# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import paddle.fluid as fluid import os import sys import paddlex as pdx import paddlex.utils.logging as logging __all__ = ['export_onnx'] def export_onnx(model_dir, save_dir, fixed_input_shape): assert len(fixed_input_shape) == 2, "len of fixed input shape must == 2" model = pdx.load_model(model_dir, fixed_input_shape) model_name = os.path.basename(model_dir.strip('/')).split('/')[-1] export_onnx_model(model, save_dir) def export_onnx_model(model, save_dir): if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN": logging.error( "Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to ONNX" ) try: import x2paddle if x2paddle.__version__ < '0.7.4': logging.error("You need to upgrade x2paddle >= 0.7.4") except: logging.error( "You need to install x2paddle first, pip install x2paddle>=0.7.4") from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper mapper = PaddleOpMapper() mapper.convert(model.test_prog, save_dir)