#!/usr/bin/env python from __future__ import print_function import argparse import glob import json import os import os.path as osp import sys import numpy as np import PIL.Image import labelme def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('input_dir', help='input annotated directory') parser.add_argument('output_dir', help='output dataset directory') parser.add_argument('--labels', help='labels file', required=True) args = parser.parse_args() if osp.exists(args.output_dir): print('Output directory already exists:', args.output_dir) sys.exit(1) os.makedirs(args.output_dir) os.makedirs(osp.join(args.output_dir, 'JPEGImages')) os.makedirs(osp.join(args.output_dir, 'SegmentationClass')) os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG')) os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization')) os.makedirs(osp.join(args.output_dir, 'SegmentationObject')) os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG')) os.makedirs(osp.join(args.output_dir, 'SegmentationObjectVisualization')) print('Creating dataset:', args.output_dir) class_names = [] class_name_to_id = {} for i, line in enumerate(open(args.labels).readlines()): class_id = i - 1 # starts with -1 class_name = line.strip() class_name_to_id[class_name] = class_id if class_id == -1: assert class_name == '__ignore__' continue elif class_id == 0: assert class_name == '_background_' class_names.append(class_name) class_names = tuple(class_names) print('class_names:', class_names) out_class_names_file = osp.join(args.output_dir, 'class_names.txt') with open(out_class_names_file, 'w') as f: f.writelines('\n'.join(class_names)) print('Saved class_names:', out_class_names_file) colormap = labelme.utils.label_colormap(255) for label_file in glob.glob(osp.join(args.input_dir, '*.json')): print('Generating dataset from:', label_file) with open(label_file) as f: base = osp.splitext(osp.basename(label_file))[0] out_img_file = osp.join( args.output_dir, 'JPEGImages', base + '.jpg') out_cls_file = osp.join( args.output_dir, 'SegmentationClass', base + '.npy') out_clsp_file = osp.join( args.output_dir, 'SegmentationClassPNG', base + '.png') out_clsv_file = osp.join( args.output_dir, 'SegmentationClassVisualization', base + '.jpg', ) out_ins_file = osp.join( args.output_dir, 'SegmentationObject', base + '.npy') out_insp_file = osp.join( args.output_dir, 'SegmentationObjectPNG', base + '.png') out_insv_file = osp.join( args.output_dir, 'SegmentationObjectVisualization', base + '.jpg', ) data = json.load(f) img_file = osp.join(osp.dirname(label_file), data['imagePath']) img = np.asarray(PIL.Image.open(img_file)) PIL.Image.fromarray(img).save(out_img_file) cls, ins = labelme.utils.shapes_to_label( img_shape=img.shape, shapes=data['shapes'], label_name_to_value=class_name_to_id, type='instance', ) ins[cls == -1] = 0 # ignore it. # class label labelme.utils.lblsave(out_clsp_file, cls) np.save(out_cls_file, cls) clsv = labelme.utils.draw_label( cls, img, class_names, colormap=colormap) PIL.Image.fromarray(clsv).save(out_clsv_file) # instance label labelme.utils.lblsave(out_insp_file, ins) np.save(out_ins_file, ins) instance_ids = np.unique(ins) instance_names = [str(i) for i in range(max(instance_ids) + 1)] insv = labelme.utils.draw_label(ins, img, instance_names) PIL.Image.fromarray(insv).save(out_insv_file) if __name__ == '__main__': main()