import paddlex import paddlex.utils.logging as logging import paddlehub as hub import os import os.path as osp image_pretrain = { 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar', 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar', 'ResNet50': 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar', 'ResNet101': 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar', 'ResNet50_vd': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar', 'ResNet101_vd': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar', 'ResNet50_vd_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar', 'ResNet101_vd_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar', 'MobileNetV1': 'http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar', 'MobileNetV2_x1.0': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar', 'MobileNetV2_x0.5': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar', 'MobileNetV2_x2.0': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar', 'MobileNetV2_x0.25': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar', 'MobileNetV2_x1.5': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar', 'MobileNetV3_small': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar', 'MobileNetV3_large': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar', 'MobileNetV3_small_x1_0_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar', 'MobileNetV3_large_x1_0_ssld': 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar', 'DarkNet53': 'https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar', 'DenseNet121': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar', 'DenseNet161': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar', 'DenseNet201': 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar', 'DetResNet50': 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar', 'SegXception41': 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar', 'SegXception65': 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar', 'ShuffleNetV2': 'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar', 'HRNet_W18': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar', 'HRNet_W30': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar', 'HRNet_W32': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar', 'HRNet_W40': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar', 'HRNet_W48': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar', 'HRNet_W60': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W60_C_pretrained.tar', 'HRNet_W64': 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar', } coco_pretrain = { 'YOLOv3_DarkNet53_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar', 'YOLOv3_MobileNetV1_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar', 'YOLOv3_MobileNetV3_large_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams', 'YOLOv3_ResNet34_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar', 'YOLOv3_ResNet50_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar', 'FasterRCNN_ResNet50_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar', 'FasterRCNN_ResNet50_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar', 'FasterRCNN_ResNet101_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar', 'FasterRCNN_ResNet101_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar', 'FasterRCNN_HRNet_W18_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar', 'MaskRCNN_ResNet50_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar', 'MaskRCNN_ResNet50_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar', 'MaskRCNN_ResNet101_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar', 'MaskRCNN_ResNet101_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar', 'UNet_COCO': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz', 'DeepLabv3p_MobileNetV2_x1.0_COCO': 'https://bj.bcebos.com/v1/paddleseg/deeplab_mobilenet_x1_0_coco.tgz', 'DeepLabv3p_Xception65_COCO': 'https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz' } cityscapes_pretrain = { 'DeepLabv3p_MobileNetV2_x1.0_CITYSCAPES': 'https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz', 'DeepLabv3p_Xception65_CITYSCAPES': 'https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz', 'HRNet_W18_CITYSCAPES': 'https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz' } def get_pretrain_weights(flag, class_name, backbone, save_dir): if flag is None: return None elif osp.isdir(flag): return flag elif osp.isfile(flag): return flag warning_info = "{} does not support to be finetuned with weights pretrained on the {} dataset, so pretrain_weights is forced to be set to {}" if flag == 'COCO': if class_name == "FasterRCNN" and backbone in ['ResNet18'] or \ class_name == "MaskRCNN" and backbone in ['ResNet18', 'HRNet_W18'] or \ class_name == 'DeepLabv3p' and backbone in ['Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0']: model_name = '{}_{}'.format(class_name, backbone) logging.warning(warning_info.format(model_name, flag, 'IMAGENET')) flag = 'IMAGENET' elif class_name == 'HRNet': logging.warning(warning_info.format(class_name, flag, 'IMAGENET')) flag = 'IMAGENET' elif flag == 'CITYSCAPES': model_name = '{}_{}'.format(class_name, backbone) if class_name == 'UNet': logging.warning(warning_info.format(class_name, flag, 'COCO')) flag = 'COCO' if class_name == 'HRNet' and backbone.split('_')[ -1] in ['W30', 'W32', 'W40', 'W48', 'W60', 'W64']: logging.warning(warning_info.format(backbone, flag, 'IMAGENET')) flag = 'IMAGENET' if class_name == 'DeepLabv3p' and backbone in [ 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0' ]: model_name = '{}_{}'.format(class_name, backbone) logging.warning(warning_info.format(model_name, flag, 'IMAGENET')) flag = 'IMAGENET' elif flag == 'IMAGENET' and class_name == 'UNet': logging.warning(warning_info.format(class_name, flag, 'COCO')) flag = 'COCO' if flag == 'IMAGENET': new_save_dir = save_dir if hasattr(paddlex, 'pretrain_dir'): new_save_dir = paddlex.pretrain_dir if backbone.startswith('Xception'): backbone = 'Seg{}'.format(backbone) elif backbone == 'MobileNetV2': backbone = 'MobileNetV2_x1.0' elif backbone == 'MobileNetV3_small_ssld': backbone = 'MobileNetV3_small_x1_0_ssld' elif backbone == 'MobileNetV3_large_ssld': backbone = 'MobileNetV3_large_x1_0_ssld' if class_name in ['YOLOv3', 'FasterRCNN', 'MaskRCNN']: if backbone == 'ResNet50': backbone = 'DetResNet50' assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format( backbone) # url = image_pretrain[backbone] # fname = osp.split(url)[-1].split('.')[0] # paddlex.utils.download_and_decompress(url, path=new_save_dir) # return osp.join(new_save_dir, fname) try: hub.download(backbone, save_path=new_save_dir) except Exception as e: if isinstance(e, hub.ResourceNotFoundError): raise Exception("Resource for backbone {} not found".format( backbone)) elif isinstance(e, hub.ServerConnectionError): raise Exception( "Cannot get reource for backbone {}, please check your internet connecgtion" .format(backbone)) else: raise Exception( "Unexpected error, please make sure paddlehub >= 1.6.2") return osp.join(new_save_dir, backbone) elif flag in ['COCO', 'CITYSCAPES']: new_save_dir = save_dir if hasattr(paddlex, 'pretrain_dir'): new_save_dir = paddlex.pretrain_dir if class_name in ['YOLOv3', 'FasterRCNN', 'MaskRCNN', 'DeepLabv3p']: backbone = '{}_{}'.format(class_name, backbone) backbone = "{}_{}".format(backbone, flag) if flag == 'COCO': url = coco_pretrain[backbone] elif flag == 'CITYSCAPES': url = cityscapes_pretrain[backbone] fname = osp.split(url)[-1].split('.')[0] # paddlex.utils.download_and_decompress(url, path=new_save_dir) # return osp.join(new_save_dir, fname) try: hub.download(backbone, save_path=new_save_dir) except Exception as e: if isinstance(hub.ResourceNotFoundError): raise Exception("Resource for backbone {} not found".format( backbone)) elif isinstance(hub.ServerConnectionError): raise Exception( "Cannot get reource for backbone {}, please check your internet connecgtion" .format(backbone)) else: raise Exception( "Unexpected error, please make sure paddlehub >= 1.6.2") return osp.join(new_save_dir, backbone) else: raise Exception( "pretrain_weights need to be defined as directory path or 'IMAGENET' or 'COCO' or 'Cityscapes' (download pretrain weights automatically)." )