net.py 7.2 KB
Newer Older
C
chenfeiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import numpy as np
from scipy import signal
from tqdm import trange

import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import paddle.fluid.layers.distributions as D

from parakeet.modules.weight_norm import Conv2DTranspose
from parakeet.models.wavenet.wavenet import WaveNet


def crop(x, audio_start, audio_length):
30 31
    """Crop the upsampled condition to match audio_length. The upsampled condition has the same time steps as the whole audio does. But since audios are sliced to 0.5 seconds randomly while conditions are not, upsampled conditions should also be sliced to extaclt match the time steps of the audio slice.

C
chenfeiyu 已提交
32
    Args:
C
chenfeiyu 已提交
33
        x (Variable): shape(B, C, T), dtype float32, the upsample condition.
34 35 36
        audio_start (Variable): shape(B, ), dtype: int64, the index the starting point.
        audio_length (int): the length of the audio (number of samples it contaions).

C
chenfeiyu 已提交
37
    Returns:
38
        Variable: shape(B, C, audio_length), cropped condition.
C
chenfeiyu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    """
    # crop audio
    slices = []  # for each example
    starts = audio_start.numpy()
    for i in range(x.shape[0]):
        start = starts[i]
        end = start + audio_length
        slice = F.slice(x[i], axes=[1], starts=[start], ends=[end])
        slices.append(slice)
    out = F.stack(slices)
    return out


class UpsampleNet(dg.Layer):
    def __init__(self, upscale_factors=[16, 16]):
54 55 56 57 58 59 60 61
        """UpsamplingNet.
        It consists of several layers of Conv2DTranspose. Each Conv2DTranspose layer upsamples the time dimension by its `stride` times. And each Conv2DTranspose's filter_size at frequency dimension is 3.

        Args:
            upscale_factors (list[int], optional): time upsampling factors for each Conv2DTranspose Layer. The `UpsampleNet` contains len(upscale_factor) Conv2DTranspose Layers. Each upscale_factor is used as the `stride` for the corresponding Conv2DTranspose. Defaults to [16, 16].
        Note:
            np.prod(upscale_factors) should equals the `hop_length` of the stft transformation used to extract spectrogram features from audios. For example, 16 * 16 = 256, then the spectram extracted using a stft transformation whose `hop_length` is 256. See `librosa.stft` for more details.
        """
62
        super(UpsampleNet, self).__init__()
C
chenfeiyu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        self.upscale_factors = list(upscale_factors)
        self.upsample_convs = dg.LayerList()
        for i, factor in enumerate(upscale_factors):
            self.upsample_convs.append(
                Conv2DTranspose(
                    1,
                    1,
                    filter_size=(3, 2 * factor),
                    stride=(1, factor),
                    padding=(1, factor // 2)))

    @property
    def upscale_factor(self):
        return np.prod(self.upscale_factors)

    def forward(self, x):
79 80 81
        """Compute the upsampled condition.

        Args:
C
chenfeiyu 已提交
82
            x (Variable): shape(B, F, T), dtype float32, the condition (mel spectrogram here.) (F means the frequency bands). In the internal Conv2DTransposes, the frequency dimension is treated as `height` dimension instead of `in_channels`.
83

C
chenfeiyu 已提交
84
        Returns:
C
chenfeiyu 已提交
85
            Variable: shape(B, F, T * upscale_factor), dtype float32, the upsampled condition.
C
chenfeiyu 已提交
86 87 88 89 90 91 92 93 94 95
        """
        x = F.unsqueeze(x, axes=[1])
        for sublayer in self.upsample_convs:
            x = F.leaky_relu(sublayer(x), alpha=.4)
        x = F.squeeze(x, [1])
        return x


# AutoRegressive Model
class ConditionalWavenet(dg.Layer):
96 97 98 99 100 101 102
    def __init__(self, encoder, decoder):
        """Conditional Wavenet, which contains an UpsampleNet as the encoder and a WaveNet as the decoder. It is an autoregressive model.

        Args:
            encoder (UpsampleNet): the UpsampleNet as the encoder.
            decoder (WaveNet): the WaveNet as the decoder.
        """
103
        super(ConditionalWavenet, self).__init__()
C
chenfeiyu 已提交
104 105 106 107
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, audio, mel, audio_start):
108 109 110
        """Compute the output distribution given the mel spectrogram and the input(for teacher force training).

        Args:
C
chenfeiyu 已提交
111 112
            audio (Variable): shape(B, T_audio), dtype float32, ground truth waveform, used for teacher force training.
            mel ([Variable): shape(B, F, T_mel), dtype float32, mel spectrogram. Note that it is the spectrogram for the whole utterance.
113 114
            audio_start (Variable): shape(B, ), dtype: int, audio slices' start positions for each utterance.

C
chenfeiyu 已提交
115
        Returns:
116
            Variable: shape(B, T_audio - 1, C_putput), parameters for the output distribution.(C_output is the `output_dim` of the decoder.)
C
chenfeiyu 已提交
117 118 119
        """
        audio_length = audio.shape[1]  # audio clip's length
        condition = self.encoder(mel)
120
        condition_slice = crop(condition, audio_start, audio_length)
C
chenfeiyu 已提交
121 122 123 124 125 126 127 128 129

        # shifting 1 step
        audio = audio[:, :-1]
        condition_slice = condition_slice[:, :, 1:]

        y = self.decoder(audio, condition_slice)
        return y

    def loss(self, y, t):
130 131 132
        """compute loss with respect to the output distribution and the targer audio.

        Args:
C
chenfeiyu 已提交
133 134
            y (Variable): shape(B, T - 1, C_output), dtype float32, parameters of the output distribution.
            t (Variable): shape(B, T), dtype float32, target waveform.
135

C
chenfeiyu 已提交
136
        Returns:
C
chenfeiyu 已提交
137
            Variable: shape(1, ), dtype float32, the loss.
C
chenfeiyu 已提交
138 139 140 141 142 143
        """
        t = t[:, 1:]
        loss = self.decoder.loss(y, t)
        return loss

    def sample(self, y):
144 145 146
        """Sample from the output distribution.

        Args:
C
chenfeiyu 已提交
147
            y (Variable): shape(B, T, C_output), dtype float32, parameters of the output distribution.
148

C
chenfeiyu 已提交
149
        Returns:
C
chenfeiyu 已提交
150
            Variable: shape(B, T), dtype float32, sampled waveform from the output distribution.
C
chenfeiyu 已提交
151 152 153 154 155 156
        """
        samples = self.decoder.sample(y)
        return samples

    @dg.no_grad
    def synthesis(self, mel):
157 158 159 160 161
        """Synthesize waveform from mel spectrogram.

        Args:
            mel (Variable): shape(B, F, T), condition(mel spectrogram here).

C
chenfeiyu 已提交
162
        Returns:
163
            Variable: shape(B, T * upsacle_factor), synthesized waveform.(`upscale_factor` is the `upscale_factor` of the encoder `UpsampleNet`)
C
chenfeiyu 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        """
        condition = self.encoder(mel)
        batch_size, _, time_steps = condition.shape
        samples = []

        self.decoder.start_sequence()
        x_t = F.zeros((batch_size, 1), dtype="float32")
        for i in trange(time_steps):
            c_t = condition[:, :, i:i + 1]
            y_t = self.decoder.add_input(x_t, c_t)
            x_t = self.sample(y_t)
            samples.append(x_t)

        samples = F.concat(samples, axis=-1)
        return samples