# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import NumpyArrayInitializer from paddle import fluid from .iou_loss import IouLoss class IouAwareLoss(IouLoss): """ iou aware loss, see https://arxiv.org/abs/1912.05992 Args: loss_weight (float): iou aware loss weight, default is 1.0 max_height (int): max height of input to support random shape input max_width (int): max width of input to support random shape input """ def __init__(self, loss_weight=1.0, max_height=608, max_width=608): super(IouAwareLoss, self).__init__( loss_weight=loss_weight, max_height=max_height, max_width=max_width) def __call__(self, ioup, x, y, w, h, tx, ty, tw, th, anchors, downsample_ratio, batch_size, scale_x_y, eps=1.e-10): ''' Args: ioup ([Variables]): the predicted iou x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h anchors ([float]): list of anchors for current output layer downsample_ratio (float): the downsample ratio for current output layer batch_size (int): training batch size eps (float): the decimal to prevent the denominator eqaul zero ''' pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio, batch_size, False, scale_x_y, eps) gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio, batch_size, True, scale_x_y, eps) iouk = self._iou(pred, gt, ioup, eps) iouk.stop_gradient = True loss_iou_aware = fluid.layers.cross_entropy( ioup, iouk, soft_label=True) loss_iou_aware = loss_iou_aware * self._loss_weight return loss_iou_aware