# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import copy import os.path as osp import numpy as np import paddlex as pdx from .interpretation_predict import interpretation_predict from .core.interpretation import Interpretation from .core.normlime_base import precompute_global_classifier from .core._session_preparation import gen_user_home def lime(img_file, model, num_samples=3000, batch_size=50, save_dir='./'): """使用LIME算法将模型预测结果的可解释性可视化。 LIME表示与模型无关的局部可解释性,可以解释任何模型。LIME的思想是以输入样本为中心, 在其附近的空间中进行随机采样,每个采样通过原模型得到新的输出,这样得到一系列的输入 和对应的输出,LIME用一个简单的、可解释的模型(比如线性回归模型)来拟合这个映射关系, 得到每个输入维度的权重,以此来解释模型。 注意:LIME可解释性结果可视化目前只支持分类模型。 Args: img_file (str): 预测图像路径。 model (paddlex.cv.models): paddlex中的模型。 num_samples (int): LIME用于学习线性模型的采样数,默认为3000。 batch_size (int): 预测数据batch大小,默认为50。 save_dir (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。 """ assert model.model_type == 'classifier', \ 'Now the interpretation visualize only be supported in classifier!' if model.status != 'Normal': raise Exception( 'The interpretation only can deal with the Normal model') if not osp.exists(save_dir): os.makedirs(save_dir) model.arrange_transforms(transforms=model.test_transforms, mode='test') tmp_transforms = copy.deepcopy(model.test_transforms) tmp_transforms.transforms = tmp_transforms.transforms[:-2] img = tmp_transforms(img_file)[0] img = np.around(img).astype('uint8') img = np.expand_dims(img, axis=0) interpreter = None interpreter = get_lime_interpreter( img, model, num_samples=num_samples, batch_size=batch_size) img_name = osp.splitext(osp.split(img_file)[-1])[0] interpreter.interpret(img, save_dir=osp.join(save_dir, img_name)) def normlime(img_file, model, dataset=None, num_samples=3000, batch_size=50, save_dir='./', normlime_weights_file=None): """使用NormLIME算法将模型预测结果的可解释性可视化。 NormLIME是利用一定数量的样本来出一个全局的解释。由于NormLIME计算量较大,此处采用一种简化的方式: 使用一定数量的测试样本(目前默认使用所有测试样本),对每个样本进行特征提取,映射到同一个特征空间; 然后以此特征做为输入,以模型输出做为输出,使用线性回归对其进行拟合,得到一个全局的输入和输出的关系。 之后,对一测试样本进行解释时,使用NormLIME全局的解释,来对LIME的结果进行滤波,使最终的可视化结果更加稳定。 注意1:dataset读取的是一个数据集,该数据集不宜过大,否则计算时间会较长,但应包含所有类别的数据。 注意2:NormLIME可解释性结果可视化目前只支持分类模型。 Args: img_file (str): 预测图像路径。 model (paddlex.cv.models): paddlex中的模型。 dataset (paddlex.datasets): 数据集读取器,默认为None。 num_samples (int): LIME用于学习线性模型的采样数,默认为3000。 batch_size (int): 预测数据batch大小,默认为50。 save_dir (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。 normlime_weights_file (str): NormLIME初始化文件名,若不存在,则计算一次,保存于该路径;若存在,则直接载入。 """ assert model.model_type == 'classifier', \ 'Now the interpretation visualize only be supported in classifier!' if model.status != 'Normal': raise Exception( 'The interpretation only can deal with the Normal model') if not osp.exists(save_dir): os.makedirs(save_dir) model.arrange_transforms(transforms=model.test_transforms, mode='test') tmp_transforms = copy.deepcopy(model.test_transforms) tmp_transforms.transforms = tmp_transforms.transforms[:-2] img = tmp_transforms(img_file)[0] img = np.around(img).astype('uint8') img = np.expand_dims(img, axis=0) interpreter = None if dataset is None: raise Exception( 'The dataset is None. Cannot implement this kind of interpretation') interpreter = get_normlime_interpreter( img, model, dataset, num_samples=num_samples, batch_size=batch_size, save_dir=save_dir, normlime_weights_file=normlime_weights_file) img_name = osp.splitext(osp.split(img_file)[-1])[0] interpreter.interpret(img, save_dir=osp.join(save_dir, img_name)) def get_lime_interpreter(img, model, num_samples=3000, batch_size=50): def predict_func(image): out = interpretation_predict(model, image) return out[0] labels_name = None if hasattr(model, 'labels'): labels_name = model.labels interpreter = Interpretation( 'lime', predict_func, labels_name, num_samples=num_samples, batch_size=batch_size) return interpreter def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=50, save_dir='./', normlime_weights_file=None): def predict_func(image): out = interpretation_predict(model, image) return out[0] labels_name = None if dataset is not None: labels_name = dataset.labels root_path = gen_user_home() root_path = osp.join(root_path, '.paddlex') pre_models_path = osp.join(root_path, "pre_models") if not osp.exists(pre_models_path): if not osp.exists(root_path): os.makedirs(root_path) url = "https://bj.bcebos.com/paddlex/interpret/pre_models.tar.gz" pdx.utils.download_and_decompress(url, path=root_path) if osp.exists(osp.join(save_dir, normlime_weights_file)): normlime_weights_file = osp.join(save_dir, normlime_weights_file) try: np.load(normlime_weights_file, allow_pickle=True).item() except: normlime_weights_file = precompute_global_classifier( dataset, predict_func, save_path=normlime_weights_file, batch_size=batch_size) else: normlime_weights_file = precompute_global_classifier( dataset, predict_func, save_path=osp.join(save_dir, normlime_weights_file), batch_size=batch_size) interpreter = Interpretation( 'normlime', predict_func, labels_name, num_samples=num_samples, batch_size=batch_size, normlime_weights=normlime_weights_file) return interpreter