# WaveFlow with Paddle Fluid Paddle fluid implementation of [WaveFlow: A Compact Flow-based Model for Raw Audio](https://arxiv.org/abs/1912.01219). ## Project Structure ```text ├── configs # yaml configuration files of preset model hyperparameters ├── benchmark.py # benchmark code to test the speed of batched speech synthesis ├── data.py # dataset and dataloader settings for LJSpeech ├── synthesis.py # script for speech synthesis ├── train.py # script for model training ├── utils.py # helper functions for e.g., model checkpointing ├── waveflow.py # WaveFlow model high level APIs └── waveflow_modules.py # WaveFlow model implementation ``` ## Usage There are many hyperparameters to be tuned depending on the specification of model and dataset you are working on. We provide `wavenet_ljspeech.yaml` as a hyperparameter set that works well on the LJSpeech dataset. Note that `train.py`, `synthesis.py`, and `benchmark.py` all accept a `--config` parameter. To ensure consistency, you should use the same config yaml file for both training, synthesizing and benchmarking. You can also overwrite these preset hyperparameters with command line by updating parameters after `--config`. For example `--config=${yaml} --batch_size=8` can overwrite the corresponding hyperparameters in the `${yaml}` config file. For more details about these hyperparameters, check `utils.add_config_options_to_parser`. Note that you also need to specify some additional parameters for `train.py`, `synthesis.py`, and `benchmark.py`, and the details can be found in `train.add_options_to_parser`, `synthesis.add_options_to_parser`, and `benchmark.add_options_to_parser`, respectively. ### Dataset Download and unzip [LJSpeech](https://keithito.com/LJ-Speech-Dataset/). ```bash wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 tar xjvf LJSpeech-1.1.tar.bz2 ``` In this example, assume that the path of unzipped LJSpeech dataset is `./data/LJSpeech-1.1`. ### Train on single GPU ```bash export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.." export CUDA_VISIBLE_DEVICES=0 python -u train.py \ --config=./configs/waveflow_ljspeech.yaml \ --root=./data/LJSpeech-1.1 \ --name=${ModelName} --batch_size=4 \ --parallel=false --use_gpu=true ``` #### Save and Load checkpoints Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default. The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters. There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint): 1. Use `--checkpoint=./runs/waveflow/${ModelName}/checkpoint/step-500000` to provide a specific path to load. Note that you only need to provide the base name of the parameter file, which is `step-500000`, no extension name `.pdparams` or `.pdopt` is needed. 2. Use `--iteration=500000`. 3. If you don't specify either `--checkpoint` or `--iteration`, the model will automatically load the latest checkpoint in `./runs/waveflow/${ModelName}/checkpoint`. ### Train on multiple GPUs ```bash export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.." export CUDA_VISIBLE_DEVICES=0,1,2,3 python -u -m paddle.distributed.launch train.py \ --config=./configs/waveflow_ljspeech.yaml \ --root=./data/LJSpeech-1.1 \ --name=${ModelName} --parallel=true --use_gpu=true ``` Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode. ### Monitor with Tensorboard By default, the logs are saved in `./runs/waveflow/${ModelName}/logs/`. You can monitor logs by tensorboard. ```bash tensorboard --logdir=${log_dir} --port=8888 ``` ### Synthesize from a checkpoint Check the [Save and load checkpoint](#save-and-load-checkpoints) section on how to load a specific checkpoint. The following example will automatically load the latest checkpoint: ```bash export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.." export CUDA_VISIBLE_DEVICES=0 python -u synthesis.py \ --config=./configs/waveflow_ljspeech.yaml \ --root=./data/LJSpeech-1.1 \ --name=${ModelName} --use_gpu=true \ --output=./syn_audios \ --sample=${SAMPLE} \ --sigma=1.0 ``` In this example, `--output` specifies where to save the synthesized audios and `--sample` specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset. ### Benchmarking Use the following example to benchmark the speed of batched speech synthesis, which reports how many times faster than real-time: ```bash export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.." export CUDA_VISIBLE_DEVICES=0 python -u benchmark.py \ --config=./configs/waveflow_ljspeech.yaml \ --root=./data/LJSpeech-1.1 \ --name=${ModelName} --use_gpu=true ``` ### Low-precision inference This model supports the float16 low-precsion inference. By appending the argument ```bash --use_fp16=true ``` to the command of synthesis and benchmarking, one can experience the fast speed of low-precision inference.