# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -* import os import cv2 import colorsys import numpy as np import time import paddlex.utils.logging as logging from .detection_eval import fixed_linspace, backup_linspace, loadRes def visualize_detection(image, result, threshold=0.5, save_dir='./'): """ Visualize bbox and mask results """ if isinstance(image, np.ndarray): image_name = str(int(time.time() * 1000)) + '.jpg' else: image_name = os.path.split(image)[-1] image = cv2.imread(image) image = draw_bbox_mask(image, result, threshold=threshold) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) cv2.imwrite(out_path, image) logging.info('The visualized result is saved as {}'.format(out_path)) else: return image def visualize_segmentation(image, result, weight=0.6, save_dir='./'): """ Convert segment result to color image, and save added image. Args: image: the path of origin image result: the predict result of image weight: the image weight of visual image, and the result weight is (1 - weight) save_dir: the directory for saving visual image """ label_map = result['label_map'] color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # Use OpenCV LUT for color mapping c1 = cv2.LUT(label_map, color_map[:, 0]) c2 = cv2.LUT(label_map, color_map[:, 1]) c3 = cv2.LUT(label_map, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) if isinstance(image, np.ndarray): im = image image_name = str(int(time.time() * 1000)) + '.jpg' else: image_name = os.path.split(image)[-1] im = cv2.imread(image) vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) cv2.imwrite(out_path, vis_result) logging.info('The visualized result is saved as {}'.format(out_path)) else: return vis_result def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes: Number of classes Returns: The color map """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map # expand an array of boxes by a given scale. def expand_boxes(boxes, scale): """ """ w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax def draw_bbox_mask(image, results, threshold=0.5): import matplotlib matplotlib.use('Agg') import matplotlib as mpl import matplotlib.figure as mplfigure import matplotlib.colors as mplc from matplotlib.backends.backend_agg import FigureCanvasAgg # refer to https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/visualizer.py def _change_color_brightness(color, brightness_factor): assert brightness_factor >= -1.0 and brightness_factor <= 1.0 color = mplc.to_rgb(color) polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness modified_color = colorsys.hls_to_rgb( polygon_color[0], modified_lightness, polygon_color[2]) return modified_color _SMALL_OBJECT_AREA_THRESH = 1000 # setup figure width, height = image.shape[1], image.shape[0] scale = 1 fig = mplfigure.Figure(frameon=False) dpi = fig.get_dpi() fig.set_size_inches( (width * scale + 1e-2) / dpi, (height * scale + 1e-2) / dpi, ) canvas = FigureCanvasAgg(fig) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") ax.set_xlim(0.0, width) ax.set_ylim(height) default_font_size = max(np.sqrt(height * width) // 90, 10 // scale) linewidth = max(default_font_size / 4, 1) labels = list() for dt in np.array(results): if dt['category'] not in labels: labels.append(dt['category']) color_map = get_color_map_list(256) keep_results = [] areas = [] for dt in np.array(results): cname, bbox, score = dt['category'], dt['bbox'], dt['score'] if score < threshold: continue keep_results.append(dt) areas.append(bbox[2] * bbox[3]) areas = np.asarray(areas) sorted_idxs = np.argsort(-areas).tolist() keep_results = [keep_results[k] for k in sorted_idxs] if len(keep_results) > 0 else [] for dt in np.array(keep_results): cname, bbox, score = dt['category'], dt['bbox'], dt['score'] xmin, ymin, w, h = bbox xmax = xmin + w ymax = ymin + h color = tuple(color_map[labels.index(cname) + 2]) color = [c / 255. for c in color] # draw bbox ax.add_patch( mpl.patches.Rectangle( (xmin, ymin), w, h, fill=False, edgecolor=color, linewidth=linewidth * scale, alpha=0.8, linestyle="-", )) # draw mask if 'mask' in dt: mask = dt['mask'] mask = np.ascontiguousarray(mask) res = cv2.findContours( mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) hierarchy = res[-1] alpha = 0.5 if hierarchy is not None: has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] res = [x.flatten() for x in res] res = [x for x in res if len(x) >= 6] for segment in res: segment = segment.reshape(-1, 2) edge_color = mplc.to_rgb(color) + (1, ) polygon = mpl.patches.Polygon( segment, fill=True, facecolor=mplc.to_rgb(color) + (alpha, ), edgecolor=edge_color, linewidth=max(default_font_size // 15 * scale, 1), ) ax.add_patch(polygon) # draw label text_pos = (xmin, ymin) horiz_align = "left" instance_area = w * h if (instance_area < _SMALL_OBJECT_AREA_THRESH * scale or h < 40 * scale): if ymin >= height - 5: text_pos = (xmin, ymin) else: text_pos = (xmin, ymax) height_ratio = h / np.sqrt(height * width) font_size = (np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * default_font_size) text = "{} {:.2f}".format(cname, score) color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) color = _change_color_brightness(color, brightness_factor=0.7) ax.text( text_pos[0], text_pos[1], text, size=font_size * scale, family="sans-serif", bbox={ "facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none" }, verticalalignment="top", horizontalalignment=horiz_align, color=color, zorder=10, rotation=0, ) s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) try: import numexpr as ne visualized_image = ne.evaluate( "image * (1 - alpha / 255.0) + rgb * (alpha / 255.0)") except ImportError: alpha = alpha.astype("float32") / 255.0 visualized_image = image * (1 - alpha) + rgb * alpha visualized_image = visualized_image.astype("uint8") return visualized_image def draw_pr_curve(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, iou_thresh=0.5, save_dir='./'): if eval_details_file is not None: import json with open(eval_details_file, 'r') as f: eval_details = json.load(f) pred_bbox = eval_details['bbox'] if 'mask' in eval_details: pred_mask = eval_details['mask'] gt = eval_details['gt'] if gt is None or pred_bbox is None: raise Exception( "gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask." ) if pred_bbox is not None and len(pred_bbox) == 0: raise Exception("There is no predicted bbox.") if pred_mask is not None and len(pred_mask) == 0: raise Exception("There is no predicted mask.") import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval coco = COCO() coco.dataset = gt coco.createIndex() def _summarize(coco_gt, ap=1, iouThr=None, areaRng='all', maxDets=100): p = coco_gt.params aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = coco_gt.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, :, aind, mind] else: # dimension of recall: [TxKxAxM] s = coco_gt.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, aind, mind] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) return mean_s def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'): from pycocotools.cocoeval import COCOeval coco_dt = loadRes(coco_gt, coco_dt) np.linspace = fixed_linspace coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.params.iouThrs = np.linspace( iou_thresh, iou_thresh, 1, endpoint=True) np.linspace = backup_linspace coco_eval.evaluate() coco_eval.accumulate() stats = _summarize(coco_eval, iouThr=iou_thresh) catIds = coco_gt.getCatIds() if len(catIds) != coco_eval.eval['precision'].shape[2]: raise Exception( "The category number must be same as the third dimension of precisions." ) x = np.arange(0.0, 1.01, 0.01) color_map = get_color_map_list(256)[1:256] plt.subplot(1, 2, 1) plt.title(style + " precision-recall IoU={}".format(iou_thresh)) plt.xlabel("recall") plt.ylabel("precision") plt.xlim(0, 1.01) plt.ylim(0, 1.01) plt.grid(linestyle='--', linewidth=1) plt.plot([0, 1], [0, 1], 'r--', linewidth=1) my_x_ticks = np.arange(0, 1.01, 0.1) my_y_ticks = np.arange(0, 1.01, 0.1) plt.xticks(my_x_ticks, fontsize=5) plt.yticks(my_y_ticks, fontsize=5) for idx, catId in enumerate(catIds): pr_array = coco_eval.eval['precision'][0, :, idx, 0, 2] precision = pr_array[pr_array > -1] ap = np.mean(precision) if precision.size else float('nan') nm = coco_gt.loadCats(catId)[0]['name'] + ' AP={:0.2f}'.format( float(ap * 100)) color = tuple(color_map[idx]) color = [float(c) / 255 for c in color] color.append(0.75) plt.plot(x, pr_array, color=color, label=nm, linewidth=1) plt.legend(loc="lower left", fontsize=5) plt.subplot(1, 2, 2) plt.title(style + " score-recall IoU={}".format(iou_thresh)) plt.xlabel('recall') plt.ylabel('score') plt.xlim(0, 1.01) plt.ylim(0, 1.01) plt.grid(linestyle='--', linewidth=1) plt.xticks(my_x_ticks, fontsize=5) plt.yticks(my_y_ticks, fontsize=5) for idx, catId in enumerate(catIds): nm = coco_gt.loadCats(catId)[0]['name'] sr_array = coco_eval.eval['scores'][0, :, idx, 0, 2] color = tuple(color_map[idx]) color = [float(c) / 255 for c in color] color.append(0.75) plt.plot(x, sr_array, color=color, label=nm, linewidth=1) plt.legend(loc="lower left", fontsize=5) plt.savefig( os.path.join( save_dir, "./{}_pr_curve(iou-{}).png".format(style, iou_thresh)), dpi=800) plt.close() if not os.path.exists(save_dir): os.makedirs(save_dir) cal_pr(coco, pred_bbox, iou_thresh, save_dir, style='bbox') if pred_mask is not None: cal_pr(coco, pred_mask, iou_thresh, save_dir, style='segm')