diff --git a/examples/waveflow/synthesis.py b/examples/waveflow/synthesis.py index 15c4d3b843165540c6f80f986b23e73ffeb4a59e..b9569bfcfae3f186852e5c36ecec05d3f668b6c9 100644 --- a/examples/waveflow/synthesis.py +++ b/examples/waveflow/synthesis.py @@ -93,16 +93,7 @@ def synthesize(config): # Build model. model = WaveFlow(config, checkpoint_dir) - model.build(training=False) - # Obtain the current iteration. - if config.checkpoint is None: - if config.iteration is None: - iteration = io.load_latest_checkpoint(checkpoint_dir) - else: - iteration = config.iteration - else: - iteration = int(config.checkpoint.split('/')[-1].split('-')[-1]) - + iteration = model.build(training=False) # Run model inference. model.infer(iteration) diff --git a/examples/waveflow/waveflow.py b/examples/waveflow/waveflow.py index 700116b4f2bb33d764acb759aee68c8aa9827162..23c558ec74a4b9ff81541beed4eb4075ae791440 100644 --- a/examples/waveflow/waveflow.py +++ b/examples/waveflow/waveflow.py @@ -81,12 +81,6 @@ class WaveFlow(): waveflow = WaveFlowModule(config) - # Dry run once to create and initalize all necessary parameters. - audio = dg.to_variable(np.random.randn(1, 16000).astype(self.dtype)) - mel = dg.to_variable( - np.random.randn(1, config.mel_bands, 63).astype(self.dtype)) - waveflow(audio, mel) - if training: optimizer = fluid.optimizer.AdamOptimizer( learning_rate=config.learning_rate,