from .explanation_algorithms import CAM, LIME, NormLIME class Explanation(object): """ Base class for all explanation algorithms. """ def __init__(self, explanation_algorithm_name, predict_fn, **kwargs): supported_algorithms = { 'cam': CAM, 'lime': LIME, 'normlime': NormLIME } self.algorithm_name = explanation_algorithm_name.lower() assert self.algorithm_name in supported_algorithms.keys() self.predict_fn = predict_fn # initialization for the explanation algorithm. self.explain_algorithm = supported_algorithms[self.algorithm_name]( self.predict_fn, **kwargs ) def explain(self, data_, visualization=True, save_to_disk=True, save_dir='./tmp'): """ Args: data_: data_ can be a path or numpy.ndarray. visualization: whether to show using matplotlib. save_to_disk: whether to save the figure in local disk. save_dir: dir to save figure if save_to_disk is True. Returns: """ return self.explain_algorithm.explain(data_, visualization, save_to_disk, save_dir)