Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Parakeet
提交
ca7d1ddd
P
Parakeet
项目概览
PaddlePaddle
/
Parakeet
通知
14
Star
3
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Parakeet
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca7d1ddd
编写于
11月 25, 2019
作者:
C
chenfeiyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix import errors caused by moving files
上级
de4c5d4f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
739 addition
and
0 deletion
+739
-0
parakeet/models/deepvoice3/__init__.py
parakeet/models/deepvoice3/__init__.py
+0
-0
parakeet/models/deepvoice3/hparam_tf/__init__.py
parakeet/models/deepvoice3/hparam_tf/__init__.py
+0
-0
parakeet/models/deepvoice3/hparam_tf/hparam.py
parakeet/models/deepvoice3/hparam_tf/hparam.py
+731
-0
parakeet/models/deepvoice3/hparam_tf/readme.md
parakeet/models/deepvoice3/hparam_tf/readme.md
+8
-0
未找到文件。
parakeet/models/deepvoice3/__init__.py
0 → 100644
浏览文件 @
ca7d1ddd
parakeet/models/deepvoice3/hparam_tf/__init__.py
0 → 100644
浏览文件 @
ca7d1ddd
parakeet/models/deepvoice3/hparam_tf/hparam.py
0 → 100644
浏览文件 @
ca7d1ddd
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hyperparameter values."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
json
import
numbers
import
re
import
six
## from tensorflow.contrib.training.python.training import hparam_pb2
## from tensorflow.python.framework import ops
## from tensorflow.python.util import compat
## from tensorflow.python.util import deprecation
# Define the regular expression for parsing a single clause of the input
# (delimited by commas). A legal clause looks like:
# <variable name>[<index>]? = <rhs>
# where <rhs> is either a single token or [] enclosed list of tokens.
# For example: "var[1] = a" or "x = [1,2,3]"
PARAM_RE
=
re
.
compile
(
r
"""
(?P<name>[a-zA-Z][\w\.]*) # variable name: "var" or "x"
(\[\s*(?P<index>\d+)\s*\])? # (optional) index: "1" or None
\s*=\s*
((?P<val>[^,\[]*) # single value: "a" or None
|
\[(?P<vals>[^\]]*)\]) # list of values: None or "1,2,3"
($|,\s*)"""
,
re
.
VERBOSE
)
def
_parse_fail
(
name
,
var_type
,
value
,
values
):
"""Helper function for raising a value error for bad assignment."""
raise
ValueError
(
'Could not parse hparam
\'
%s
\'
of type
\'
%s
\'
with value
\'
%s
\'
in %s'
%
(
name
,
var_type
.
__name__
,
value
,
values
))
def
_reuse_fail
(
name
,
values
):
"""Helper function for raising a value error for reuse of name."""
raise
ValueError
(
'Multiple assignments to variable
\'
%s
\'
in %s'
%
(
name
,
values
))
def
_process_scalar_value
(
name
,
parse_fn
,
var_type
,
m_dict
,
values
,
results_dictionary
):
"""Update results_dictionary with a scalar value.
Used to update the results_dictionary to be returned by parse_values when
encountering a clause with a scalar RHS (e.g. "s=5" or "arr[0]=5".)
Mutates results_dictionary.
Args:
name: Name of variable in assignment ("s" or "arr").
parse_fn: Function for parsing the actual value.
var_type: Type of named variable.
m_dict: Dictionary constructed from regex parsing.
m_dict['val']: RHS value (scalar)
m_dict['index']: List index value (or None)
values: Full expression being parsed
results_dictionary: The dictionary being updated for return by the parsing
function.
Raises:
ValueError: If the name has already been used.
"""
try
:
parsed_value
=
parse_fn
(
m_dict
[
'val'
])
except
ValueError
:
_parse_fail
(
name
,
var_type
,
m_dict
[
'val'
],
values
)
# If no index is provided
if
not
m_dict
[
'index'
]:
if
name
in
results_dictionary
:
_reuse_fail
(
name
,
values
)
results_dictionary
[
name
]
=
parsed_value
else
:
if
name
in
results_dictionary
:
# The name has already been used as a scalar, then it
# will be in this dictionary and map to a non-dictionary.
if
not
isinstance
(
results_dictionary
.
get
(
name
),
dict
):
_reuse_fail
(
name
,
values
)
else
:
results_dictionary
[
name
]
=
{}
index
=
int
(
m_dict
[
'index'
])
# Make sure the index position hasn't already been assigned a value.
if
index
in
results_dictionary
[
name
]:
_reuse_fail
(
'{}[{}]'
.
format
(
name
,
index
),
values
)
results_dictionary
[
name
][
index
]
=
parsed_value
def
_process_list_value
(
name
,
parse_fn
,
var_type
,
m_dict
,
values
,
results_dictionary
):
"""Update results_dictionary from a list of values.
Used to update results_dictionary to be returned by parse_values when
encountering a clause with a list RHS (e.g. "arr=[1,2,3]".)
Mutates results_dictionary.
Args:
name: Name of variable in assignment ("arr").
parse_fn: Function for parsing individual values.
var_type: Type of named variable.
m_dict: Dictionary constructed from regex parsing.
m_dict['val']: RHS value (scalar)
values: Full expression being parsed
results_dictionary: The dictionary being updated for return by the parsing
function.
Raises:
ValueError: If the name has an index or the values cannot be parsed.
"""
if
m_dict
[
'index'
]
is
not
None
:
raise
ValueError
(
'Assignment of a list to a list index.'
)
elements
=
filter
(
None
,
re
.
split
(
'[ ,]'
,
m_dict
[
'vals'
]))
# Make sure the name hasn't already been assigned a value
if
name
in
results_dictionary
:
raise
_reuse_fail
(
name
,
values
)
try
:
results_dictionary
[
name
]
=
[
parse_fn
(
e
)
for
e
in
elements
]
except
ValueError
:
_parse_fail
(
name
,
var_type
,
m_dict
[
'vals'
],
values
)
def
_cast_to_type_if_compatible
(
name
,
param_type
,
value
):
"""Cast hparam to the provided type, if compatible.
Args:
name: Name of the hparam to be cast.
param_type: The type of the hparam.
value: The value to be cast, if compatible.
Returns:
The result of casting `value` to `param_type`.
Raises:
ValueError: If the type of `value` is not compatible with param_type.
* If `param_type` is a string type, but `value` is not.
* If `param_type` is a boolean, but `value` is not, or vice versa.
* If `param_type` is an integer type, but `value` is not.
* If `param_type` is a float type, but `value` is not a numeric type.
"""
fail_msg
=
(
"Could not cast hparam '%s' of type '%s' from value %r"
%
(
name
,
param_type
,
value
))
# Some callers use None, for which we can't do any casting/checking. :(
if
issubclass
(
param_type
,
type
(
None
)):
return
value
# Avoid converting a non-string type to a string.
if
(
issubclass
(
param_type
,
(
six
.
string_types
,
six
.
binary_type
))
and
not
isinstance
(
value
,
(
six
.
string_types
,
six
.
binary_type
))):
raise
ValueError
(
fail_msg
)
# Avoid converting a number or string type to a boolean or vice versa.
if
issubclass
(
param_type
,
bool
)
!=
isinstance
(
value
,
bool
):
raise
ValueError
(
fail_msg
)
# Avoid converting float to an integer (the reverse is fine).
if
(
issubclass
(
param_type
,
numbers
.
Integral
)
and
not
isinstance
(
value
,
numbers
.
Integral
)):
raise
ValueError
(
fail_msg
)
# Avoid converting a non-numeric type to a numeric type.
if
(
issubclass
(
param_type
,
numbers
.
Number
)
and
not
isinstance
(
value
,
numbers
.
Number
)):
raise
ValueError
(
fail_msg
)
return
param_type
(
value
)
def
parse_values
(
values
,
type_map
):
"""Parses hyperparameter values from a string into a python map.
`values` is a string containing comma-separated `name=value` pairs.
For each pair, the value of the hyperparameter named `name` is set to
`value`.
If a hyperparameter name appears multiple times in `values`, a ValueError
is raised (e.g. 'a=1,a=2', 'a[1]=1,a[1]=2').
If a hyperparameter name in both an index assignment and scalar assignment,
a ValueError is raised. (e.g. 'a=[1,2,3],a[0] = 1').
The hyperparameter name may contain '.' symbols, which will result in an
attribute name that is only accessible through the getattr and setattr
functions. (And must be first explicit added through add_hparam.)
WARNING: Use of '.' in your variable names is allowed, but is not well
supported and not recommended.
The `value` in `name=value` must follows the syntax according to the
type of the parameter:
* Scalar integer: A Python-parsable integer point value. E.g.: 1,
100, -12.
* Scalar float: A Python-parsable floating point value. E.g.: 1.0,
-.54e89.
* Boolean: Either true or false.
* Scalar string: A non-empty sequence of characters, excluding comma,
spaces, and square brackets. E.g.: foo, bar_1.
* List: A comma separated list of scalar values of the parameter type
enclosed in square brackets. E.g.: [1,2,3], [1.0,1e-12], [high,low].
When index assignment is used, the corresponding type_map key should be the
list name. E.g. for "arr[1]=0" the type_map must have the key "arr" (not
"arr[1]").
Args:
values: String. Comma separated list of `name=value` pairs where
'value' must follow the syntax described above.
type_map: A dictionary mapping hyperparameter names to types. Note every
parameter name in values must be a key in type_map. The values must
conform to the types indicated, where a value V is said to conform to a
type T if either V has type T, or V is a list of elements of type T.
Hence, for a multidimensional parameter 'x' taking float values,
'x=[0.1,0.2]' will parse successfully if type_map['x'] = float.
Returns:
A python map mapping each name to either:
* A scalar value.
* A list of scalar values.
* A dictionary mapping index numbers to scalar values.
(e.g. "x=5,L=[1,2],arr[1]=3" results in {'x':5,'L':[1,2],'arr':{1:3}}")
Raises:
ValueError: If there is a problem with input.
* If `values` cannot be parsed.
* If a list is assigned to a list index (e.g. 'a[1] = [1,2,3]').
* If the same rvalue is assigned two different values (e.g. 'a=1,a=2',
'a[1]=1,a[1]=2', or 'a=1,a=[1]')
"""
results_dictionary
=
{}
pos
=
0
while
pos
<
len
(
values
):
m
=
PARAM_RE
.
match
(
values
,
pos
)
if
not
m
:
raise
ValueError
(
'Malformed hyperparameter value: %s'
%
values
[
pos
:])
# Check that there is a comma between parameters and move past it.
pos
=
m
.
end
()
# Parse the values.
m_dict
=
m
.
groupdict
()
name
=
m_dict
[
'name'
]
if
name
not
in
type_map
:
raise
ValueError
(
'Unknown hyperparameter type for %s'
%
name
)
type_
=
type_map
[
name
]
# Set up correct parsing function (depending on whether type_ is a bool)
if
type_
==
bool
:
def
parse_bool
(
value
):
if
value
in
[
'true'
,
'True'
]:
return
True
elif
value
in
[
'false'
,
'False'
]:
return
False
else
:
try
:
return
bool
(
int
(
value
))
except
ValueError
:
_parse_fail
(
name
,
type_
,
value
,
values
)
parse
=
parse_bool
else
:
parse
=
type_
# If a singe value is provided
if
m_dict
[
'val'
]
is
not
None
:
_process_scalar_value
(
name
,
parse
,
type_
,
m_dict
,
values
,
results_dictionary
)
# If the assigned value is a list:
elif
m_dict
[
'vals'
]
is
not
None
:
_process_list_value
(
name
,
parse
,
type_
,
m_dict
,
values
,
results_dictionary
)
else
:
# Not assigned a list or value
_parse_fail
(
name
,
type_
,
''
,
values
)
return
results_dictionary
class
HParams
(
object
):
"""Class to hold a set of hyperparameters as name-value pairs.
A `HParams` object holds hyperparameters used to build and train a model,
such as the number of hidden units in a neural net layer or the learning rate
to use when training.
You first create a `HParams` object by specifying the names and values of the
hyperparameters.
To make them easily accessible the parameter names are added as direct
attributes of the class. A typical usage is as follows:
```python
# Create a HParams object specifying names and values of the model
# hyperparameters:
hparams = HParams(learning_rate=0.1, num_hidden_units=100)
# The hyperparameter are available as attributes of the HParams object:
hparams.learning_rate ==> 0.1
hparams.num_hidden_units ==> 100
```
Hyperparameters have type, which is inferred from the type of their value
passed at construction type. The currently supported types are: integer,
float, boolean, string, and list of integer, float, boolean, or string.
You can override hyperparameter values by calling the
[`parse()`](#HParams.parse) method, passing a string of comma separated
`name=value` pairs. This is intended to make it possible to override
any hyperparameter values from a single command-line flag to which
the user passes 'hyper-param=value' pairs. It avoids having to define
one flag for each hyperparameter.
The syntax expected for each value depends on the type of the parameter.
See `parse()` for a description of the syntax.
Example:
```python
# Define a command line flag to pass name=value pairs.
# For example using argparse:
import argparse
parser = argparse.ArgumentParser(description='Train my model.')
parser.add_argument('--hparams', type=str,
help='Comma separated list of "name=value" pairs.')
args = parser.parse_args()
...
def my_program():
# Create a HParams object specifying the names and values of the
# model hyperparameters:
hparams = tf.HParams(learning_rate=0.1, num_hidden_units=100,
activations=['relu', 'tanh'])
# Override hyperparameters values by parsing the command line
hparams.parse(args.hparams)
# If the user passed `--hparams=learning_rate=0.3` on the command line
# then 'hparams' has the following attributes:
hparams.learning_rate ==> 0.3
hparams.num_hidden_units ==> 100
hparams.activations ==> ['relu', 'tanh']
# If the hyperparameters are in json format use parse_json:
hparams.parse_json('{"learning_rate": 0.3, "activations": "relu"}')
```
"""
_HAS_DYNAMIC_ATTRIBUTES
=
True
# Required for pytype checks.
def
__init__
(
self
,
hparam_def
=
None
,
model_structure
=
None
,
**
kwargs
):
"""Create an instance of `HParams` from keyword arguments.
The keyword arguments specify name-values pairs for the hyperparameters.
The parameter types are inferred from the type of the values passed.
The parameter names are added as attributes of `HParams` object, so they
can be accessed directly with the dot notation `hparams._name_`.
Example:
```python
# Define 3 hyperparameters: 'learning_rate' is a float parameter,
# 'num_hidden_units' an integer parameter, and 'activation' a string
# parameter.
hparams = tf.HParams(
learning_rate=0.1, num_hidden_units=100, activation='relu')
hparams.activation ==> 'relu'
```
Note that a few names are reserved and cannot be used as hyperparameter
names. If you use one of the reserved name the constructor raises a
`ValueError`.
Args:
hparam_def: Serialized hyperparameters, encoded as a hparam_pb2.HParamDef
protocol buffer. If provided, this object is initialized by
deserializing hparam_def. Otherwise **kwargs is used.
model_structure: An instance of ModelStructure, defining the feature
crosses to be used in the Trial.
**kwargs: Key-value pairs where the key is the hyperparameter name and
the value is the value for the parameter.
Raises:
ValueError: If both `hparam_def` and initialization values are provided,
or if one of the arguments is invalid.
"""
# Register the hyperparameters and their type in _hparam_types.
# This simplifies the implementation of parse().
# _hparam_types maps the parameter name to a tuple (type, bool).
# The type value is the type of the parameter for scalar hyperparameters,
# or the type of the list elements for multidimensional hyperparameters.
# The bool value is True if the value is a list, False otherwise.
self
.
_hparam_types
=
{}
self
.
_model_structure
=
model_structure
if
hparam_def
:
## self._init_from_proto(hparam_def)
## if kwargs:
## raise ValueError('hparam_def and initialization values are '
## 'mutually exclusive')
raise
ValueError
(
'hparam_def has been disabled in this version'
)
else
:
for
name
,
value
in
six
.
iteritems
(
kwargs
):
self
.
add_hparam
(
name
,
value
)
## def _init_from_proto(self, hparam_def):
## """Creates a new HParams from `HParamDef` protocol buffer.
##
## Args:
## hparam_def: `HParamDef` protocol buffer.
## """
## assert isinstance(hparam_def, hparam_pb2.HParamDef)
## for name, value in hparam_def.hparam.items():
## kind = value.WhichOneof('kind')
## if kind.endswith('_value'):
## # Single value.
## if kind.startswith('int64'):
## # Setting attribute value to be 'int' to ensure the type is compatible
## # with both Python2 and Python3.
## self.add_hparam(name, int(getattr(value, kind)))
## elif kind.startswith('bytes'):
## # Setting attribute value to be 'str' to ensure the type is compatible
## # with both Python2 and Python3. UTF-8 encoding is assumed.
## self.add_hparam(name, compat.as_str(getattr(value, kind)))
## else:
## self.add_hparam(name, getattr(value, kind))
## else:
## # List of values.
## if kind.startswith('int64'):
## # Setting attribute value to be 'int' to ensure the type is compatible
## # with both Python2 and Python3.
## self.add_hparam(name, [int(v) for v in getattr(value, kind).value])
## elif kind.startswith('bytes'):
## # Setting attribute value to be 'str' to ensure the type is compatible
## # with both Python2 and Python3. UTF-8 encoding is assumed.
## self.add_hparam(
## name, [compat.as_str(v) for v in getattr(value, kind).value])
## else:
## self.add_hparam(name, [v for v in getattr(value, kind).value])
def
add_hparam
(
self
,
name
,
value
):
"""Adds {name, value} pair to hyperparameters.
Args:
name: Name of the hyperparameter.
value: Value of the hyperparameter. Can be one of the following types:
int, float, string, int list, float list, or string list.
Raises:
ValueError: if one of the arguments is invalid.
"""
# Keys in kwargs are unique, but 'name' could the name of a pre-existing
# attribute of this object. In that case we refuse to use it as a
# hyperparameter name.
if
getattr
(
self
,
name
,
None
)
is
not
None
:
raise
ValueError
(
'Hyperparameter name is reserved: %s'
%
name
)
if
isinstance
(
value
,
(
list
,
tuple
)):
if
not
value
:
raise
ValueError
(
'Multi-valued hyperparameters cannot be empty: %s'
%
name
)
self
.
_hparam_types
[
name
]
=
(
type
(
value
[
0
]),
True
)
else
:
self
.
_hparam_types
[
name
]
=
(
type
(
value
),
False
)
setattr
(
self
,
name
,
value
)
def
set_hparam
(
self
,
name
,
value
):
"""Set the value of an existing hyperparameter.
This function verifies that the type of the value matches the type of the
existing hyperparameter.
Args:
name: Name of the hyperparameter.
value: New value of the hyperparameter.
Raises:
ValueError: If there is a type mismatch.
"""
param_type
,
is_list
=
self
.
_hparam_types
[
name
]
if
isinstance
(
value
,
list
):
if
not
is_list
:
raise
ValueError
(
'Must not pass a list for single-valued parameter: %s'
%
name
)
setattr
(
self
,
name
,
[
_cast_to_type_if_compatible
(
name
,
param_type
,
v
)
for
v
in
value
])
else
:
if
is_list
:
raise
ValueError
(
'Must pass a list for multi-valued parameter: %s.'
%
name
)
setattr
(
self
,
name
,
_cast_to_type_if_compatible
(
name
,
param_type
,
value
))
def
del_hparam
(
self
,
name
):
"""Removes the hyperparameter with key 'name'.
Args:
name: Name of the hyperparameter.
"""
if
hasattr
(
self
,
name
):
delattr
(
self
,
name
)
del
self
.
_hparam_types
[
name
]
def
parse
(
self
,
values
):
"""Override hyperparameter values, parsing new values from a string.
See parse_values for more detail on the allowed format for values.
Args:
values: String. Comma separated list of `name=value` pairs where
'value' must follow the syntax described above.
Returns:
The `HParams` instance.
Raises:
ValueError: If `values` cannot be parsed.
"""
type_map
=
dict
()
for
name
,
t
in
self
.
_hparam_types
.
items
():
param_type
,
_
=
t
type_map
[
name
]
=
param_type
values_map
=
parse_values
(
values
,
type_map
)
return
self
.
override_from_dict
(
values_map
)
def
override_from_dict
(
self
,
values_dict
):
"""Override hyperparameter values, parsing new values from a dictionary.
Args:
values_dict: Dictionary of name:value pairs.
Returns:
The `HParams` instance.
Raises:
ValueError: If `values_dict` cannot be parsed.
"""
for
name
,
value
in
values_dict
.
items
():
self
.
set_hparam
(
name
,
value
)
return
self
## @deprecation.deprecated(None, 'Use `override_from_dict`.')
def
set_from_map
(
self
,
values_map
):
"""DEPRECATED. Use override_from_dict."""
return
self
.
override_from_dict
(
values_dict
=
values_map
)
def
set_model_structure
(
self
,
model_structure
):
self
.
_model_structure
=
model_structure
def
get_model_structure
(
self
):
return
self
.
_model_structure
def
to_json
(
self
,
indent
=
None
,
separators
=
None
,
sort_keys
=
False
):
"""Serializes the hyperparameters into JSON.
Args:
indent: If a non-negative integer, JSON array elements and object members
will be pretty-printed with that indent level. An indent level of 0, or
negative, will only insert newlines. `None` (the default) selects the
most compact representation.
separators: Optional `(item_separator, key_separator)` tuple. Default is
`(', ', ': ')`.
sort_keys: If `True`, the output dictionaries will be sorted by key.
Returns:
A JSON string.
"""
return
json
.
dumps
(
self
.
values
(),
indent
=
indent
,
separators
=
separators
,
sort_keys
=
sort_keys
)
def
parse_json
(
self
,
values_json
):
"""Override hyperparameter values, parsing new values from a json object.
Args:
values_json: String containing a json object of name:value pairs.
Returns:
The `HParams` instance.
Raises:
ValueError: If `values_json` cannot be parsed.
"""
values_map
=
json
.
loads
(
values_json
)
return
self
.
override_from_dict
(
values_map
)
def
values
(
self
):
"""Return the hyperparameter values as a Python dictionary.
Returns:
A dictionary with hyperparameter names as keys. The values are the
hyperparameter values.
"""
return
{
n
:
getattr
(
self
,
n
)
for
n
in
self
.
_hparam_types
.
keys
()}
def
get
(
self
,
key
,
default
=
None
):
"""Returns the value of `key` if it exists, else `default`."""
if
key
in
self
.
_hparam_types
:
# Ensure that default is compatible with the parameter type.
if
default
is
not
None
:
param_type
,
is_param_list
=
self
.
_hparam_types
[
key
]
type_str
=
'list<%s>'
%
param_type
if
is_param_list
else
str
(
param_type
)
fail_msg
=
(
"Hparam '%s' of type '%s' is incompatible with "
'default=%s'
%
(
key
,
type_str
,
default
))
is_default_list
=
isinstance
(
default
,
list
)
if
is_param_list
!=
is_default_list
:
raise
ValueError
(
fail_msg
)
try
:
if
is_default_list
:
for
value
in
default
:
_cast_to_type_if_compatible
(
key
,
param_type
,
value
)
else
:
_cast_to_type_if_compatible
(
key
,
param_type
,
default
)
except
ValueError
as
e
:
raise
ValueError
(
'%s. %s'
%
(
fail_msg
,
e
))
return
getattr
(
self
,
key
)
return
default
def
__contains__
(
self
,
key
):
return
key
in
self
.
_hparam_types
def
__str__
(
self
):
return
str
(
sorted
(
self
.
values
().
items
()))
def
__repr__
(
self
):
return
'%s(%s)'
%
(
type
(
self
).
__name__
,
self
.
__str__
())
@
staticmethod
def
_get_kind_name
(
param_type
,
is_list
):
"""Returns the field name given parameter type and is_list.
Args:
param_type: Data type of the hparam.
is_list: Whether this is a list.
Returns:
A string representation of the field name.
Raises:
ValueError: If parameter type is not recognized.
"""
if
issubclass
(
param_type
,
bool
):
# This check must happen before issubclass(param_type, six.integer_types),
# since Python considers bool to be a subclass of int.
typename
=
'bool'
elif
issubclass
(
param_type
,
six
.
integer_types
):
# Setting 'int' and 'long' types to be 'int64' to ensure the type is
# compatible with both Python2 and Python3.
typename
=
'int64'
elif
issubclass
(
param_type
,
(
six
.
string_types
,
six
.
binary_type
)):
# Setting 'string' and 'bytes' types to be 'bytes' to ensure the type is
# compatible with both Python2 and Python3.
typename
=
'bytes'
elif
issubclass
(
param_type
,
float
):
typename
=
'float'
else
:
raise
ValueError
(
'Unsupported parameter type: %s'
%
str
(
param_type
))
suffix
=
'list'
if
is_list
else
'value'
return
'_'
.
join
([
typename
,
suffix
])
## def to_proto(self, export_scope=None): # pylint: disable=unused-argument
## """Converts a `HParams` object to a `HParamDef` protocol buffer.
##
## Args:
## export_scope: Optional `string`. Name scope to remove.
##
## Returns:
## A `HParamDef` protocol buffer.
## """
## hparam_proto = hparam_pb2.HParamDef()
## for name in self._hparam_types:
## # Parse the values.
## param_type, is_list = self._hparam_types.get(name, (None, None))
## kind = HParams._get_kind_name(param_type, is_list)
##
## if is_list:
## if kind.startswith('bytes'):
## v_list = [compat.as_bytes(v) for v in getattr(self, name)]
## else:
## v_list = [v for v in getattr(self, name)]
## getattr(hparam_proto.hparam[name], kind).value.extend(v_list)
## else:
## v = getattr(self, name)
## if kind.startswith('bytes'):
## v = compat.as_bytes(getattr(self, name))
## setattr(hparam_proto.hparam[name], kind, v)
##
## return hparam_proto
## @staticmethod
## def from_proto(hparam_def, import_scope=None): # pylint: disable=unused-argument
## return HParams(hparam_def=hparam_def)
## ops.register_proto_function(
## 'hparams',
## proto_type=hparam_pb2.HParamDef,
## to_proto=HParams.to_proto,
## from_proto=HParams.from_proto)
parakeet/models/deepvoice3/hparam_tf/readme.md
0 → 100644
浏览文件 @
ca7d1ddd
Source: hparam.py copied from tensorflow v1.12.0.
https://github.com/tensorflow/tensorflow/blob/v1.12.0/tensorflow/contrib/training/python/training/hparam.py
with the following:
wget https://github.com/tensorflow/tensorflow/raw/v1.12.0/tensorflow/contrib/training/python/training/hparam.py
Once all other tensorflow dependencies of these file are removed, the class keeps its goal. Functions not available due to this process are not used in this project.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录