// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include "yaml-cpp/yaml.h" #ifdef _WIN32 #define OS_PATH_SEP "\\" #else #define OS_PATH_SEP "/" #endif #include "paddle_inference_api.h" // NOLINT #include "config_parser.h" // NOLINT #include "results.h" // NOLINT #include "transforms.h" // NOLINT #ifdef WITH_ENCRYPTION #include "paddle_model_decrypt.h" // NOLINT #include "model_code.h" // NOLINT #endif namespace PaddleX { /* * @brief * This class encapsulates all necessary proccess steps of model infering, which * include image matrix preprocessing, model predicting and results postprocessing. * The entire process of model infering can be simplified as below: * 1. preprocess image matrix (resize, padding, ......) * 2. model infer * 3. postprocess the results which generated from model infering * * @example * PaddleX::Model cls_model; * // initialize model configuration * cls_model.Init(cls_model_dir, use_gpu, use_trt, gpu_id, encryption_key); * // define a Classification result object * PaddleX::ClsResult cls_result; * // get image matrix from image file * cv::Mat im = cv::imread(image_file_path, 1); * cls_model.predict(im, &cls_result); * */ class Model { public: /* * @brief * This method aims to initialize the model configuration * * @param model_dir: the directory which contains model.yml * @param use_gpu: use gpu or not when infering * @param use_trt: use Tensor RT or not when infering * @param gpu_id: the id of gpu when infering with using gpu * @param key: the key of encryption when using encrypted model * @param batch_size: batch size of infering * */ void Init(const std::string& model_dir, bool use_gpu = false, bool use_trt = false, int gpu_id = 0, std::string key = "", int batch_size = 1) { create_predictor(model_dir, use_gpu, use_trt, gpu_id, key, batch_size); } void create_predictor(const std::string& model_dir, bool use_gpu = false, bool use_trt = false, int gpu_id = 0, std::string key = "", int batch_size = 1); /* * @brief * This method aims to load model configurations which include * transform steps and label list * * @param yaml_input: model configuration string * @return true if load configuration successfully * */ bool load_config(const std::string& yaml_input); /* * @brief * This method aims to transform single image matrix, the result will be * returned at second parameter. * * @param input_im: single image matrix to be transformed * @param blob: the raw data of single image matrix after transformed * @return true if preprocess image matrix successfully * */ bool preprocess(const cv::Mat& input_im, ImageBlob* blob); /* * @brief * This method aims to transform mutiple image matrixs, the result will be * returned at second parameter. * * @param input_im_batch: a batch of image matrixs to be transformed * @param blob_blob: raw data of a batch of image matrixs after transformed * @param thread_num: the number of preprocessing threads, * each thread run preprocess on single image matrix * @return true if preprocess a batch of image matrixs successfully * */ bool preprocess(const std::vector &input_im_batch, std::vector *blob_batch, int thread_num = 1); /* * @brief * This method aims to execute classification model prediction on single image matrix, * the result will be returned at second parameter. * * @param im: single image matrix to be predicted * @param result: classification prediction result data after postprocessed * @return true if predict successfully * */ bool predict(const cv::Mat& im, ClsResult* result); /* * @brief * This method aims to execute classification model prediction on a batch of image matrixs, * the result will be returned at second parameter. * * @param im: a batch of image matrixs to be predicted * @param results: a batch of classification prediction result data after postprocessed * @param thread_num: the number of predicting threads, each thread run prediction * on single image matrix * @return true if predict successfully * */ bool predict(const std::vector &im_batch, std::vector *results, int thread_num = 1); /* * @brief * This method aims to execute detection or instance segmentation model prediction * on single image matrix, the result will be returned at second parameter. * * @param im: single image matrix to be predicted * @param result: detection or instance segmentation prediction result data after postprocessed * @return true if predict successfully * */ bool predict(const cv::Mat& im, DetResult* result); /* * @brief * This method aims to execute detection or instance segmentation model prediction * on a batch of image matrixs, the result will be returned at second parameter. * * @param im: a batch of image matrix to be predicted * @param result: detection or instance segmentation prediction result data after postprocessed * @param thread_num: the number of predicting threads, each thread run prediction * on single image matrix * @return true if predict successfully * */ bool predict(const std::vector &im_batch, std::vector *result, int thread_num = 1); /* * @brief * This method aims to execute segmentation model prediction on single image matrix, * the result will be returned at second parameter. * * @param im: single image matrix to be predicted * @param result: segmentation prediction result data after postprocessed * @return true if predict successfully * */ bool predict(const cv::Mat& im, SegResult* result); /* * @brief * This method aims to execute segmentation model prediction on a batch of image matrix, * the result will be returned at second parameter. * * @param im: a batch of image matrix to be predicted * @param result: segmentation prediction result data after postprocessed * @param thread_num: the number of predicting threads, each thread run prediction * on single image matrix * @return true if predict successfully * */ bool predict(const std::vector &im_batch, std::vector *result, int thread_num = 1); // model type, include 3 type: classifier, detector, segmenter std::string type; // model name, such as FasterRCNN, YOLOV3 and so on. std::string name; std::map labels; // transform(preprocessing) pipeline manager Transforms transforms_; // single input preprocessed data ImageBlob inputs_; // batch input preprocessed data std::vector inputs_batch_; // raw data of predicting results std::vector outputs_; // a predictor which run the model predicting std::unique_ptr predictor_; }; } // namespace PaddleX