// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "include/paddlex/paddlex.h" #include #include #include namespace PaddleX { void Model::create_predictor(const std::string& model_dir, bool use_gpu, bool use_trt, bool use_mkl, int gpu_id, std::string key, int thread_num, bool use_ir_optim) { paddle::AnalysisConfig config; std::string model_file = model_dir + OS_PATH_SEP + "__model__"; std::string params_file = model_dir + OS_PATH_SEP + "__params__"; std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml"; std::string yaml_input = ""; #ifdef WITH_ENCRYPTION if (key != "") { model_file = model_dir + OS_PATH_SEP + "__model__.encrypted"; params_file = model_dir + OS_PATH_SEP + "__params__.encrypted"; yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted"; paddle_security_load_model( &config, key.c_str(), model_file.c_str(), params_file.c_str()); yaml_input = decrypt_file(yaml_file.c_str(), key.c_str()); } #endif if (yaml_input == "") { // read yaml file std::ifstream yaml_fin(yaml_file); yaml_fin.seekg(0, std::ios::end); size_t yaml_file_size = yaml_fin.tellg(); yaml_input.assign(yaml_file_size, ' '); yaml_fin.seekg(0); yaml_fin.read(&yaml_input[0], yaml_file_size); } // load yaml file if (!load_config(yaml_input)) { std::cerr << "Parse file 'model.yml' failed!" << std::endl; exit(-1); } if (key == "") { config.SetModel(model_file, params_file); } if (use_mkl && name != "HRNet" && name != "DeepLabv3p") { config.EnableMKLDNN(); config.SetCpuMathLibraryNumThreads(12); } if (use_gpu) { config.EnableUseGpu(100, gpu_id); } else { config.DisableGpu(); } config.SwitchUseFeedFetchOps(false); config.SwitchSpecifyInputNames(true); // enable graph Optim #if defined(__arm__) || defined(__aarch64__) config.SwitchIrOptim(false); #else config.SwitchIrOptim(use_ir_optim); #endif // enable Memory Optim config.EnableMemoryOptim(); if (use_trt) { config.EnableTensorRtEngine( 1 << 20 /* workspace_size*/, 32 /* max_batch_size*/, 20 /* min_subgraph_size*/, paddle::AnalysisConfig::Precision::kFloat32 /* precision*/, true /* use_static*/, false /* use_calib_mode*/); } predictor_ = std::move(CreatePaddlePredictor(config)); } bool Model::load_config(const std::string& yaml_input) { YAML::Node config = YAML::Load(yaml_input); type = config["_Attributes"]["model_type"].as(); name = config["Model"].as(); std::string version = config["version"].as(); if (version[0] == '0') { std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, " << "deployment cannot be done, please refer to " << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs" << "/tutorials/deploy/upgrade_version.md " << "to transfer version." << std::endl; return false; } bool to_rgb = true; if (config["TransformsMode"].IsDefined()) { std::string mode = config["TransformsMode"].as(); if (mode == "BGR") { to_rgb = false; } else if (mode != "RGB") { std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode" << std::endl; return false; } } // build data preprocess stream transforms_.Init(config["Transforms"], to_rgb); // read label list labels.clear(); for (const auto& item : config["_Attributes"]["labels"]) { int index = labels.size(); labels[index] = item.as(); } return true; } bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) { cv::Mat im = input_im.clone(); if (!transforms_.Run(&im, blob)) { return false; } return true; } // use openmp bool Model::preprocess(const std::vector& input_im_batch, std::vector* blob_batch, int thread_num) { int batch_size = input_im_batch.size(); bool success = true; thread_num = std::min(thread_num, batch_size); #pragma omp parallel for num_threads(thread_num) for (int i = 0; i < input_im_batch.size(); ++i) { cv::Mat im = input_im_batch[i].clone(); if (!transforms_.Run(&im, &(*blob_batch)[i])) { success = false; } } return success; } bool Model::predict(const cv::Mat& im, ClsResult* result) { inputs_.clear(); if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" "to function predict()!" << std::endl; return false; } // im preprocess if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } // predict auto in_tensor = predictor_->GetInputTensor("image"); int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; in_tensor->Reshape({1, 3, h, w}); in_tensor->copy_from_cpu(inputs_.im_data_.data()); predictor_->ZeroCopyRun(); // get result auto output_names = predictor_->GetOutputNames(); auto output_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_shape = output_tensor->shape(); int size = 1; for (const auto& i : output_shape) { size *= i; } outputs_.resize(size); output_tensor->copy_to_cpu(outputs_.data()); // postprocess auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_)); result->category_id = std::distance(std::begin(outputs_), ptr); result->score = *ptr; result->category = labels[result->category_id]; return true; } bool Model::predict(const std::vector& im_batch, std::vector* results, int thread_num) { for (auto& inputs : inputs_batch_) { inputs.clear(); } if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } inputs_batch_.assign(im_batch.size(), ImageBlob()); // preprocess if (!preprocess(im_batch, &inputs_batch_, thread_num)) { std::cerr << "Preprocess failed!" << std::endl; return false; } // predict int batch_size = im_batch.size(); auto in_tensor = predictor_->GetInputTensor("image"); int h = inputs_batch_[0].new_im_size_[0]; int w = inputs_batch_[0].new_im_size_[1]; in_tensor->Reshape({batch_size, 3, h, w}); std::vector inputs_data(batch_size * 3 * h * w); for (int i = 0; i < batch_size; ++i) { std::copy(inputs_batch_[i].im_data_.begin(), inputs_batch_[i].im_data_.end(), inputs_data.begin() + i * 3 * h * w); } in_tensor->copy_from_cpu(inputs_data.data()); // in_tensor->copy_from_cpu(inputs_.im_data_.data()); predictor_->ZeroCopyRun(); // get result auto output_names = predictor_->GetOutputNames(); auto output_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_shape = output_tensor->shape(); int size = 1; for (const auto& i : output_shape) { size *= i; } outputs_.resize(size); output_tensor->copy_to_cpu(outputs_.data()); // postprocess (*results).clear(); (*results).resize(batch_size); int single_batch_size = size / batch_size; for (int i = 0; i < batch_size; ++i) { auto start_ptr = std::begin(outputs_); auto end_ptr = std::begin(outputs_); std::advance(start_ptr, i * single_batch_size); std::advance(end_ptr, (i + 1) * single_batch_size); auto ptr = std::max_element(start_ptr, end_ptr); (*results)[i].category_id = std::distance(start_ptr, ptr); (*results)[i].score = *ptr; (*results)[i].category = labels[(*results)[i].category_id]; } return true; } bool Model::predict(const cv::Mat& im, DetResult* result) { inputs_.clear(); result->clear(); if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } // preprocess if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({1, 3, h, w}); im_tensor->copy_from_cpu(inputs_.im_data_.data()); if (name == "YOLOv3") { auto im_size_tensor = predictor_->GetInputTensor("im_size"); im_size_tensor->Reshape({1, 2}); im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data()); } else if (name == "FasterRCNN" || name == "MaskRCNN") { auto im_info_tensor = predictor_->GetInputTensor("im_info"); auto im_shape_tensor = predictor_->GetInputTensor("im_shape"); im_info_tensor->Reshape({1, 3}); im_shape_tensor->Reshape({1, 3}); float ori_h = static_cast(inputs_.ori_im_size_[0]); float ori_w = static_cast(inputs_.ori_im_size_[1]); float new_h = static_cast(inputs_.new_im_size_[0]); float new_w = static_cast(inputs_.new_im_size_[1]); float im_info[] = {new_h, new_w, inputs_.scale}; float im_shape[] = {ori_h, ori_w, 1.0}; im_info_tensor->copy_from_cpu(im_info); im_shape_tensor->copy_from_cpu(im_shape); } // predict predictor_->ZeroCopyRun(); std::vector output_box; auto output_names = predictor_->GetOutputNames(); auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_box_shape = output_box_tensor->shape(); int size = 1; for (const auto& i : output_box_shape) { size *= i; } output_box.resize(size); output_box_tensor->copy_to_cpu(output_box.data()); if (size < 6) { std::cerr << "[WARNING] There's no object detected." << std::endl; return true; } int num_boxes = size / 6; // box postprocess for (int i = 0; i < num_boxes; ++i) { Box box; box.category_id = static_cast(round(output_box[i * 6])); box.category = labels[box.category_id]; box.score = output_box[i * 6 + 1]; float xmin = output_box[i * 6 + 2]; float ymin = output_box[i * 6 + 3]; float xmax = output_box[i * 6 + 4]; float ymax = output_box[i * 6 + 5]; float w = xmax - xmin + 1; float h = ymax - ymin + 1; box.coordinate = {xmin, ymin, w, h}; result->boxes.push_back(std::move(box)); } // mask postprocess if (name == "MaskRCNN") { std::vector output_mask; auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_mask_shape = output_mask_tensor->shape(); int masks_size = 1; for (const auto& i : output_mask_shape) { masks_size *= i; } int mask_pixels = output_mask_shape[2] * output_mask_shape[3]; int classes = output_mask_shape[1]; output_mask.resize(masks_size); output_mask_tensor->copy_to_cpu(output_mask.data()); result->mask_resolution = output_mask_shape[2]; for (int i = 0; i < result->boxes.size(); ++i) { Box* box = &result->boxes[i]; box->mask.shape = {static_cast(box->coordinate[2]), static_cast(box->coordinate[3])}; auto begin_mask = output_mask.data() + (i * classes + box->category_id) * mask_pixels; cv::Mat bin_mask(result->mask_resolution, result->mask_resolution, CV_32FC1, begin_mask); cv::resize(bin_mask, bin_mask, cv::Size(box->mask.shape[0], box->mask.shape[1])); cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY); auto mask_int_begin = reinterpret_castbin_mask.data; auto mask_int_end = mask_int_begin + box->mask.shape[0] * box->mask.shape[1]; box->mask.data.assign(mask_int_begin, mask_int_end); } } return true; } bool Model::predict(const std::vector& im_batch, std::vector* results, int thread_num) { for (auto& inputs : inputs_batch_) { inputs.clear(); } if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } inputs_batch_.assign(im_batch.size(), ImageBlob()); int batch_size = im_batch.size(); // preprocess if (!preprocess(im_batch, &inputs_batch_, thread_num)) { std::cerr << "Preprocess failed!" << std::endl; return false; } // RCNN model padding if (batch_size > 1) { if (name == "FasterRCNN" || name == "MaskRCNN") { int max_h = -1; int max_w = -1; for (int i = 0; i < batch_size; ++i) { max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]); max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]); // std::cout << "(" << inputs_batch_[i].new_im_size_[0] // << ", " << inputs_batch_[i].new_im_size_[1] // << ")" << std::endl; } thread_num = std::min(thread_num, batch_size); #pragma omp parallel for num_threads(thread_num) for (int i = 0; i < batch_size; ++i) { int h = inputs_batch_[i].new_im_size_[0]; int w = inputs_batch_[i].new_im_size_[1]; int c = im_batch[i].channels(); if (max_h != h || max_w != w) { std::vector temp_buffer(c * max_h * max_w); float* temp_ptr = temp_buffer.data(); float* ptr = inputs_batch_[i].im_data_.data(); for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) { int ori_pos = cur_channel * h * w + (h - 1) * w; int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w; int last_pos = cur_channel * h * w; for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) { memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float)); } } inputs_batch_[i].im_data_.swap(temp_buffer); inputs_batch_[i].new_im_size_[0] = max_h; inputs_batch_[i].new_im_size_[1] = max_w; } } } } int h = inputs_batch_[0].new_im_size_[0]; int w = inputs_batch_[0].new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({batch_size, 3, h, w}); std::vector inputs_data(batch_size * 3 * h * w); for (int i = 0; i < batch_size; ++i) { std::copy(inputs_batch_[i].im_data_.begin(), inputs_batch_[i].im_data_.end(), inputs_data.begin() + i * 3 * h * w); } im_tensor->copy_from_cpu(inputs_data.data()); if (name == "YOLOv3") { auto im_size_tensor = predictor_->GetInputTensor("im_size"); im_size_tensor->Reshape({batch_size, 2}); std::vector inputs_data_size(batch_size * 2); for (int i = 0; i < batch_size; ++i) { std::copy(inputs_batch_[i].ori_im_size_.begin(), inputs_batch_[i].ori_im_size_.end(), inputs_data_size.begin() + 2 * i); } im_size_tensor->copy_from_cpu(inputs_data_size.data()); } else if (name == "FasterRCNN" || name == "MaskRCNN") { auto im_info_tensor = predictor_->GetInputTensor("im_info"); auto im_shape_tensor = predictor_->GetInputTensor("im_shape"); im_info_tensor->Reshape({batch_size, 3}); im_shape_tensor->Reshape({batch_size, 3}); std::vector im_info(3 * batch_size); std::vector im_shape(3 * batch_size); for (int i = 0; i < batch_size; ++i) { float ori_h = static_cast(inputs_batch_[i].ori_im_size_[0]); float ori_w = static_cast(inputs_batch_[i].ori_im_size_[1]); float new_h = static_cast(inputs_batch_[i].new_im_size_[0]); float new_w = static_cast(inputs_batch_[i].new_im_size_[1]); im_info[i * 3] = new_h; im_info[i * 3 + 1] = new_w; im_info[i * 3 + 2] = inputs_batch_[i].scale; im_shape[i * 3] = ori_h; im_shape[i * 3 + 1] = ori_w; im_shape[i * 3 + 2] = 1.0; } im_info_tensor->copy_from_cpu(im_info.data()); im_shape_tensor->copy_from_cpu(im_shape.data()); } // predict predictor_->ZeroCopyRun(); // get all box std::vector output_box; auto output_names = predictor_->GetOutputNames(); auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_box_shape = output_box_tensor->shape(); int size = 1; for (const auto& i : output_box_shape) { size *= i; } output_box.resize(size); output_box_tensor->copy_to_cpu(output_box.data()); if (size < 6) { std::cerr << "[WARNING] There's no object detected." << std::endl; return true; } auto lod_vector = output_box_tensor->lod(); int num_boxes = size / 6; // box postprocess (*results).clear(); (*results).resize(batch_size); for (int i = 0; i < lod_vector[0].size() - 1; ++i) { for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) { Box box; box.category_id = static_cast(round(output_box[j * 6])); box.category = labels[box.category_id]; box.score = output_box[j * 6 + 1]; float xmin = output_box[j * 6 + 2]; float ymin = output_box[j * 6 + 3]; float xmax = output_box[j * 6 + 4]; float ymax = output_box[j * 6 + 5]; float w = xmax - xmin + 1; float h = ymax - ymin + 1; box.coordinate = {xmin, ymin, w, h}; (*results)[i].boxes.push_back(std::move(box)); } } // mask postprocess if (name == "MaskRCNN") { std::vector output_mask; auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_mask_shape = output_mask_tensor->shape(); int masks_size = 1; for (const auto& i : output_mask_shape) { masks_size *= i; } int mask_pixels = output_mask_shape[2] * output_mask_shape[3]; int classes = output_mask_shape[1]; output_mask.resize(masks_size); output_mask_tensor->copy_to_cpu(output_mask.data()); int mask_idx = 0; for (int i = 0; i < lod_vector[0].size() - 1; ++i) { (*results)[i].mask_resolution = output_mask_shape[2]; for (int j = 0; j < (*results)[i].boxes.size(); ++j) { Box* box = &result->boxes[i]; int category_id = box->category_id; box->mask.shape = {static_cast(box->coordinate[2]), static_cast(box->coordinate[3])}; auto begin_mask = output_mask.begin() + (i * classes + box->category_id) * mask_pixels; cv::Mat bin_mask(result->mask_resolution, result->mask_resolution, CV_32FC1, begin_mask); cv::resize(bin_mask, bin_mask, cv::Size(box->mask.shape[0], box->mask.shape[1])); cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY); auto mask_int_begin = bin_mask.data; auto mask_int_end = mask_int_begin + box->mask.shape[0] * box->mask.shape[1]; box->mask.data.assign(mask_int_begin, mask_int_end); mask_idx++; } } } return true; } bool Model::predict(const cv::Mat& im, SegResult* result) { result->clear(); inputs_.clear(); if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } // preprocess if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({1, 3, h, w}); im_tensor->copy_from_cpu(inputs_.im_data_.data()); // predict predictor_->ZeroCopyRun(); // get labelmap auto output_names = predictor_->GetOutputNames(); auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_label_shape = output_label_tensor->shape(); int size = 1; for (const auto& i : output_label_shape) { size *= i; result->label_map.shape.push_back(i); } result->label_map.data.resize(size); output_label_tensor->copy_to_cpu(result->label_map.data.data()); // get scoremap auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_score_shape = output_score_tensor->shape(); size = 1; for (const auto& i : output_score_shape) { size *= i; result->score_map.shape.push_back(i); } result->score_map.data.resize(size); output_score_tensor->copy_to_cpu(result->score_map.data.data()); // get origin image result std::vector label_map(result->label_map.data.begin(), result->label_map.data.end()); cv::Mat mask_label(result->label_map.shape[1], result->label_map.shape[2], CV_8UC1, label_map.data()); cv::Mat mask_score(result->score_map.shape[2], result->score_map.shape[3], CV_32FC1, result->score_map.data.data()); int idx = 1; int len_postprocess = inputs_.im_size_before_resize_.size(); for (std::vector::reverse_iterator iter = inputs_.reshape_order_.rbegin(); iter != inputs_.reshape_order_.rend(); ++iter) { if (*iter == "padding") { auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx]; inputs_.im_size_before_resize_.pop_back(); auto padding_w = before_shape[0]; auto padding_h = before_shape[1]; mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w)); mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w)); } else if (*iter == "resize") { auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx]; inputs_.im_size_before_resize_.pop_back(); auto resize_w = before_shape[0]; auto resize_h = before_shape[1]; cv::resize(mask_label, mask_label, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_NEAREST); cv::resize(mask_score, mask_score, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_LINEAR); } ++idx; } result->label_map.data.assign(mask_label.begin(), mask_label.end()); result->label_map.shape = {mask_label.rows, mask_label.cols}; result->score_map.data.assign(mask_score.begin(), mask_score.end()); result->score_map.shape = {mask_score.rows, mask_score.cols}; return true; } bool Model::predict(const std::vector& im_batch, std::vector* results, int thread_num) { for (auto& inputs : inputs_batch_) { inputs.clear(); } if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } // preprocess inputs_batch_.assign(im_batch.size(), ImageBlob()); if (!preprocess(im_batch, &inputs_batch_, thread_num)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int batch_size = im_batch.size(); (*results).clear(); (*results).resize(batch_size); int h = inputs_batch_[0].new_im_size_[0]; int w = inputs_batch_[0].new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({batch_size, 3, h, w}); std::vector inputs_data(batch_size * 3 * h * w); for (int i = 0; i < batch_size; ++i) { std::copy(inputs_batch_[i].im_data_.begin(), inputs_batch_[i].im_data_.end(), inputs_data.begin() + i * 3 * h * w); } im_tensor->copy_from_cpu(inputs_data.data()); // im_tensor->copy_from_cpu(inputs_.im_data_.data()); // predict predictor_->ZeroCopyRun(); // get labelmap auto output_names = predictor_->GetOutputNames(); auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_label_shape = output_label_tensor->shape(); int size = 1; for (const auto& i : output_label_shape) { size *= i; } std::vector output_labels(size, 0); output_label_tensor->copy_to_cpu(output_labels.data()); auto output_labels_iter = output_labels.begin(); int single_batch_size = size / batch_size; for (int i = 0; i < batch_size; ++i) { (*results)[i].label_map.data.resize(single_batch_size); (*results)[i].label_map.shape.push_back(1); for (int j = 1; j < output_label_shape.size(); ++j) { (*results)[i].label_map.shape.push_back(output_label_shape[j]); } std::copy(output_labels_iter + i * single_batch_size, output_labels_iter + (i + 1) * single_batch_size, (*results)[i].label_map.data.data()); } // get scoremap auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_score_shape = output_score_tensor->shape(); size = 1; for (const auto& i : output_score_shape) { size *= i; } std::vector output_scores(size, 0); output_score_tensor->copy_to_cpu(output_scores.data()); auto output_scores_iter = output_scores.begin(); int single_batch_score_size = size / batch_size; for (int i = 0; i < batch_size; ++i) { (*results)[i].score_map.data.resize(single_batch_score_size); (*results)[i].score_map.shape.push_back(1); for (int j = 1; j < output_score_shape.size(); ++j) { (*results)[i].score_map.shape.push_back(output_score_shape[j]); } std::copy(output_scores_iter + i * single_batch_score_size, output_scores_iter + (i + 1) * single_batch_score_size, (*results)[i].score_map.data.data()); } // get origin image result for (int i = 0; i < batch_size; ++i) { std::vector label_map((*results)[i].label_map.data.begin(), (*results)[i].label_map.data.end()); cv::Mat mask_label((*results)[i].label_map.shape[1], (*results)[i].label_map.shape[2], CV_8UC1, label_map.data()); cv::Mat mask_score((*results)[i].score_map.shape[2], (*results)[i].score_map.shape[3], CV_32FC1, (*results)[i].score_map.data.data()); int idx = 1; int len_postprocess = inputs_batch_[i].im_size_before_resize_.size(); for (std::vector::reverse_iterator iter = inputs_batch_[i].reshape_order_.rbegin(); iter != inputs_batch_[i].reshape_order_.rend(); ++iter) { if (*iter == "padding") { auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx]; inputs_batch_[i].im_size_before_resize_.pop_back(); auto padding_w = before_shape[0]; auto padding_h = before_shape[1]; mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w)); mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w)); } else if (*iter == "resize") { auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx]; inputs_batch_[i].im_size_before_resize_.pop_back(); auto resize_w = before_shape[0]; auto resize_h = before_shape[1]; cv::resize(mask_label, mask_label, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_NEAREST); cv::resize(mask_score, mask_score, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_LINEAR); } ++idx; } (*results)[i].label_map.data.assign(mask_label.begin(), mask_label.end()); (*results)[i].label_map.shape = {mask_label.rows, mask_label.cols}; (*results)[i].score_map.data.assign(mask_score.begin(), mask_score.end()); (*results)[i].score_map.shape = {mask_score.rows, mask_score.cols}; } return true; } } // namespace PaddleX