#!/usr/bin/env python # coding: utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .dataset_split.coco_split import split_coco_dataset from .dataset_split.voc_split import split_voc_dataset from .dataset_split.imagenet_split import split_imagenet_dataset from .dataset_split.seg_split import split_seg_dataset def dataset_split(dataset_dir, dataset_format, val_value, test_value, save_dir): if dataset_format == "coco": train_num, val_num, test_num = split_coco_dataset( dataset_dir, val_value, test_value, save_dir) elif dataset_format == "voc": train_num, val_num, test_num = split_voc_dataset( dataset_dir, val_value, test_value, save_dir) elif dataset_format == "seg": train_num, val_num, test_num = split_seg_dataset( dataset_dir, val_value, test_value, save_dir) elif dataset_format == "imagenet": train_num, val_num, test_num = split_imagenet_dataset( dataset_dir, val_value, test_value, save_dir) print("Dataset Split Done.") print("Train samples: {}".format(train_num)) print("Eval samples: {}".format(val_num)) print("Test samples: {}".format(test_num)) print("Split files saved in {}".format(save_dir))