# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from six import text_type as _text_type import argparse import sys import paddlex as pdx def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", "-m", type=_text_type, default=None, help="define model directory path") parser.add_argument( "--save_dir", "-s", type=_text_type, default=None, help="path to save inference model") parser.add_argument( "--fixed_input_shape", "-fs", default=None, help="export openvino model with input shape:[w,h]") parser.add_argument( "--data_type", "-dp", default="FP32", help="option, FP32 or FP16, the data_type of openvino IR") return parser def export_openvino_model(model, args): if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN": print( "Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to openvino" ) try: import x2paddle if x2paddle.__version__ < '0.7.4': logging.error("You need to upgrade x2paddle >= 0.7.4") except: print( "You need to install x2paddle first, pip install x2paddle>=0.7.4") import x2paddle.convert as x2pc x2pc.paddle2onnx(args.model_dir, args.save_dir) import mo.main as mo from mo.utils.cli_parser import get_onnx_cli_parser onnx_parser = get_onnx_cli_parser() onnx_parser.add_argument("--model_dir", type=_text_type) onnx_parser.add_argument("--save_dir", type=_text_type) onnx_parser.add_argument("--fixed_input_shape") onnx_input = os.path.join(args.save_dir, 'x2paddle_model.onnx') onnx_parser.set_defaults(input_model=onnx_input) onnx_parser.set_defaults(output_dir=args.save_dir) shape_list = args.fixed_input_shape[1:-1].split(',') shape = '[1,3,' + shape_list[1] + ',' + shape_list[0] + ']' if model.__class__.__name__ == "YOLOV3": shape = shape + ",[1,2]" inputs = "image,im_size" onnx_parser.set_defaults(input=inputs) onnx_parser.set_defaults(input_shape=shape) mo.main(onnx_parser, 'onnx') def main(): parser = arg_parser() args = parser.parse_args() assert args.model_dir is not None, "--model_dir should be defined while exporting openvino model" assert args.save_dir is not None, "--save_dir should be defined to create openvino model" model = pdx.load_model(args.model_dir) if model.status == "Normal" or model.status == "Prune": print( "Only support inference model, try to export model first as below,", exit=False) export_openvino_model(model, args) if __name__ == "__main__": main()