import os # 选择使用0号卡 os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddle.fluid as fluid from paddlex.cls import transforms import paddlex as pdx # 下载和解压蔬菜分类数据集 veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(veg_dataset, path='./') # 定义训练和验证时的transforms train_transforms = transforms.Compose( [transforms.RandomCrop(crop_size=224), transforms.Normalize()]) eval_transforms = transforms.Compose([ transforms.ResizeByShort(short_size=256), transforms.CenterCrop(crop_size=224), transforms.Normalize() ]) # 定义训练和验证所用的数据集 train_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/val_list.txt', label_list='vegetables_cls/labels.txt', transforms=eval_transforms) # PaddleX支持自定义构建优化器 step_each_epoch = train_dataset.num_samples // 32 learning_rate = fluid.layers.cosine_decay( learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10) optimizer = fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.9, regularization=fluid.regularizer.L2Decay(4e-5)) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标 # VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001 # 浏览器打开 https://0.0.0.0:8001即可 # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels)) model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=32, eval_dataset=eval_dataset, optimizer=optimizer, save_dir='output/resnet50', use_vdl=True)