# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import paddle.fluid as fluid import os import sys import numpy as np import time import math import yaml import copy import json import functools import paddlex.utils.logging as logging from paddlex.utils import seconds_to_hms from paddlex.utils.utils import EarlyStop import paddlex from collections import OrderedDict from os import path as osp from paddle.fluid.framework import Program from .utils.pretrain_weights import get_pretrain_weights def dict2str(dict_input): out = '' for k, v in dict_input.items(): try: v = round(float(v), 6) except: pass out = out + '{}={}, '.format(k, v) return out.strip(', ') class BaseAPI: def __init__(self, model_type): self.model_type = model_type # 现有的CV模型都有这个属性,而这个属且也需要在eval时用到 self.num_classes = None self.labels = None self.version = paddlex.__version__ if paddlex.env_info['place'] == 'cpu': self.places = fluid.cpu_places() else: self.places = fluid.cuda_places() self.exe = fluid.Executor(self.places[0]) self.train_prog = None self.test_prog = None self.parallel_train_prog = None self.train_inputs = None self.test_inputs = None self.train_outputs = None self.test_outputs = None self.train_data_loader = None self.eval_metrics = None # 若模型是从inference model加载进来的,无法调用训练接口进行训练 self.trainable = True # 是否使用多卡间同步BatchNorm均值和方差 self.sync_bn = False # 当前模型状态 self.status = 'Normal' # 已完成迭代轮数,为恢复训练时的起始轮数 self.completed_epochs = 0 def _get_single_card_bs(self, batch_size): if batch_size % len(self.places) == 0: return int(batch_size // len(self.places)) else: raise Exception("Please support correct batch_size, \ which can be divided by available cards({}) in {}" .format(paddlex.env_info['num'], paddlex.env_info[ 'place'])) def build_program(self): # 构建训练网络 self.train_inputs, self.train_outputs = self.build_net(mode='train') self.train_prog = fluid.default_main_program() startup_prog = fluid.default_startup_program() # 构建预测网络 self.test_prog = fluid.Program() with fluid.program_guard(self.test_prog, startup_prog): with fluid.unique_name.guard(): self.test_inputs, self.test_outputs = self.build_net( mode='test') self.test_prog = self.test_prog.clone(for_test=True) def arrange_transforms(self, transforms, mode='train'): # 给transforms添加arrange操作 if self.model_type == 'classifier': arrange_transform = paddlex.cls.transforms.ArrangeClassifier elif self.model_type == 'segmenter': arrange_transform = paddlex.seg.transforms.ArrangeSegmenter elif self.model_type == 'detector': arrange_name = 'Arrange{}'.format(self.__class__.__name__) arrange_transform = getattr(paddlex.det.transforms, arrange_name) else: raise Exception("Unrecognized model type: {}".format( self.model_type)) if type(transforms.transforms[-1]).__name__.startswith('Arrange'): transforms.transforms[-1] = arrange_transform(mode=mode) else: transforms.transforms.append(arrange_transform(mode=mode)) def build_train_data_loader(self, dataset, batch_size): # 初始化data_loader if self.train_data_loader is None: self.train_data_loader = fluid.io.DataLoader.from_generator( feed_list=list(self.train_inputs.values()), capacity=64, use_double_buffer=True, iterable=True) batch_size_each_gpu = self._get_single_card_bs(batch_size) generator = dataset.generator( batch_size=batch_size_each_gpu, drop_last=True) self.train_data_loader.set_sample_list_generator( dataset.generator(batch_size=batch_size_each_gpu), places=self.places) def export_quant_model(self, dataset, save_dir, batch_size=1, batch_num=10, cache_dir="./temp"): self.arrange_transforms(transforms=dataset.transforms, mode='quant') dataset.num_samples = batch_size * batch_num try: from .slim.post_quantization import PaddleXPostTrainingQuantization PaddleXPostTrainingQuantization._collect_target_varnames except: raise Exception( "Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.0" ) is_use_cache_file = True if cache_dir is None: is_use_cache_file = False post_training_quantization = PaddleXPostTrainingQuantization( executor=self.exe, dataset=dataset, program=self.test_prog, inputs=self.test_inputs, outputs=self.test_outputs, batch_size=batch_size, batch_nums=batch_num, scope=None, algo='KL', quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], is_full_quantize=False, is_use_cache_file=is_use_cache_file, cache_dir=cache_dir) post_training_quantization.quantize() post_training_quantization.save_quantized_model(save_dir) model_info = self.get_model_info() model_info['status'] = 'Quant' # 保存模型输出的变量描述 model_info['_ModelInputsOutputs'] = dict() model_info['_ModelInputsOutputs']['test_inputs'] = [ [k, v.name] for k, v in self.test_inputs.items() ] model_info['_ModelInputsOutputs']['test_outputs'] = [ [k, v.name] for k, v in self.test_outputs.items() ] with open( osp.join(save_dir, 'model.yml'), encoding='utf-8', mode='w') as f: yaml.dump(model_info, f) def net_initialize(self, startup_prog=None, pretrain_weights=None, fuse_bn=False, save_dir='.', sensitivities_file=None, eval_metric_loss=0.05, resume_checkpoint=None): if not resume_checkpoint: pretrain_dir = osp.join(save_dir, 'pretrain') if not os.path.isdir(pretrain_dir): if os.path.exists(pretrain_dir): os.remove(pretrain_dir) os.makedirs(pretrain_dir) if hasattr(self, 'backbone'): backbone = self.backbone else: backbone = self.__class__.__name__ if backbone == "HRNet": backbone = backbone + "_W{}".format(self.width) pretrain_weights = get_pretrain_weights( pretrain_weights, self.model_type, backbone, pretrain_dir) if startup_prog is None: startup_prog = fluid.default_startup_program() self.exe.run(startup_prog) if resume_checkpoint: logging.info( "Resume checkpoint from {}.".format(resume_checkpoint), use_color=True) paddlex.utils.utils.load_pretrain_weights( self.exe, self.train_prog, resume_checkpoint, resume=True) if not osp.exists(osp.join(resume_checkpoint, "model.yml")): raise Exception("There's not model.yml in {}".format( resume_checkpoint)) with open(osp.join(resume_checkpoint, "model.yml")) as f: info = yaml.load(f.read(), Loader=yaml.Loader) self.completed_epochs = info['completed_epochs'] elif pretrain_weights is not None: logging.info( "Load pretrain weights from {}.".format(pretrain_weights), use_color=True) paddlex.utils.utils.load_pretrain_weights(self.exe, self.train_prog, pretrain_weights, fuse_bn) # 进行裁剪 if sensitivities_file is not None: import paddleslim from .slim.prune_config import get_sensitivities sensitivities_file = get_sensitivities(sensitivities_file, self, save_dir) from .slim.prune import get_params_ratios, prune_program logging.info( "Start to prune program with eval_metric_loss = {}".format( eval_metric_loss), use_color=True) origin_flops = paddleslim.analysis.flops(self.test_prog) prune_params_ratios = get_params_ratios( sensitivities_file, eval_metric_loss=eval_metric_loss) prune_program(self, prune_params_ratios) current_flops = paddleslim.analysis.flops(self.test_prog) remaining_ratio = current_flops / origin_flops logging.info( "Finish prune program, before FLOPs:{}, after prune FLOPs:{}, remaining ratio:{}" .format(origin_flops, current_flops, remaining_ratio), use_color=True) self.status = 'Prune' def get_model_info(self): info = dict() info['version'] = paddlex.__version__ info['Model'] = self.__class__.__name__ info['_Attributes'] = {'model_type': self.model_type} if 'self' in self.init_params: del self.init_params['self'] if '__class__' in self.init_params: del self.init_params['__class__'] if 'model_name' in self.init_params: del self.init_params['model_name'] info['_init_params'] = self.init_params info['_Attributes']['num_classes'] = self.num_classes info['_Attributes']['labels'] = self.labels info['_Attributes']['fixed_input_shape'] = self.fixed_input_shape try: primary_metric_key = list(self.eval_metrics.keys())[0] primary_metric_value = float(self.eval_metrics[primary_metric_key]) info['_Attributes']['eval_metrics'] = { primary_metric_key: primary_metric_value } except: pass if hasattr(self, 'test_transforms'): if hasattr(self.test_transforms, 'to_rgb'): if self.test_transforms.to_rgb: info['TransformsMode'] = 'RGB' else: info['TransformsMode'] = 'BGR' if self.test_transforms is not None: info['Transforms'] = list() for op in self.test_transforms.transforms: name = op.__class__.__name__ attr = op.__dict__ info['Transforms'].append({name: attr}) info['completed_epochs'] = self.completed_epochs return info def save_model(self, save_dir): if not osp.isdir(save_dir): if osp.exists(save_dir): os.remove(save_dir) os.makedirs(save_dir) if self.train_prog is not None: fluid.save(self.train_prog, osp.join(save_dir, 'model')) else: fluid.save(self.test_prog, osp.join(save_dir, 'model')) model_info = self.get_model_info() model_info['status'] = self.status with open( osp.join(save_dir, 'model.yml'), encoding='utf-8', mode='w') as f: yaml.dump(model_info, f) # 评估结果保存 if hasattr(self, 'eval_details'): with open(osp.join(save_dir, 'eval_details.json'), 'w') as f: json.dump(self.eval_details, f) if self.status == 'Prune': # 保存裁剪的shape shapes = {} for block in self.train_prog.blocks: for param in block.all_parameters(): pd_var = fluid.global_scope().find_var(param.name) pd_param = pd_var.get_tensor() shapes[param.name] = np.array(pd_param).shape with open( osp.join(save_dir, 'prune.yml'), encoding='utf-8', mode='w') as f: yaml.dump(shapes, f) # 模型保存成功的标志 open(osp.join(save_dir, '.success'), 'w').close() logging.info("Model saved in {}.".format(save_dir)) def export_inference_model(self, save_dir): test_input_names = [var.name for var in list(self.test_inputs.values())] test_outputs = list(self.test_outputs.values()) if self.__class__.__name__ == 'MaskRCNN': from paddlex.utils.save import save_mask_inference_model save_mask_inference_model( dirname=save_dir, executor=self.exe, params_filename='__params__', feeded_var_names=test_input_names, target_vars=test_outputs, main_program=self.test_prog) else: fluid.io.save_inference_model( dirname=save_dir, executor=self.exe, params_filename='__params__', feeded_var_names=test_input_names, target_vars=test_outputs, main_program=self.test_prog) model_info = self.get_model_info() model_info['status'] = 'Infer' # 保存模型输出的变量描述 model_info['_ModelInputsOutputs'] = dict() model_info['_ModelInputsOutputs']['test_inputs'] = [ [k, v.name] for k, v in self.test_inputs.items() ] model_info['_ModelInputsOutputs']['test_outputs'] = [ [k, v.name] for k, v in self.test_outputs.items() ] with open( osp.join(save_dir, 'model.yml'), encoding='utf-8', mode='w') as f: yaml.dump(model_info, f) # 模型保存成功的标志 open(osp.join(save_dir, '.success'), 'w').close() logging.info("Model for inference deploy saved in {}.".format(save_dir)) def train_loop(self, num_epochs, train_dataset, train_batch_size, eval_dataset=None, save_interval_epochs=1, log_interval_steps=10, save_dir='output', use_vdl=False, early_stop=False, early_stop_patience=5): if train_dataset.num_samples < train_batch_size: raise Exception( 'The amount of training datset must be larger than batch size.') if not osp.isdir(save_dir): if osp.exists(save_dir): os.remove(save_dir) os.makedirs(save_dir) if use_vdl: from visualdl import LogWriter vdl_logdir = osp.join(save_dir, 'vdl_log') # 给transform添加arrange操作 self.arrange_transforms( transforms=train_dataset.transforms, mode='train') # 构建train_data_loader self.build_train_data_loader( dataset=train_dataset, batch_size=train_batch_size) if eval_dataset is not None: self.eval_transforms = eval_dataset.transforms self.test_transforms = copy.deepcopy(eval_dataset.transforms) # 获取实时变化的learning rate lr = self.optimizer._learning_rate if isinstance(lr, fluid.framework.Variable): self.train_outputs['lr'] = lr # 在多卡上跑训练 if self.parallel_train_prog is None: build_strategy = fluid.compiler.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False if paddlex.env_info['place'] != 'cpu' and len(self.places) > 1: build_strategy.sync_batch_norm = self.sync_bn exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_iteration_per_drop_scope = 1 self.parallel_train_prog = fluid.CompiledProgram( self.train_prog).with_data_parallel( loss_name=self.train_outputs['loss'].name, build_strategy=build_strategy, exec_strategy=exec_strategy) total_num_steps = math.floor(train_dataset.num_samples / train_batch_size) num_steps = 0 time_stat = list() time_train_one_epoch = None time_eval_one_epoch = None total_num_steps_eval = 0 # 模型总共的评估次数 total_eval_times = math.ceil(num_epochs / save_interval_epochs) # 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。 eval_batch_size = train_batch_size if self.model_type == 'detector': eval_batch_size = self._get_single_card_bs(train_batch_size) if eval_dataset is not None: total_num_steps_eval = math.ceil(eval_dataset.num_samples / eval_batch_size) if use_vdl: # VisualDL component log_writer = LogWriter(vdl_logdir) thresh = 0.0001 if early_stop: earlystop = EarlyStop(early_stop_patience, thresh) best_accuracy_key = "" best_accuracy = -1.0 best_model_epoch = -1 start_epoch = self.completed_epochs for i in range(start_epoch, num_epochs): records = list() step_start_time = time.time() epoch_start_time = time.time() for step, data in enumerate(self.train_data_loader()): outputs = self.exe.run( self.parallel_train_prog, feed=data, fetch_list=list(self.train_outputs.values())) outputs_avg = np.mean(np.array(outputs), axis=1) records.append(outputs_avg) # 训练完成剩余时间预估 current_time = time.time() step_cost_time = current_time - step_start_time step_start_time = current_time if len(time_stat) < 20: time_stat.append(step_cost_time) else: time_stat[num_steps % 20] = step_cost_time # 每间隔log_interval_steps,输出loss信息 num_steps += 1 if num_steps % log_interval_steps == 0: step_metrics = OrderedDict( zip(list(self.train_outputs.keys()), outputs_avg)) if use_vdl: for k, v in step_metrics.items(): log_writer.add_scalar( 'Metrics/Training(Step): {}'.format(k), v, num_steps) # 估算剩余时间 avg_step_time = np.mean(time_stat) if time_train_one_epoch is not None: eta = (num_epochs - i - 1) * time_train_one_epoch + ( total_num_steps - step - 1) * avg_step_time else: eta = ((num_epochs - i) * total_num_steps - step - 1 ) * avg_step_time if time_eval_one_epoch is not None: eval_eta = (total_eval_times - i // save_interval_epochs ) * time_eval_one_epoch else: eval_eta = (total_eval_times - i // save_interval_epochs ) * total_num_steps_eval * avg_step_time eta_str = seconds_to_hms(eta + eval_eta) logging.info( "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}" .format(i + 1, num_epochs, step + 1, total_num_steps, dict2str(step_metrics), round(avg_step_time, 2), eta_str)) train_metrics = OrderedDict( zip(list(self.train_outputs.keys()), np.mean( records, axis=0))) logging.info('[TRAIN] Epoch {} finished, {} .'.format( i + 1, dict2str(train_metrics))) time_train_one_epoch = time.time() - epoch_start_time epoch_start_time = time.time() # 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存 self.completed_epochs += 1 eval_epoch_start_time = time.time() if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1: current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1)) if not osp.isdir(current_save_dir): os.makedirs(current_save_dir) if eval_dataset is not None and eval_dataset.num_samples > 0: self.eval_metrics, self.eval_details = self.evaluate( eval_dataset=eval_dataset, batch_size=eval_batch_size, epoch_id=i + 1, return_details=True) logging.info('[EVAL] Finished, Epoch={}, {} .'.format( i + 1, dict2str(self.eval_metrics))) # 保存最优模型 best_accuracy_key = list(self.eval_metrics.keys())[0] current_accuracy = self.eval_metrics[best_accuracy_key] if current_accuracy > best_accuracy: best_accuracy = current_accuracy best_model_epoch = i + 1 best_model_dir = osp.join(save_dir, "best_model") self.save_model(save_dir=best_model_dir) if use_vdl: for k, v in self.eval_metrics.items(): if isinstance(v, list): continue if isinstance(v, np.ndarray): if v.size > 1: continue log_writer.add_scalar( "Metrics/Eval(Epoch): {}".format(k), v, i + 1) self.save_model(save_dir=current_save_dir) time_eval_one_epoch = time.time() - eval_epoch_start_time eval_epoch_start_time = time.time() if best_model_epoch > 0: logging.info( 'Current evaluated best model in eval_dataset is epoch_{}, {}={}' .format(best_model_epoch, best_accuracy_key, best_accuracy)) if eval_dataset is not None and early_stop: if earlystop(current_accuracy): break