# Linux平台部署 ## 说明 本文档在 `Linux`平台使用`GCC 4.8.5` 和 `GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。 ## 前置条件 * G++ 4.8.2 ~ 4.9.4 * CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要) * CMake 3.0+ 请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**。 ### Step1: 下载代码 `git clone https://github.com/PaddlePaddle/PaddleX.git` **说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。 ### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,目前PaddleX依赖于Paddle1.8版本,以下提供了多个不同版本的Paddle预测库: | 版本说明 | 预测库(1.8.2版本) | | ---- | ---- | | ubuntu14.04_cpu_avx_mkl | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-mkl/fluid_inference.tgz) | | ubuntu14.04_cpu_avx_openblas | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-avx-openblas/fluid_inference.tgz) | | ubuntu14.04_cpu_noavx_openblas | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-cpu-noavx-openblas/fluid_inference.tgz) | | ubuntu14.04_cuda9.0_cudnn7_avx_mkl | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda9-cudnn7-avx-mkl/fluid_inference.tgz) | | ubuntu14.04_cuda10.0_cudnn7_avx_mkl | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10-cudnn7-avx-mkl/fluid_inference.tgz ) | | ubuntu14.04_cuda10.1_cudnn7.6_avx_mkl_trt6 | [paddle_inference](https://paddle-inference-lib.bj.bcebos.com/1.8.2-gpu-cuda10.1-cudnn7.6-avx-mkl-trt6%2Ffluid_inference.tgz) | 更多和更新的版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html) 下载并解压后`/root/projects/fluid_inference`目录包含内容为: ``` fluid_inference ├── paddle # paddle核心库和头文件 | ├── third_party # 第三方依赖库和头文件 | └── version.txt # 版本和编译信息 ``` **注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。 ### Step3: 编译 编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下: ``` # 是否使用GPU(即是否使用 CUDA) WITH_GPU=OFF # 使用MKL or openblas WITH_MKL=ON # 是否集成 TensorRT(仅WITH_GPU=ON 有效) WITH_TENSORRT=OFF # TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径 TENSORRT_DIR=/root/projects/TensorRT/ # Paddle 预测库路径, 请修改为您实际安装的预测库路径 PADDLE_DIR=/root/projects/fluid_inference # Paddle 的预测库是否使用静态库来编译 # 使用TensorRT时,Paddle的预测库通常为动态库 WITH_STATIC_LIB=OFF # CUDA 的 lib 路径 CUDA_LIB=/usr/local/cuda/lib64 # CUDNN 的 lib 路径 CUDNN_LIB=/usr/local/cuda/lib64 # 是否加载加密后的模型 WITH_ENCRYPTION=ON # 加密工具的路径, 如果使用自带预编译版本可不修改 sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具 ENCRYPTION_DIR=$(pwd)/paddlex-encryption # OPENCV 路径, 如果使用自带预编译版本可不修改 sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ # 以下无需改动 rm -rf build mkdir -p build cd build cmake .. \ -DWITH_GPU=${WITH_GPU} \ -DWITH_MKL=${WITH_MKL} \ -DWITH_TENSORRT=${WITH_TENSORRT} \ -DWITH_ENCRYPTION=${WITH_ENCRYPTION} \ -DTENSORRT_DIR=${TENSORRT_DIR} \ -DPADDLE_DIR=${PADDLE_DIR} \ -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \ -DCUDA_LIB=${CUDA_LIB} \ -DCUDNN_LIB=${CUDNN_LIB} \ -DENCRYPTION_DIR=${ENCRYPTION_DIR} \ -DOPENCV_DIR=${OPENCV_DIR} make ``` **注意:** linux环境下编译会自动下载OPENCV, PaddleX-Encryption和YAML,如果编译环境无法访问外网,可手动下载: - [opencv3gcc4.8.tar.bz2](https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2) - [paddlex-encryption.zip](https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip) - [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip) opencv3gcc4.8.tar.bz2文件下载后解压,然后在script/build.sh中指定`OPENCE_DIR`为解压后的路径。 paddlex-encryption.zip文件下载后解压,然后在script/build.sh中指定`ENCRYPTION_DIR`为解压后的路径。 yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。 修改脚本设置好主要参数后,执行`build`脚本: ```shell sh ./scripts/build.sh ``` ### Step4: 预测及可视化 **在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。** * 编译成功后,图片预测demo的可执行程序分别为`build/demo/detector`,`build/demo/classifier`,`build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下: | 参数 | 说明 | | ---- | ---- | | model_dir | 导出的预测模型所在路径 | | image | 要预测的图片文件路径 | | image_list | 按行存储图片路径的.txt文件 | | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | | use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) | | gpu_id | GPU 设备ID, 默认值为0 | | save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** | | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 | | batch_size | 预测的批量大小,默认为1 | | thread_num | 预测的线程数,默认为cpu处理器个数 | * 编译成功后,视频预测demo的可执行程序分别为`build/demo/video_detector`,`build/demo/video_classifier`,`build/demo/video_segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下: | 参数 | 说明 | | ---- | ---- | | model_dir | 导出的预测模型所在路径 | | use_camera | 是否使用摄像头预测,支持值为0或1(默认值为0) | | camera_id | 摄像头设备ID,默认值为0 | | video_path | 视频文件的路径 | | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | | use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) | | gpu_id | GPU 设备ID, 默认值为0 | | show_result | 是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) | | save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) | | save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** | | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 | **注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`ESC`键可关闭摄像头并推出预测程序。** ## 样例 可使用[小度熊识别模型](../../export_model.md)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。 > 关于预测速度的说明:加载模型后前几张图片的预测速度会较慢,这是因为运行启动时涉及到内存显存初始化等步骤,通常在预测20-30张图片后模型的预测速度达到稳定。 **样例一:** 不使用`GPU`测试图片 `/root/projects/images/xiaoduxiong.jpeg` ```shell ./build/demo/detector --model_dir=/root/projects/inference_model --image=/root/projects/images/xiaoduxiong.jpeg --save_dir=output ``` 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 **样例二:** 使用`GPU`预测多个图片`/root/projects/image_list.txt`,image_list.txt内容的格式如下: ``` /root/projects/images/xiaoduxiong1.jpeg /root/projects/images/xiaoduxiong2.jpeg ... /root/projects/images/xiaoduxiongn.jpeg ``` ```shell ./build/demo/detector --model_dir=/root/projects/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2 ``` 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 **样例三:** 使用摄像头预测: ```shell ./build/demo/video_detector --model_dir=/root/projects/inference_model --use_camera=1 --use_gpu=1 --save_dir=output --save_result=1 ``` 当`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。如果系统有GUI,通过将`show_result`设置为1在屏幕上观看可视化预测结果。 **样例四:** 对视频文件进行预测: ```shell ./build/demo/video_detector --model_dir=/root/projects/inference_model --video_path=/path/to/video_file --use_gpu=1 --save_dir=output --show_result=1 --save_result=1 ``` 当`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。如果系统有GUI,通过将`show_result`设置为1在屏幕上观看可视化预测结果。