# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from scipy.io.wavfile import write from parakeet.g2p.en import text_to_sequence import numpy as np import pandas as pd import csv from tqdm import tqdm from ruamel import yaml import pickle from pathlib import Path import argparse from pprint import pprint from collections import OrderedDict import paddle.fluid as fluid import paddle.fluid.dygraph as dg from parakeet.models.transformer_tts.utils import * from parakeet import audio from parakeet.models.transformer_tts import TransformerTTS from parakeet.models.fastspeech.utils import get_alignment from parakeet.utils import io def add_config_options_to_parser(parser): parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--use_gpu", type=int, default=0, help="device to use") parser.add_argument("--data", type=str, help="path of LJspeech dataset") parser.add_argument( "--checkpoint_transformer", type=str, help="transformer_tts checkpoint to synthesis") parser.add_argument( "--output", type=str, default="./alignments", help="path to save experiment results") def alignments(args): local_rank = dg.parallel.Env().local_rank place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()) with open(args.config) as f: cfg = yaml.load(f, Loader=yaml.Loader) with dg.guard(place): network_cfg = cfg['network'] model = TransformerTTS( network_cfg['embedding_size'], network_cfg['hidden_size'], network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'], cfg['audio']['num_mels'], network_cfg['outputs_per_step'], network_cfg['decoder_num_head'], network_cfg['decoder_n_layers']) # Load parameters. global_step = io.load_parameters( model=model, checkpoint_path=args.checkpoint_transformer) model.eval() # get text data root = Path(args.data) csv_path = root.joinpath("metadata.csv") table = pd.read_csv( csv_path, sep="|", header=None, quoting=csv.QUOTE_NONE, names=["fname", "raw_text", "normalized_text"]) ljspeech_processor = audio.AudioProcessor( sample_rate=cfg['audio']['sr'], num_mels=cfg['audio']['num_mels'], min_level_db=cfg['audio']['min_level_db'], ref_level_db=cfg['audio']['ref_level_db'], n_fft=cfg['audio']['n_fft'], win_length=cfg['audio']['win_length'], hop_length=cfg['audio']['hop_length'], power=cfg['audio']['power'], preemphasis=cfg['audio']['preemphasis'], signal_norm=True, symmetric_norm=False, max_norm=1., mel_fmin=0, mel_fmax=None, clip_norm=True, griffin_lim_iters=60, do_trim_silence=False, sound_norm=False) pbar = tqdm(range(len(table))) alignments = OrderedDict() for i in pbar: fname, raw_text, normalized_text = table.iloc[i] # init input text = np.asarray(text_to_sequence(normalized_text)) text = fluid.layers.unsqueeze(dg.to_variable(text), [0]) pos_text = np.arange(1, text.shape[1] + 1) pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0]) wav = ljspeech_processor.load_wav( os.path.join(args.data, 'wavs', fname + ".wav")) mel_input = ljspeech_processor.melspectrogram(wav).astype( np.float32) mel_input = np.transpose(mel_input, axes=(1, 0)) mel_input = fluid.layers.unsqueeze(dg.to_variable(mel_input), [0]) mel_lens = mel_input.shape[1] pos_mel = np.arange(1, mel_input.shape[1] + 1) pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0]) mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model( text, mel_input, pos_text, pos_mel) mel_input = fluid.layers.concat( [mel_input, postnet_pred[:, -1:, :]], axis=1) alignment, _ = get_alignment(attn_probs, mel_lens, network_cfg['decoder_num_head']) alignments[fname] = alignment with open(args.output + '.txt', "wb") as f: pickle.dump(alignments, f) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Get alignments from TransformerTTS model") add_config_options_to_parser(parser) args = parser.parse_args() alignments(args)