# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import librosa import os, copy from scipy import signal import paddle.fluid.layers as layers def get_positional_table(d_pos_vec, n_position=1024): position_enc = np.array( [[pos / np.power(10000, 2 * i / d_pos_vec) for i in range(d_pos_vec)] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 return position_enc def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array( [get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0. return sinusoid_table def get_non_pad_mask(seq, num_head, dtype): mask = layers.cast(seq != 0, dtype=dtype) mask = layers.unsqueeze(mask, axes=[-1]) mask = layers.expand(mask, [num_head, 1, 1]) return mask def get_attn_key_pad_mask(seq_k, num_head, dtype): ''' For masking out the padding part of key sequence. ''' # Expand to fit the shape of key query attention matrix. padding_mask = layers.cast(seq_k == 0, dtype=dtype) * -1e30 padding_mask = layers.unsqueeze(padding_mask, axes=[1]) padding_mask = layers.expand(padding_mask, [num_head, 1, 1]) return padding_mask def get_dec_attn_key_pad_mask(seq_k, num_head, dtype): ''' For masking out the padding part of key sequence. ''' # Expand to fit the shape of key query attention matrix. padding_mask = layers.cast(seq_k == 0, dtype=dtype) padding_mask = layers.unsqueeze(padding_mask, axes=[1]) len_k = seq_k.shape[1] triu = layers.triu( layers.ones( shape=[len_k, len_k], dtype=dtype), diagonal=1) padding_mask = padding_mask + triu padding_mask = layers.cast( padding_mask != 0, dtype=dtype) * -1e30 #* (-2**32 + 1) padding_mask = layers.expand(padding_mask, [num_head, 1, 1]) return padding_mask def guided_attention(N, T, g=0.2): '''Guided attention. Refer to page 3 on the paper.''' W = np.zeros((N, T), dtype=np.float32) for n_pos in range(W.shape[0]): for t_pos in range(W.shape[1]): W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(T) - n_pos / float(N)) **2 / (2 * g * g)) return W def cross_entropy(input, label, weight=1.0, epsilon=1e-30): output = -1 * label * layers.log(input + epsilon) - ( 1 - label) * layers.log(1 - input + epsilon) output = output * (label * (weight - 1) + 1) return layers.reduce_mean(output, dim=[0, 1])