#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from .interpretation_algorithms import CAM, LIME, NormLIME from .normlime_base import precompute_normlime_weights class Interpretation(object): """ Base class for all interpretation algorithms. """ def __init__(self, interpretation_algorithm_name, predict_fn, label_names, **kwargs): supported_algorithms = { 'cam': CAM, 'lime': LIME, 'normlime': NormLIME } self.algorithm_name = interpretation_algorithm_name.lower() assert self.algorithm_name in supported_algorithms.keys() self.predict_fn = predict_fn # initialization for the interpretation algorithm. self.algorithm = supported_algorithms[self.algorithm_name]( self.predict_fn, label_names, **kwargs ) def interpret(self, data_, visualization=True, save_to_disk=True, save_dir='./tmp'): """ Args: data_: data_ can be a path or numpy.ndarray. visualization: whether to show using matplotlib. save_to_disk: whether to save the figure in local disk. save_dir: dir to save figure if save_to_disk is True. Returns: """ return self.algorithm.interpret(data_, visualization, save_to_disk, save_dir)