# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import sys import argparse import ruamel.yaml import random from tqdm import tqdm import pickle import numpy as np from tensorboardX import SummaryWriter import paddle.fluid.dygraph as dg from paddle import fluid from parakeet.models.wavenet import WaveNet, UpsampleNet from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet from parakeet.data import TransformDataset, SliceDataset, RandomSampler, SequentialSampler, DataCargo from parakeet.utils.layer_tools import summary, freeze from utils import valid_model, eval_model, save_checkpoint, load_checkpoint, load_model sys.path.append("../wavenet") from data import LJSpeechMetaData, Transform, DataCollector if __name__ == "__main__": parser = argparse.ArgumentParser( description="synthesize audio files from mel spectrogram in the validation set." ) parser.add_argument("--config", type=str, help="path of the config file.") parser.add_argument( "--device", type=int, default=-1, help="device to use.") parser.add_argument("--data", type=str, help="path of LJspeech dataset.") parser.add_argument( "checkpoint", type=str, help="checkpoint to load from.") parser.add_argument( "output", type=str, default="experiment", help="path to save student.") args = parser.parse_args() with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] sample_rate = data_config["sample_rate"] n_fft = data_config["n_fft"] win_length = data_config["win_length"] hop_length = data_config["hop_length"] n_mels = data_config["n_mels"] train_clip_seconds = data_config["train_clip_seconds"] transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels) ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] ljspeech_valid = SliceDataset(ljspeech, 0, valid_size) ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech)) teacher_config = config["teacher"] n_loop = teacher_config["n_loop"] n_layer = teacher_config["n_layer"] filter_size = teacher_config["filter_size"] context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)]) print("context size is {} samples".format(context_size)) train_batch_fn = DataCollector(context_size, sample_rate, hop_length, train_clip_seconds) valid_batch_fn = DataCollector( context_size, sample_rate, hop_length, train_clip_seconds, valid=True) batch_size = data_config["batch_size"] train_cargo = DataCargo( ljspeech_train, train_batch_fn, batch_size, sampler=RandomSampler(ljspeech_train)) # only batch=1 for validation is enabled valid_cargo = DataCargo( ljspeech_valid, valid_batch_fn, batch_size=1, sampler=SequentialSampler(ljspeech_valid)) if args.device == -1: place = fluid.CPUPlace() else: place = fluid.CUDAPlace(args.device) with dg.guard(place): # conditioner(upsampling net) conditioner_config = config["conditioner"] upsampling_factors = conditioner_config["upsampling_factors"] upsample_net = UpsampleNet(upscale_factors=upsampling_factors) freeze(upsample_net) residual_channels = teacher_config["residual_channels"] loss_type = teacher_config["loss_type"] output_dim = teacher_config["output_dim"] log_scale_min = teacher_config["log_scale_min"] assert loss_type == "mog" and output_dim == 3, \ "the teacher wavenet should be a wavenet with single gaussian output" teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, filter_size, loss_type, log_scale_min) # load & freeze upsample_net & teacher freeze(teacher) student_config = config["student"] n_loops = student_config["n_loops"] n_layers = student_config["n_layers"] student_residual_channels = student_config["residual_channels"] student_filter_size = student_config["filter_size"] student_log_scale_min = student_config["log_scale_min"] student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, n_mels, student_filter_size) stft_config = config["stft"] stft = STFT( n_fft=stft_config["n_fft"], hop_length=stft_config["hop_length"], win_length=stft_config["win_length"]) lmd = config["loss"]["lmd"] model = Clarinet(upsample_net, teacher, student, stft, student_log_scale_min, lmd) summary(model) load_model(model, args.checkpoint) # loader train_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) train_loader.set_batch_generator(train_cargo, place) valid_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) valid_loader.set_batch_generator(valid_cargo, place) if not os.path.exists(args.output): os.makedirs(args.output) eval_model(model, valid_loader, args.output, sample_rate)