# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .resnet import ResNet from .darknet import DarkNet from .detection import FasterRCNN from .mobilenet_v1 import MobileNetV1 from .mobilenet_v2 import MobileNetV2 from .mobilenet_v3 import MobileNetV3 from .segmentation import UNet from .segmentation import DeepLabv3p from .segmentation import FastSCNN from .xception import Xception from .densenet import DenseNet from .shufflenet_v2 import ShuffleNetV2 from .hrnet import HRNet from .alexnet import AlexNet def resnet18(input, num_classes=1000): model = ResNet(layers=18, num_classes=num_classes) return model(input) def resnet34(input, num_classes=1000): model = ResNet(layers=34, num_classes=num_classes) return model(input) def resnet50(input, num_classes=1000): model = ResNet(layers=50, num_classes=num_classes) return model(input) def resnet101(input, num_classes=1000): model = ResNet(layers=101, num_classes=num_classes) return model(input) def resnet50_vd(input, num_classes=1000): model = ResNet(layers=50, num_classes=num_classes, variant='d') return model(input) def resnet50_vd_ssld(input, num_classes=1000): model = ResNet( layers=50, num_classes=num_classes, variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3]) return model(input) def resnet101_vd_ssld(input, num_classes=1000): model = ResNet( layers=101, num_classes=num_classes, variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3]) return model(input) def resnet101_vd(input, num_classes=1000): model = ResNet(layers=101, num_classes=num_classes, variant='d') return model(input) def darknet53(input, num_classes=1000): model = DarkNet(depth=53, num_classes=num_classes, bn_act='relu') return model(input) def mobilenetv1(input, num_classes=1000): model = MobileNetV1(num_classes=num_classes) return model(input) def mobilenetv2(input, num_classes=1000): model = MobileNetV2(num_classes=num_classes) return model(input) def mobilenetv3_small(input, num_classes=1000): model = MobileNetV3(num_classes=num_classes, model_name='small') return model(input) def mobilenetv3_large(input, num_classes=1000): model = MobileNetV3(num_classes=num_classes, model_name='large') return model(input) def mobilenetv3_small_ssld(input, num_classes=1000): model = MobileNetV3( num_classes=num_classes, model_name='small', lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75]) return model(input) def mobilenetv3_large_ssld(input, num_classes=1000): model = MobileNetV3( num_classes=num_classes, model_name='large', lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75]) return model(input) def xception65(input, num_classes=1000): model = Xception(layers=65, num_classes=num_classes) return model(input) def xception71(input, num_classes=1000): model = Xception(layers=71, num_classes=num_classes) return model(input) def xception41(input, num_classes=1000): model = Xception(layers=41, num_classes=num_classes) return model(input) def densenet121(input, num_classes=1000): model = DenseNet(layers=121, num_classes=num_classes) return model(input) def densenet161(input, num_classes=1000): model = DenseNet(layers=161, num_classes=num_classes) return model(input) def densenet201(input, num_classes=1000): model = DenseNet(layers=201, num_classes=num_classes) return model(input) def shufflenetv2(input, num_classes=1000): model = ShuffleNetV2(num_classes=num_classes) return model(input) def hrnet_w18(input, num_classes=1000): model = HRNet(width=18, num_classes=num_classes) return model(input) def alexnet(input, num_classes=1000): model = AlexNet(num_classes=num_classes) return model(input)