# 环境变量配置,用于控制是否使用GPU # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlex as pdx from paddlex.seg import transforms # 下载和解压视盘分割数据集 optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz' pdx.utils.download_and_decompress(optic_dataset, path='./') # 定义训练和验证时的transforms # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html train_transforms = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ResizeRangeScaling(), transforms.RandomPaddingCrop(crop_size=512), transforms.Normalize() ]) eval_transforms = transforms.Compose([ transforms.ResizeByLong(long_size=512), transforms.Padding(target_size=512), transforms.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset train_dataset = pdx.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/train_list.txt', label_list='optic_disc_seg/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/val_list.txt', label_list='optic_disc_seg/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html num_classes = len(train_dataset.labels) # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p model = pdx.seg.DeepLabv3p( num_classes=num_classes, backbone='MobileNetV3_large_x1_0_ssld', pooling_crop_size=(512, 512)) # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=40, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.01, save_dir='output/deeplabv3p_mobilenetv3_large_ssld', use_vdl=True)