// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include "include/paddlex/paddlex.h" using namespace std::chrono; DEFINE_string(model_dir, "", "Path of inference model"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_bool(use_trt, false, "Infering with TensorRT"); DEFINE_int32(gpu_id, 0, "GPU card id"); DEFINE_string(key, "", "key of encryption"); DEFINE_string(image, "", "Path of test image file"); DEFINE_string(image_list, "", "Path of test image list file"); DEFINE_int32(batch_size, 1, "Batch size of infering"); int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { std::cerr << "--model_dir need to be defined" << std::endl; return -1; } if (FLAGS_image == "" & FLAGS_image_list == "") { std::cerr << "--image or --image_list need to be defined" << std::endl; return -1; } // 加载模型 PaddleX::Model model; model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_trt, FLAGS_gpu_id, FLAGS_key, FLAGS_batch_size); // 进行预测 double total_running_time_s = 0.0; double total_imread_time_s = 0.0; int imgs = 1; if (FLAGS_image_list != "") { std::ifstream inf(FLAGS_image_list); if (!inf) { std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } // 多batch预测 std::string image_path; std::vector image_paths; while (getline(inf, image_path)) { image_paths.push_back(image_path); } imgs = image_paths.size(); for(int i = 0; i < image_paths.size(); i += FLAGS_batch_size) { auto start = system_clock::now(); // 读图像 int im_vec_size = std::min((int)image_paths.size(), i + FLAGS_batch_size); std::vector im_vec(im_vec_size - i); std::vector results(im_vec_size - i, PaddleX::ClsResult()); #pragma omp parallel for num_threads(im_vec_size - i) for(int j = i; j < im_vec_size; ++j){ im_vec[j - i] = std::move(cv::imread(image_paths[j], 1)); } auto imread_end = system_clock::now(); model.predict(im_vec, results); auto imread_duration = duration_cast(imread_end - start); total_imread_time_s += double(imread_duration.count()) * microseconds::period::num / microseconds::period::den; auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += double(duration.count()) * microseconds::period::num / microseconds::period::den; for(int j = i; j < im_vec_size; ++j) { std::cout << "Path:" << image_paths[j] << ", predict label: " << results[j - i].category << ", label_id:" << results[j - i].category_id << ", score: " << results[j - i].score << std::endl; } } } else { auto start = system_clock::now(); PaddleX::ClsResult result; cv::Mat im = cv::imread(FLAGS_image, 1); model.predict(im, &result); auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += double(duration.count()) * microseconds::period::num / microseconds::period::den; std::cout << "Predict label: " << result.category << ", label_id:" << result.category_id << ", score: " << result.score << std::endl; } std::cout << "Total running time: " << total_running_time_s << " s, average running time: " << total_running_time_s / imgs << " s/img, total read img time: " << total_imread_time_s << " s, average read time: " << total_imread_time_s / imgs << " s/img, batch_size = " << FLAGS_batch_size << std::endl; return 0; }