# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid.dygraph as dg import paddle.fluid as fluid from parakeet.models.transformer_tts.utils import * from parakeet.models.fastspeech.fft_block import FFTBlock class Decoder(dg.Layer): def __init__(self, len_max_seq, n_layers, n_head, d_k, d_v, d_model, d_inner, fft_conv1d_kernel, fft_conv1d_padding, dropout=0.1): super(Decoder, self).__init__() n_position = len_max_seq + 1 self.n_head = n_head self.pos_inp = get_sinusoid_encoding_table( n_position, d_model, padding_idx=0) self.position_enc = dg.Embedding( size=[n_position, d_model], padding_idx=0, param_attr=fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( self.pos_inp), trainable=False)) self.layer_stack = [ FFTBlock( d_model, d_inner, n_head, d_k, d_v, fft_conv1d_kernel, fft_conv1d_padding, dropout=dropout) for _ in range(n_layers) ] for i, layer in enumerate(self.layer_stack): self.add_sublayer('fft_{}'.format(i), layer) def forward(self, enc_seq, enc_pos, non_pad_mask, slf_attn_mask=None): """ Decoder layer of FastSpeech. Args: enc_seq (Variable), Shape(B, text_T, C), dtype: float32. The output of length regulator. enc_pos (Variable, optional): Shape(B, T_mel), dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum. Returns: dec_output (Variable), Shape(B, mel_T, C), the decoder output. dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list. """ dec_slf_attn_list = [] slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1]) # -- Forward dec_output = enc_seq + self.position_enc(enc_pos) for dec_layer in self.layer_stack: dec_output, dec_slf_attn = dec_layer( dec_output, non_pad_mask=non_pad_mask, slf_attn_mask=slf_attn_mask) dec_slf_attn_list += [dec_slf_attn] return dec_output, dec_slf_attn_list