# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from scipy.io.wavfile import write from parakeet.g2p.en import text_to_sequence import numpy as np from tqdm import tqdm from matplotlib import cm from tensorboardX import SummaryWriter from ruamel import yaml import paddle.fluid as fluid import paddle.fluid.dygraph as dg from pathlib import Path import argparse from parse import add_config_options_to_parser from pprint import pprint from collections import OrderedDict from parakeet.models.transformer_tts.utils import * from parakeet import audio from parakeet.models.transformer_tts.vocoder import Vocoder from parakeet.models.transformer_tts.transformer_tts import TransformerTTS def load_checkpoint(step, model_path): model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) new_state_dict = OrderedDict() for param in model_dict: if param.startswith('_layers.'): new_state_dict[param[8:]] = model_dict[param] else: new_state_dict[param] = model_dict[param] return new_state_dict def synthesis(text_input, args): place = (fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()) with open(args.config_path) as f: cfg = yaml.load(f, Loader=yaml.Loader) # tensorboard if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) path = os.path.join(args.log_dir, 'synthesis') writer = SummaryWriter(path) with dg.guard(place): with fluid.unique_name.guard(): model = TransformerTTS(cfg) model.set_dict( load_checkpoint( str(args.transformer_step), os.path.join(args.checkpoint_path, "transformer"))) model.eval() with fluid.unique_name.guard(): model_vocoder = Vocoder(cfg, args.batch_size) model_vocoder.set_dict( load_checkpoint( str(args.vocoder_step), os.path.join(args.checkpoint_path, "vocoder"))) model_vocoder.eval() # init input text = np.asarray(text_to_sequence(text_input)) text = fluid.layers.unsqueeze(dg.to_variable(text), [0]) mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32) pos_text = np.arange(1, text.shape[1] + 1) pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0]) pbar = tqdm(range(args.max_len)) for i in pbar: dec_slf_mask = get_triu_tensor( mel_input.numpy(), mel_input.numpy()).astype(np.float32) dec_slf_mask = fluid.layers.cast( dg.to_variable(dec_slf_mask == 0), np.float32) pos_mel = np.arange(1, mel_input.shape[1] + 1) pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0]) mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model( text, mel_input, pos_text, pos_mel, dec_slf_mask) mel_input = fluid.layers.concat( [mel_input, postnet_pred[:, -1:, :]], axis=1) mag_pred = model_vocoder(postnet_pred) _ljspeech_processor = audio.AudioProcessor( sample_rate=cfg['audio']['sr'], num_mels=cfg['audio']['num_mels'], min_level_db=cfg['audio']['min_level_db'], ref_level_db=cfg['audio']['ref_level_db'], n_fft=cfg['audio']['n_fft'], win_length=cfg['audio']['win_length'], hop_length=cfg['audio']['hop_length'], power=cfg['audio']['power'], preemphasis=cfg['audio']['preemphasis'], signal_norm=True, symmetric_norm=False, max_norm=1., mel_fmin=0, mel_fmax=None, clip_norm=True, griffin_lim_iters=60, do_trim_silence=False, sound_norm=False) wav = _ljspeech_processor.inv_spectrogram( fluid.layers.transpose( fluid.layers.squeeze(mag_pred, [0]), [1, 0]).numpy()) global_step = 0 for i, prob in enumerate(attn_probs): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j]) * 255) writer.add_image( 'Attention_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") for i, prob in enumerate(attn_enc): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j]) * 255) writer.add_image( 'Attention_enc_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") for i, prob in enumerate(attn_dec): for j in range(4): x = np.uint8(cm.viridis(prob.numpy()[j]) * 255) writer.add_image( 'Attention_dec_%d_0' % global_step, x, i * 4 + j, dataformats="HWC") writer.add_audio(text_input, wav, 0, cfg['audio']['sr']) if not os.path.exists(args.sample_path): os.mkdir(args.sample_path) write( os.path.join(args.sample_path, 'test.wav'), cfg['audio']['sr'], wav) writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Synthesis model") add_config_options_to_parser(parser) args = parser.parse_args() synthesis( "They emphasized the necessity that the information now being furnished be handled with judgment and care.", args)