# 环境变量配置,用于控制是否使用GPU # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex.det import transforms import paddlex as pdx # 下载和解压小度熊分拣数据集 xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz' pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./') # 定义训练和验证时的transforms # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html train_transforms = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.Normalize(), transforms.ResizeByShort( short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32) ]) eval_transforms = transforms.Compose([ transforms.Normalize(), transforms.ResizeByShort( short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32) ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-cocodetection train_dataset = pdx.datasets.CocoDetection( data_dir='xiaoduxiong_ins_det/JPEGImages', ann_file='xiaoduxiong_ins_det/train.json', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.CocoDetection( data_dir='xiaoduxiong_ins_det/JPEGImages', ann_file='xiaoduxiong_ins_det/val.json', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1 num_classes = len(train_dataset.labels) + 1 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#maskrcnn model = pdx.det.MaskRCNN(num_classes=num_classes, backbone='ResNet18') # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#train # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=12, train_dataset=train_dataset, train_batch_size=1, eval_dataset=eval_dataset, learning_rate=0.00125, warmup_steps=10, lr_decay_epochs=[8, 11], save_dir='output/mask_rcnn_r18_fpn', use_vdl=True)