#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import import math import tqdm import os.path as osp import numpy as np import paddle.fluid as fluid import paddlex.utils.logging as logging import paddlex from .base import BaseAPI from collections import OrderedDict from .utils.detection_eval import eval_results, bbox2out import copy class YOLOv3(BaseAPI): """构建YOLOv3,并实现其训练、评估、预测和模型导出。 Args: num_classes (int): 类别数。默认为80。 backbone (str): YOLOv3的backbone网络,取值范围为['DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large']。默认为'MobileNetV1'。 anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值 [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]。 anchor_masks (list|tuple): 在计算YOLOv3损失时,使用anchor的mask索引,为None时表示使用默认值 [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。 ignore_threshold (float): 在计算YOLOv3损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。 nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。 nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。 nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。 nms_iou_threshold (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。 label_smooth (bool): 是否使用label smooth。默认值为False。 train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。 """ def __init__(self, num_classes=80, backbone='MobileNetV1', anchors=None, anchor_masks=None, ignore_threshold=0.7, nms_score_threshold=0.01, nms_topk=1000, nms_keep_topk=100, nms_iou_threshold=0.45, label_smooth=False, train_random_shapes=[ 320, 352, 384, 416, 448, 480, 512, 544, 576, 608 ], fixed_input_shape=None): self.init_params = locals() super(YOLOv3, self).__init__('detector') backbones = [ 'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large' ] assert backbone in backbones, "backbone should be one of {}".format( backbones) self.backbone = backbone self.num_classes = num_classes self.anchors = anchors self.anchor_masks = anchor_masks self.ignore_threshold = ignore_threshold self.nms_score_threshold = nms_score_threshold self.nms_topk = nms_topk self.nms_keep_topk = nms_keep_topk self.nms_iou_threshold = nms_iou_threshold self.label_smooth = label_smooth self.sync_bn = True self.train_random_shapes = train_random_shapes self.fixed_input_shape = fixed_input_shape def _get_backbone(self, backbone_name): if backbone_name == 'DarkNet53': backbone = paddlex.cv.nets.DarkNet(norm_type='sync_bn') elif backbone_name == 'ResNet34': backbone = paddlex.cv.nets.ResNet( norm_type='sync_bn', layers=34, freeze_norm=False, norm_decay=0., feature_maps=[3, 4, 5], freeze_at=0) elif backbone_name == 'MobileNetV1': backbone = paddlex.cv.nets.MobileNetV1(norm_type='sync_bn') elif backbone_name.startswith('MobileNetV3'): model_name = backbone_name.split('_')[1] backbone = paddlex.cv.nets.MobileNetV3( norm_type='sync_bn', model_name=model_name) return backbone def build_net(self, mode='train'): model = paddlex.cv.nets.detection.YOLOv3( backbone=self._get_backbone(self.backbone), num_classes=self.num_classes, mode=mode, anchors=self.anchors, anchor_masks=self.anchor_masks, ignore_threshold=self.ignore_threshold, label_smooth=self.label_smooth, nms_score_threshold=self.nms_score_threshold, nms_topk=self.nms_topk, nms_keep_topk=self.nms_keep_topk, nms_iou_threshold=self.nms_iou_threshold, train_random_shapes=self.train_random_shapes, fixed_input_shape = self.fixed_input_shape) inputs = model.generate_inputs() model_out = model.build_net(inputs) outputs = OrderedDict([('bbox', model_out)]) if mode == 'train': self.optimizer.minimize(model_out) outputs = OrderedDict([('loss', model_out)]) return inputs, outputs def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs, lr_decay_gamma, num_steps_each_epoch): if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch: raise Exception("warmup_steps should less than {}".format( lr_decay_epochs[0] * num_steps_each_epoch)) boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs] values = [(lr_decay_gamma**i) * learning_rate for i in range(len(lr_decay_epochs) + 1)] lr_decay = fluid.layers.piecewise_decay( boundaries=boundaries, values=values) lr_warmup = fluid.layers.linear_lr_warmup( learning_rate=lr_decay, warmup_steps=warmup_steps, start_lr=warmup_start_lr, end_lr=learning_rate) optimizer = fluid.optimizer.Momentum( learning_rate=lr_warmup, momentum=0.9, regularization=fluid.regularizer.L2DecayRegularizer(5e-04)) return optimizer def train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0 / 8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05): """训练。 Args: num_epochs (int): 训练迭代轮数。 train_dataset (paddlex.datasets): 训练数据读取器。 train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡 数量之商为验证数据batch大小。默认值为8。 eval_dataset (paddlex.datasets): 验证数据读取器。 save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。 log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。 save_dir (str): 模型保存路径。默认值为'output'。 pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET', 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。 optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器: fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。 learning_rate (float): 默认优化器的学习率。默认为1.0/8000。 warmup_steps (int): 默认优化器进行warmup过程的步数。默认为1000。 warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。 lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。 lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。 use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。 sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 Raises: ValueError: 评估类型不在指定列表中。 ValueError: 模型从inference model进行加载。 """ if not self.trainable: raise ValueError("Model is not trainable from load_model method.") if metric is None: if isinstance(train_dataset, paddlex.datasets.CocoDetection): metric = 'COCO' elif isinstance(train_dataset, paddlex.datasets.VOCDetection): metric = 'VOC' else: raise ValueError( "train_dataset should be datasets.VOCDetection or datasets.COCODetection." ) assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" self.metric = metric self.labels = train_dataset.labels # 构建训练网络 if optimizer is None: # 构建默认的优化策略 num_steps_each_epoch = train_dataset.num_samples // train_batch_size optimizer = self.default_optimizer( learning_rate=learning_rate, warmup_steps=warmup_steps, warmup_start_lr=warmup_start_lr, lr_decay_epochs=lr_decay_epochs, lr_decay_gamma=lr_decay_gamma, num_steps_each_epoch=num_steps_each_epoch) self.optimizer = optimizer # 构建训练、验证、预测网络 self.build_program() # 初始化网络权重 self.net_initialize( startup_prog=fluid.default_startup_program(), pretrain_weights=pretrain_weights, save_dir=save_dir, sensitivities_file=sensitivities_file, eval_metric_loss=eval_metric_loss) # 训练 self.train_loop( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, use_vdl=use_vdl) def evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False): """评估。 Args: eval_dataset (paddlex.datasets): 验证数据读取器。 batch_size (int): 验证数据批大小。默认为1。 epoch_id (int): 当前评估模型所在的训练轮数。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None, 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC'; 如为COCODetection,则metric为'COCO'。 return_details (bool): 是否返回详细信息。 Returns: tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details), 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘, 分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。 eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、 预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。 """ self.arrange_transforms( transforms=eval_dataset.transforms, mode='eval') if metric is None: if hasattr(self, 'metric') and self.metric is not None: metric = self.metric else: if isinstance(eval_dataset, paddlex.datasets.CocoDetection): metric = 'COCO' elif isinstance(eval_dataset, paddlex.datasets.VOCDetection): metric = 'VOC' else: raise Exception( "eval_dataset should be datasets.VOCDetection or datasets.COCODetection." ) assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size) results = list() data_generator = eval_dataset.generator( batch_size=batch_size, drop_last=False) logging.info( "Start to evaluating(total_samples={}, total_steps={})...".format( eval_dataset.num_samples, total_steps)) for step, data in tqdm.tqdm( enumerate(data_generator()), total=total_steps): images = np.array([d[0] for d in data]) im_sizes = np.array([d[1] for d in data]) feed_data = {'image': images, 'im_size': im_sizes} outputs = self.exe.run( self.test_prog, feed=[feed_data], fetch_list=list(self.test_outputs.values()), return_numpy=False) res = { 'bbox': (np.array(outputs[0]), outputs[0].recursive_sequence_lengths()) } res_id = [np.array([d[2]]) for d in data] res['im_id'] = (res_id, []) if metric == 'VOC': res_gt_box = [d[3].reshape(-1, 4) for d in data] res_gt_label = [d[4].reshape(-1, 1) for d in data] res_is_difficult = [d[5].reshape(-1, 1) for d in data] res_id = [np.array([d[2]]) for d in data] res['gt_box'] = (res_gt_box, []) res['gt_label'] = (res_gt_label, []) res['is_difficult'] = (res_is_difficult, []) results.append(res) logging.debug("[EVAL] Epoch={}, Step={}/{}".format( epoch_id, step + 1, total_steps)) box_ap_stats, eval_details = eval_results( results, metric, eval_dataset.coco_gt, with_background=False) evaluate_metrics = OrderedDict( zip(['bbox_mmap' if metric == 'COCO' else 'bbox_map'], box_ap_stats)) if return_details: return evaluate_metrics, eval_details return evaluate_metrics def predict(self, img_file, transforms=None): """预测。 Args: img_file (str): 预测图像路径。 transforms (paddlex.det.transforms): 数据预处理操作。 Returns: list: 预测结果列表,每个预测结果由预测框类别标签、 预测框类别名称、预测框坐标、预测框得分组成。 """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if transforms is not None: self.arrange_transforms(transforms=transforms, mode='test') im, im_size = transforms(img_file) else: self.arrange_transforms( transforms=self.test_transforms, mode='test') im, im_size = self.test_transforms(img_file) im = np.expand_dims(im, axis=0) im_size = np.expand_dims(im_size, axis=0) outputs = self.exe.run( self.test_prog, feed={ 'image': im, 'im_size': im_size }, fetch_list=list(self.test_outputs.values()), return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(list(self.test_outputs.keys()), outputs) } res['im_id'] = (np.array([[0]]).astype('int32'), []) clsid2catid = dict({i: i for i in range(self.num_classes)}) xywh_results = bbox2out([res], clsid2catid) results = list() for xywh_res in xywh_results: del xywh_res['image_id'] xywh_res['category'] = self.labels[xywh_res['category_id']] results.append(xywh_res) return results