(global_step, loss_np[ 0])) if global_step % snap_interval == 0: valid_model(model, valid_loader, writer, global_step, sample_rate) if global_step % checkpoint_interval == 0: io.save_parameters(checkpoint_dir, global_step, model, optim) global_step += 1