Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
ecfd5fe6
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ecfd5fe6
编写于
7月 11, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
updata doc
上级
965ed41d
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
2 addition
and
67 deletion
+2
-67
docs/deploy/paddlelite/slim/compress.md
docs/deploy/paddlelite/slim/compress.md
+0
-66
docs/deploy/paddlelite/slim/index.rst
docs/deploy/paddlelite/slim/index.rst
+2
-1
未找到文件。
docs/deploy/paddlelite/slim/compress.md
已删除
100644 → 0
浏览文件 @
965ed41d
# 模型压缩
为了更好地满足端侧部署场景下,低内存带宽、低功耗、低计算资源占用以及低模型存储等需求,PaddleX通过集成PaddleSlim实现模型量化和裁剪,可提升PaddleLite端侧部署性能。
## 模型量化
### 原理介绍
定点量化使用更少的比特数(如8-bit、3-bit、2-bit等)表示神经网络的权重和激活值,从而加速模型推理速度。PaddleX提供了训练后量化技术,其原理可参见
[
训练后量化原理
](
https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id14
)
,该量化使用KL散度确定量化比例因子,将FP32模型转成INT8模型,且不需要重新训练,可以快速得到量化模型。
### 使用PaddleX量化模型
PaddleX提供了
`export_quant_model`
接口,让用户以接口的形式完成模型以post_quantization方式量化并导出。点击查看
[
量化接口使用文档
](
../../apis/slim.html
)
。
### 量化性能对比
模型量化后的性能对比指标请查阅
[
PaddleSlim模型库
](
https://paddlepaddle.github.io/PaddleSlim/model_zoo.html
)
## 模型裁剪
### 原理介绍
模型裁剪通过裁剪卷积层中Kernel输出通道的大小及其关联层参数大小,来减小模型大小和降低模型计算复杂度,可以加快模型部署后的预测速度,其关联裁剪的原理可参见
[
PaddleSlim相关文档
](
https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id16
)
。
**一般而言,在同等模型精度前提下,数据复杂度越低,模型可以被裁剪的比例就越高**
。
### 裁剪方法
PaddleX提供了两种方式:
**1.用户自行计算裁剪配置(推荐),整体流程包含三个步骤,**
> **第一步**: 使用数据集训练原始模型
> **第二步**:利用第一步训练好的模型,在验证数据集上计算模型中各个参数的敏感度,并将敏感度信息存储至本地文件
> **第三步**:使用数据集训练裁剪模型(与第一步差异在于需要在`train`接口中,将第二步计算得到的敏感信息文件传给接口的`sensitivities_file`参数)
> 在如上三个步骤中,**相当于模型共需要训练两遍**,分别对应第一步和第三步,但其中第三步训练的是裁剪后的模型,因此训练速度较第一步会更快。
> 第二步会遍历模型中的部分裁剪参数,分别计算各个参数裁剪后对于模型在验证集上效果的影响,**因此会反复在验证集上评估多次**。
**2.使用PaddleX内置的裁剪方案**
> PaddleX内置的模型裁剪方案是**基于标准数据集**上计算得到的参数敏感度信息,由于不同数据集特征分布会有较大差异,所以该方案相较于第1种方案训练得到的模型**精度一般而言会更低**(**且用户自定义数据集与标准数据集特征分布差异越大,导致训练的模型精度会越低**),仅在用户想节省时间的前提下可以参考使用,使用方式只需一步,
> **一步**: 使用数据集训练裁剪模型,在训练调用`train`接口时,将接口中的`sensitivities_file`参数设置为'DEFAULT'字符串
> 注:各模型内置的裁剪方案分别依据的数据集为: 图像分类——ImageNet数据集、目标检测——PascalVOC数据集、语义分割——CityScape数据集
### 裁剪实验
基于上述两种方案,我们在PaddleX上使用样例数据进行了实验,在Tesla P40上实验指标如下所示,使用方法见
[
使用教程-模型压缩
](
../../../../tutorials/compress/README.html
)
#### 图像分类
实验背景:使用MobileNetV2模型,数据集为蔬菜分类示例数据
| 模型 | 裁剪情况 | 模型大小 | Top1准确率(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- |:----------|
|MobileNetV2 | 无裁剪(原模型)| 13.0M | 97.50|6.47ms |47.44ms |
|MobileNetV2 | 方案一(eval_metric_loss=0.10) | 2.1M | 99.58 |5.03ms |20.22ms |
|MobileNetV2 | 方案二(eval_metric_loss=0.10) | 6.0M | 99.58 |5.42ms |29.06ms |
#### 目标检测
实验背景:使用YOLOv3-MobileNetV1模型,数据集为昆虫检测示例数据
| 模型 | 裁剪情况 | 模型大小 | MAP(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|YOLOv3-MobileNetV1 | 无裁剪(原模型)| 139M | 67.57| 14.88ms |976.42ms |
|YOLOv3-MobileNetV1 | 方案一(eval_metric_loss=0.10) | 34M | 75.49 |10.60ms |558.49ms |
|YOLOv3-MobileNetV1 | 方案二(eval_metric_loss=0.05) | 29M | 50.27| 9.43ms |360.46ms |
#### 语义分割
实验背景:使用UNet模型,数据集为视盘分割示例数据
| 模型 | 裁剪情况 | 模型大小 | mIOU(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|UNet | 无裁剪(原模型)| 77M | 91.22 |33.28ms |9523.55ms |
|UNet | 方案一(eval_metric_loss=0.10) |26M | 90.37 |21.04ms |3936.20ms |
|UNet | 方案二(eval_metric_loss=0.10) |23M | 91.21 |18.61ms |3447.75ms |
docs/deploy/paddlelite/slim/index.rst
浏览文件 @
ecfd5fe6
...
@@ -6,4 +6,5 @@
...
@@ -6,4 +6,5 @@
:maxdepth: 2
:maxdepth: 2
:caption: 文档目录:
:caption: 文档目录:
compress.md
quant.md
prune.md
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录