import paddlex import paddlehub as hub import os import os.path as osp image_pretrain = { 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar', 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar', 'ResNet50': 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar', 'ResNet101': 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar', 'ResNet50_vd': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar', 'ResNet101_vd': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar', 'ResNet50_vd_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar', 'ResNet101_vd_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar', 'MobileNetV1': 'http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar', 'MobileNetV2_x1.0': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar', 'MobileNetV2_x0.5': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar', 'MobileNetV2_x2.0': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar', 'MobileNetV2_x0.25': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar', 'MobileNetV2_x1.5': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar', 'MobileNetV3_small': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar', 'MobileNetV3_large': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar', 'MobileNetV3_small_x1_0_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar', 'MobileNetV3_large_x1_0_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar', 'DarkNet53': 'https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar', 'DenseNet121': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar', 'DenseNet161': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar', 'DenseNet201': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar', 'DetResNet50': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar', 'SegXception41': 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar', 'SegXception65': 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar', 'ShuffleNetV2': 'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar', 'HRNet_W18': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar', 'HRNet_W30': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar', 'HRNet_W32': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar', 'HRNet_W40': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar', 'HRNet_W48': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar', 'HRNet_W60': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W60_C_pretrained.tar', 'HRNet_W64': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar', } coco_pretrain = { 'UNet': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz' } def get_pretrain_weights(flag, model_type, backbone, save_dir): if flag is None: return None elif osp.isdir(flag): return flag elif flag == 'IMAGENET': new_save_dir = save_dir if hasattr(paddlex, 'pretrain_dir'): new_save_dir = paddlex.pretrain_dir if backbone.startswith('Xception'): backbone = 'Seg{}'.format(backbone) elif backbone == 'MobileNetV2': backbone = 'MobileNetV2_x1.0' elif backbone == 'MobileNetV3_small_ssld': backbone = 'MobileNetV3_small_x1_0_ssld' elif backbone == 'MobileNetV3_large_ssld': backbone = 'MobileNetV3_large_x1_0_ssld' if model_type == 'detector': if backbone == 'ResNet50': backbone = 'DetResNet50' assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format( backbone) url = image_pretrain[backbone] fname = osp.split(url)[-1].split('.')[0] paddlex.utils.download_and_decompress(url, path=new_save_dir) return osp.join(new_save_dir, fname) # try: # hub.download(backbone, save_path=new_save_dir) # except Exception as e: # if isinstance(e, hub.ResourceNotFoundError): # raise Exception("Resource for backbone {} not found".format( # backbone)) # elif isinstance(e, hub.ServerConnectionError): # raise Exception( # "Cannot get reource for backbone {}, please check your internet connecgtion" # .format(backbone)) # else: # raise Exception( # "Unexpected error, please make sure paddlehub >= 1.6.2") # return osp.join(new_save_dir, backbone) elif flag == 'COCO': new_save_dir = save_dir if hasattr(paddlex, 'pretrain_dir'): new_save_dir = paddlex.pretrain_dir assert backbone in coco_pretrain, "There is not COCO pretrain weights for {}, you may try ImageNet.".format( backbone) url = coco_pretrain[backbone] fname = osp.split(url)[-1].split('.')[0] paddlex.utils.download_and_decompress(url, path=new_save_dir) return osp.join(new_save_dir, fname) # try: # hub.download(backbone, save_path=new_save_dir) # except Exception as e: # if isinstance(hub.ResourceNotFoundError): # raise Exception("Resource for backbone {} not found".format( # backbone)) # elif isinstance(hub.ServerConnectionError): # raise Exception( # "Cannot get reource for backbone {}, please check your internet connecgtion" # .format(backbone)) # else: # raise Exception( # "Unexpected error, please make sure paddlehub >= 1.6.2") # return osp.join(new_save_dir, backbone) else: raise Exception( "pretrain_weights need to be defined as directory path or `IMAGENET` or 'COCO' (download pretrain weights automatically)." )