# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import tqdm import numpy as np from .prune import cal_model_size from paddleslim.prune import load_sensitivities def visualize(model, sensitivities_file, save_dir='./'): """将模型裁剪率和每个参数裁剪后精度损失的关系可视化。 可视化结果纵轴为eval_metric_loss参数值,横轴为对应的模型被裁剪的比例 Args: model (paddlex.cv.models): paddlex中的模型。 sensitivities_file (str): 敏感度文件存储路径。 """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt program = model.test_prog place = model.places[0] fig = plt.figure() plt.xlabel("model prune ratio") plt.ylabel("evaluation loss") title_name = osp.split(sensitivities_file)[-1].split('.')[0] plt.title(title_name) plt.grid(linestyle='--', linewidth=0.5) x = list() y = list() for loss_thresh in tqdm.tqdm(list(np.arange(0.05, 1, 0.05))): prune_ratio = 1 - cal_model_size( program, place, sensitivities_file, eval_metric_loss=loss_thresh) x.append(prune_ratio) y.append(loss_thresh) plt.plot(x, y, color='green', linewidth=0.5, marker='o', markersize=3) my_x_ticks = np.arange( min(np.array(x)) - 0.01, max(np.array(x)) + 0.01, 0.05) my_y_ticks = np.arange(0.05, 1, 0.05) plt.xticks(my_x_ticks, rotation=15, fontsize=8) plt.yticks(my_y_ticks, fontsize=8) for a, b in zip(x, y): plt.text( a, b, (float('%0.3f' % a), float('%0.3f' % b)), ha='center', va='bottom', fontsize=8) plt.rcParams['savefig.dpi'] = 120 plt.rcParams['figure.dpi'] = 150 suffix = osp.splitext(sensitivities_file)[-1] plt.savefig(osp.join(save_dir, 'sensitivities.png')) plt.close() import pickle coor = dict(zip(x, y)) output = open(osp.join(save_dir, 'sensitivities_xy.pkl'), 'wb') pickle.dump(coor, output)