// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include // NOLINT #include #include #include #include #include #include "include/paddlex/paddlex.h" #include "include/paddlex/visualize.h" using namespace std::chrono; // NOLINT DEFINE_string(model_dir, "", "Path of inference model"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_bool(use_trt, false, "Infering with TensorRT"); DEFINE_int32(gpu_id, 0, "GPU card id"); DEFINE_string(key, "", "key of encryption"); DEFINE_string(image, "", "Path of test image file"); DEFINE_string(image_list, "", "Path of test image list file"); DEFINE_string(save_dir, "output", "Path to save visualized image"); DEFINE_int32(batch_size, 1, "Batch size of infering"); DEFINE_double(threshold, 0.5, "The minimum scores of target boxes which are shown"); DEFINE_int32(thread_num, omp_get_num_procs(), "Number of preprocessing threads"); int main(int argc, char** argv) { // 解析命令行参数 google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { std::cerr << "--model_dir need to be defined" << std::endl; return -1; } if (FLAGS_image == "" & FLAGS_image_list == "") { std::cerr << "--image or --image_list need to be defined" << std::endl; return -1; } // 加载模型 PaddleX::Model model; model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_trt, FLAGS_gpu_id, FLAGS_key); double total_running_time_s = 0.0; double total_imread_time_s = 0.0; int imgs = 1; auto colormap = PaddleX::GenerateColorMap(model.labels.size()); std::string save_dir = "output"; // 进行预测 if (FLAGS_image_list != "") { std::ifstream inf(FLAGS_image_list); if (!inf) { std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } std::string image_path; std::vector image_paths; while (getline(inf, image_path)) { image_paths.push_back(image_path); } imgs = image_paths.size(); for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) { auto start = system_clock::now(); int im_vec_size = std::min(static_cast(image_paths.size()), i + FLAGS_batch_size); std::vector im_vec(im_vec_size - i); std::vector results(im_vec_size - i, PaddleX::DetResult()); int thread_num = std::min(FLAGS_thread_num, im_vec_size - i); #pragma omp parallel for num_threads(thread_num) for (int j = i; j < im_vec_size; ++j) { im_vec[j - i] = std::move(cv::imread(image_paths[j], 1)); } auto imread_end = system_clock::now(); model.predict(im_vec, &results, thread_num); auto imread_duration = duration_cast(imread_end - start); total_imread_time_s += static_cast(imread_duration.count()) * microseconds::period::num / microseconds::period::den; auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += static_cast(duration.count()) * microseconds::period::num / microseconds::period::den; // 输出结果目标框 for (int j = 0; j < im_vec_size - i; ++j) { for (int k = 0; k < results[j].boxes.size(); ++k) { std::cout << "image file: " << image_paths[i + j] << ", "; std::cout << "predict label: " << results[j].boxes[k].category << ", label_id:" << results[j].boxes[k].category_id << ", score: " << results[j].boxes[k].score << ", box(xmin, ymin, w, h):(" << results[j].boxes[k].coordinate[0] << ", " << results[j].boxes[k].coordinate[1] << ", " << results[j].boxes[k].coordinate[2] << ", " << results[j].boxes[k].coordinate[3] << ")" << std::endl; } } // 可视化 for (int j = 0; j < im_vec_size - i; ++j) { cv::Mat vis_img = PaddleX::Visualize( im_vec[j], results[j], model.labels, colormap, FLAGS_threshold); std::string save_path = PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]); cv::imwrite(save_path, vis_img); std::cout << "Visualized output saved as " << save_path << std::endl; } } } else { auto start = system_clock::now(); PaddleX::DetResult result; cv::Mat im = cv::imread(FLAGS_image, 1); model.predict(im, &result); auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += static_cast(duration.count()) * microseconds::period::num / microseconds::period::den; // 输出结果目标框 for (int i = 0; i < result.boxes.size(); ++i) { std::cout << "image file: " << FLAGS_image << std::endl; std::cout << ", predict label: " << result.boxes[i].category << ", label_id:" << result.boxes[i].category_id << ", score: " << result.boxes[i].score << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0] << ", " << result.boxes[i].coordinate[1] << ", " << result.boxes[i].coordinate[2] << ", " << result.boxes[i].coordinate[3] << ")" << std::endl; } // 可视化 cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold); std::string save_path = PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image); cv::imwrite(save_path, vis_img); result.clear(); std::cout << "Visualized output saved as " << save_path << std::endl; } std::cout << "Total running time: " << total_running_time_s << " s, average running time: " << total_running_time_s / imgs << " s/img, total read img time: " << total_imread_time_s << " s, average read img time: " << total_imread_time_s / imgs << " s, batch_size = " << FLAGS_batch_size << std::endl; return 0; }