# coding: utf8 # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import paddle.fluid as fluid from .model_utils.libs import scope, name_scope from .model_utils.libs import bn, bn_relu, relu from .model_utils.libs import conv, max_pool, deconv from .model_utils.libs import separate_conv from .model_utils.libs import sigmoid_to_softmax from .model_utils.loss import softmax_with_loss from .model_utils.loss import dice_loss from .model_utils.loss import bce_loss from paddlex.cv.nets.xception import Xception from paddlex.cv.nets.mobilenet_v2 import MobileNetV2 class DeepLabv3p(object): """实现DeepLabv3+模型 `"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" ` Args: num_classes (int): 类别数。 backbone (paddlex.cv.nets): 神经网络,实现DeepLabv3+特征图的计算。 mode (str): 网络运行模式,根据mode构建网络的输入和返回。 当mode为'train'时,输入为image(-1, 3, -1, -1)和label (-1, 1, -1, -1) 返回loss。 当mode为'train'时,输入为image (-1, 3, -1, -1)和label (-1, 1, -1, -1),返回loss, pred (与网络输入label 相同大小的预测结果,值代表相应的类别),label,mask(非忽略值的mask, 与label相同大小,bool类型)。 当mode为'test'时,输入为image(-1, 3, -1, -1)返回pred (-1, 1, -1, -1)和 logit (-1, num_classes, -1, -1) 通道维上代表每一类的概率值。 output_stride (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。 aspp_with_sep_conv (bool): 在asspp模块是否采用separable convolutions。 decoder_use_sep_conv (bool): decoder模块是否采用separable convolutions。 encoder_with_aspp (bool): 是否在encoder阶段采用aspp模块。 enable_decoder (bool): 是否使用decoder模块。 use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。 use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。 当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。 class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为 num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重 自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1, 即平时使用的交叉熵损失函数。 ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。 fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。 Raises: ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。 ValueError: class_weight为list, 但长度不等于num_class。 class_weight为str, 但class_weight.low()不等于dynamic。 TypeError: class_weight不为None时,其类型不是list或str。 """ def __init__(self, num_classes, backbone, mode='train', output_stride=16, aspp_with_sep_conv=True, decoder_use_sep_conv=True, encoder_with_aspp=True, enable_decoder=True, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, fixed_input_shape=None): # dice_loss或bce_loss只适用两类分割中 if num_classes > 2 and (use_bce_loss or use_dice_loss): raise ValueError( "dice loss and bce loss is only applicable to binary classfication" ) if class_weight is not None: if isinstance(class_weight, list): if len(class_weight) != num_classes: raise ValueError( "Length of class_weight should be equal to number of classes" ) elif isinstance(class_weight, str): if class_weight.lower() != 'dynamic': raise ValueError( "if class_weight is string, must be dynamic!") else: raise TypeError( 'Expect class_weight is a list or string but receive {}'. format(type(class_weight))) self.num_classes = num_classes self.backbone = backbone self.mode = mode self.use_bce_loss = use_bce_loss self.use_dice_loss = use_dice_loss self.class_weight = class_weight self.ignore_index = ignore_index self.output_stride = output_stride self.aspp_with_sep_conv = aspp_with_sep_conv self.decoder_use_sep_conv = decoder_use_sep_conv self.encoder_with_aspp = encoder_with_aspp self.enable_decoder = enable_decoder self.fixed_input_shape = fixed_input_shape def _encoder(self, input): # 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv # ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积 # OUTPUT_STRIDE: 下采样倍数,8或16,决定aspp_ratios大小 # aspp_ratios:ASPP模块空洞卷积的采样率 if self.output_stride == 16: aspp_ratios = [6, 12, 18] elif self.output_stride == 8: aspp_ratios = [12, 24, 36] else: raise Exception("DeepLabv3p only support stride 8 or 16") param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=None, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.06)) with scope('encoder'): channel = 256 with scope("image_pool"): image_avg = fluid.layers.reduce_mean( input, [2, 3], keep_dim=True) image_avg = bn_relu( conv( image_avg, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)) input_shape = fluid.layers.shape(input) image_avg = fluid.layers.resize_bilinear(image_avg, input_shape[2:]) with scope("aspp0"): aspp0 = bn_relu( conv( input, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)) with scope("aspp1"): if self.aspp_with_sep_conv: aspp1 = separate_conv( input, channel, 1, 3, dilation=aspp_ratios[0], act=relu) else: aspp1 = bn_relu( conv( input, channel, stride=1, filter_size=3, dilation=aspp_ratios[0], padding=aspp_ratios[0], param_attr=param_attr)) with scope("aspp2"): if self.aspp_with_sep_conv: aspp2 = separate_conv( input, channel, 1, 3, dilation=aspp_ratios[1], act=relu) else: aspp2 = bn_relu( conv( input, channel, stride=1, filter_size=3, dilation=aspp_ratios[1], padding=aspp_ratios[1], param_attr=param_attr)) with scope("aspp3"): if self.aspp_with_sep_conv: aspp3 = separate_conv( input, channel, 1, 3, dilation=aspp_ratios[2], act=relu) else: aspp3 = bn_relu( conv( input, channel, stride=1, filter_size=3, dilation=aspp_ratios[2], padding=aspp_ratios[2], param_attr=param_attr)) with scope("concat"): data = fluid.layers.concat( [image_avg, aspp0, aspp1, aspp2, aspp3], axis=1) data = bn_relu( conv( data, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)) data = fluid.layers.dropout(data, 0.9) return data def _decoder(self, encode_data, decode_shortcut): # 解码器配置 # encode_data:编码器输出 # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat # decoder_use_sep_conv: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积 param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=None, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.06)) with scope('decoder'): with scope('concat'): decode_shortcut = bn_relu( conv( decode_shortcut, 48, 1, 1, groups=1, padding=0, param_attr=param_attr)) decode_shortcut_shape = fluid.layers.shape(decode_shortcut) encode_data = fluid.layers.resize_bilinear( encode_data, decode_shortcut_shape[2:]) encode_data = fluid.layers.concat( [encode_data, decode_shortcut], axis=1) if self.decoder_use_sep_conv: with scope("separable_conv1"): encode_data = separate_conv( encode_data, 256, 1, 3, dilation=1, act=relu) with scope("separable_conv2"): encode_data = separate_conv( encode_data, 256, 1, 3, dilation=1, act=relu) else: with scope("decoder_conv1"): encode_data = bn_relu( conv( encode_data, 256, stride=1, filter_size=3, dilation=1, padding=1, param_attr=param_attr)) with scope("decoder_conv2"): encode_data = bn_relu( conv( encode_data, 256, stride=1, filter_size=3, dilation=1, padding=1, param_attr=param_attr)) return encode_data def _get_loss(self, logit, label, mask): avg_loss = 0 if not (self.use_dice_loss or self.use_bce_loss): avg_loss += softmax_with_loss( logit, label, mask, num_classes=self.num_classes, weight=self.class_weight, ignore_index=self.ignore_index) else: if self.use_dice_loss: avg_loss += dice_loss(logit, label, mask) if self.use_bce_loss: avg_loss += bce_loss( logit, label, mask, ignore_index=self.ignore_index) return avg_loss def generate_inputs(self): inputs = OrderedDict() if self.fixed_input_shape is not None: input_shape = [ None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0] ] inputs['image'] = fluid.data( dtype='float32', shape=input_shape, name='image') else: inputs['image'] = fluid.data( dtype='float32', shape=[None, 3, None, None], name='image') if self.mode == 'train': inputs['label'] = fluid.data( dtype='int32', shape=[None, 1, None, None], name='label') return inputs def build_net(self, inputs): # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1 if self.use_dice_loss or self.use_bce_loss: self.num_classes = 1 image = inputs['image'] data, decode_shortcuts = self.backbone(image) decode_shortcut = decode_shortcuts[self.backbone.decode_points] # 编码器解码器设置 if self.encoder_with_aspp: data = self._encoder(data) if self.enable_decoder: data = self._decoder(data, decode_shortcut) # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸 param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.0), initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.01)) with scope('logit'): with fluid.name_scope('last_conv'): logit = conv( data, self.num_classes, 1, stride=1, padding=0, bias_attr=True, param_attr=param_attr) image_shape = fluid.layers.shape(image) logit = fluid.layers.resize_bilinear(logit, image_shape[2:]) if self.num_classes == 1: out = sigmoid_to_softmax(logit) out = fluid.layers.transpose(out, [0, 2, 3, 1]) else: out = fluid.layers.transpose(logit, [0, 2, 3, 1]) pred = fluid.layers.argmax(out, axis=3) pred = fluid.layers.unsqueeze(pred, axes=[3]) if self.mode == 'train': label = inputs['label'] mask = label != self.ignore_index return self._get_loss(logit, label, mask) elif self.mode == 'eval': label = inputs['label'] mask = label != self.ignore_index loss = self._get_loss(logit, label, mask) return loss, pred, label, mask else: if self.num_classes == 1: logit = sigmoid_to_softmax(logit) else: logit = fluid.layers.softmax(logit, axis=1) return pred, logit return logit