import os # 选择使用0号卡 os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlex as pdx from paddlex.seg import transforms # 下载和解压表盘分割数据集 meter_seg_dataset = 'https://bj.bcebos.com/paddlex/meterreader/datasets/meter_seg.tar.gz' pdx.utils.download_and_decompress(meter_seg_dataset, path='./') # 定义训练和验证时的transforms train_transforms = transforms.Compose([ transforms.Resize([512, 512]), transforms.RandomHorizontalFlip(prob=0.5), transforms.Normalize(), ]) eval_transforms = transforms.Compose([ transforms.Resize([512, 512]), transforms.Normalize(), ]) # 定义训练和验证所用的数据集 # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset train_dataset = pdx.datasets.SegDataset( data_dir='meter_seg/', file_list='meter_paddleseg_414/train.txt', label_list='meter_paddleseg_414/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.SegDataset( data_dir='meter_paddleseg_414/', file_list='meter_paddleseg_414/val.txt', label_list='meter_paddleseg_414/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标 # VisualDL启动方式: visualdl --logdir output/deeplab/vdl_log --port 8001 # 浏览器打开 https://0.0.0.0:8001即可 # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP # # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#deeplabv3p model = pdx.seg.DeepLabv3p( num_classes=len(train_dataset.labels), backbone='Xception65') model.train( num_epochs=20, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.1, pretrain_weights='COCO', save_interval_epochs=5, save_dir='output/meter_seg', use_vdl=True)