# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os # 选择使用0号卡 os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex.cls import transforms import paddlex as pdx def train(model_dir=None, sensitivities_file=None, eval_metric_loss=0.05): # 下载和解压蔬菜分类数据集 veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(veg_dataset, path='./') # 定义训练和验证时的transforms train_transforms = transforms.Compose([ transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(), transforms.Normalize() ]) eval_transforms = transforms.Compose([ transforms.ResizeByShort(short_size=256), transforms.CenterCrop(crop_size=224), transforms.Normalize() ]) # 定义训练和验证所用的数据集 train_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/val_list.txt', label_list='vegetables_cls/labels.txt', transforms=eval_transforms) num_classes = len(train_dataset.labels) model = pdx.cls.MobileNetV2(num_classes=num_classes) if model_dir is None: # 使用imagenet数据集预训练模型权重 pretrain_weights = "IMAGENET" else: # 使用传入的model_dir作为预训练模型权重 assert os.path.isdir(model_dir), "Path {} is not a directory".format( model_dir) pretrain_weights = model_dir save_dir = './output/mobilenetv2' if sensitivities_file is not None: # DEFAULT 指使用模型预置的参数敏感度信息作为裁剪依据 if sensitivities_file != "DEFAULT": assert os.path.exists( sensitivities_file), "Path {} not exist".format( sensitivities_file) save_dir = './output/mobilenetv2_prune' model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=32, eval_dataset=eval_dataset, lr_decay_epochs=[4, 6, 8], learning_rate=0.025, pretrain_weights=pretrain_weights, save_dir=save_dir, use_vdl=True, sensitivities_file=sensitivities_file, eval_metric_loss=eval_metric_loss) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--model_dir", default=None, type=str, help="The model path.") parser.add_argument( "--sensitivities_file", default=None, type=str, help="The sensitivities file path.") parser.add_argument( "--eval_metric_loss", default=0.05, type=float, help="The loss threshold.") args = parser.parse_args() train(args.model_dir, args.sensitivities_file, args.eval_metric_loss)