# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import ruamel.yaml import argparse from tqdm import tqdm from tensorboardX import SummaryWriter from paddle import fluid import paddle.fluid.dygraph as dg from parakeet.modules.weight_norm import WeightNormWrapper from parakeet.data import SliceDataset, TransformDataset, DataCargo, SequentialSampler, RandomSampler from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet from parakeet.utils.layer_tools import summary from data import LJSpeechMetaData, Transform, DataCollector from utils import make_output_tree, valid_model, eval_model, save_checkpoint if __name__ == "__main__": parser = argparse.ArgumentParser( description="Synthesize valid data from LJspeech with a wavenet model.") parser.add_argument( "--data", type=str, help="path of the LJspeech dataset.") parser.add_argument("--config", type=str, help="path of the config file.") parser.add_argument( "--device", type=int, default=-1, help="device to use.") parser.add_argument("checkpoint", type=str, help="checkpoint to load.") parser.add_argument( "output", type=str, default="experiment", help="path to save results.") args = parser.parse_args() with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] sample_rate = data_config["sample_rate"] n_fft = data_config["n_fft"] win_length = data_config["win_length"] hop_length = data_config["hop_length"] n_mels = data_config["n_mels"] train_clip_seconds = data_config["train_clip_seconds"] transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels) ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] ljspeech_valid = SliceDataset(ljspeech, 0, valid_size) ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech)) model_config = config["model"] n_loop = model_config["n_loop"] n_layer = model_config["n_layer"] filter_size = model_config["filter_size"] context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)]) print("context size is {} samples".format(context_size)) train_batch_fn = DataCollector(context_size, sample_rate, hop_length, train_clip_seconds) valid_batch_fn = DataCollector( context_size, sample_rate, hop_length, train_clip_seconds, valid=True) batch_size = data_config["batch_size"] train_cargo = DataCargo( ljspeech_train, train_batch_fn, batch_size, sampler=RandomSampler(ljspeech_train)) # only batch=1 for validation is enabled valid_cargo = DataCargo( ljspeech_valid, valid_batch_fn, batch_size=1, sampler=SequentialSampler(ljspeech_valid)) make_output_tree(args.output) if args.device == -1: place = fluid.CPUPlace() else: place = fluid.CUDAPlace(args.device) with dg.guard(place): model_config = config["model"] upsampling_factors = model_config["upsampling_factors"] encoder = UpsampleNet(upsampling_factors) n_loop = model_config["n_loop"] n_layer = model_config["n_layer"] residual_channels = model_config["residual_channels"] output_dim = model_config["output_dim"] loss_type = model_config["loss_type"] log_scale_min = model_config["log_scale_min"] decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, filter_size, loss_type, log_scale_min) model = ConditionalWavenet(encoder, decoder) summary(model) model_dict, _ = dg.load_dygraph(args.checkpoint) print("Loading from {}.pdparams".format(args.checkpoint)) model.set_dict(model_dict) for layer in model.sublayers(): if isinstance(layer, WeightNormWrapper): layer.remove_weight_norm() train_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) train_loader.set_batch_generator(train_cargo, place) valid_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) valid_loader.set_batch_generator(valid_cargo, place) eval_model(model, valid_loader, args.output, sample_rate)