“6ac08982b995d2ad517b59d94b78df07f56cb4d5”上不存在“develop/doc/howto/cluster/multi_cluster/k8s_en.html”
提交 d07baccd 编写于 作者: L LaraStuStu

Merge branch 'master' of https://github.com/PaddlePaddle/PaddleX

无法预览此类型文件
### 数据标注
在DataAnnotation模块下,我们依赖LabeMe标注工具,同时提供了数据处理脚本,帮助用户快速准备训练目标检测和语义分割任务所需的数据。
您可以使用LabeMe标注工具对您的数据进行标注,同时提供了数据处理脚本,帮助用户快速准备训练目标检测和语义分割任务所需的数据。
### LabelMe
LabelMe是目前广泛使用的数据标注工具,并且在GitHub上开源给用户使用。
......
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 30
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 7
# Issues with these labels will never be considered stale
exemptLabels:
- bug
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Thank you
for your contributions.
# Comment to post when removing the stale label. Set to `false` to disable
unmarkComment: false
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
This issue is closed as announced. Feel free to re-open it if needed.
/.cache/
/.pytest_cache/
/build/
/dist/
/*.egg-info/
*.py[cdo]
.DS_Store
[submodule "github2pypi"]
path = github2pypi
url = https://github.com/wkentaro/github2pypi.git
language: generic
cache:
- pip
sudo: required
dist: trusty
branches:
only:
- master
- /v\d+\.\d+.\d+/
notifications:
email: false
env:
global:
# used by ci-helpers
- SETUP_XVFB=true
- PIP_DEPENDENCIES='hacking pytest pytest-qt'
- MPLBACKEND=TkAgg # for osx
matrix:
include:
- os: osx
env:
- PYTEST_QT_API=pyqt5
- PYQT_PACKAGE='pyqt=5'
- PYTHON_VERSION=3.6
- RUN_PYINSTALLER=true
- os: linux
dist: trusty
env:
- PYTEST_QT_API=pyqt4v2
- PYQT_PACKAGE='pyqt=4'
- PYTHON_VERSION=2.7
- os: linux
dist: trusty
env:
- PYTEST_QT_API=pyside2
- CONDA_CHANNELS='conda-forge'
- PYQT_PACKAGE='pyside2!=5.12.4'
- PYTHON_VERSION=2.7
- os: linux
dist: trusty
env:
- PYTEST_QT_API=pyside2
- CONDA_CHANNELS='conda-forge'
- PYQT_PACKAGE='pyside2'
- PYTHON_VERSION=3.6
- os: linux
dist: trusty
env:
- PYTEST_QT_API=pyqt5
- PYQT_PACKAGE='pyqt=5'
- PYTHON_VERSION=2.7
- os: linux
dist: trusty
env:
- PYTEST_QT_API=pyqt5
- PYQT_PACKAGE='pyqt=5'
- PYTHON_VERSION=3.6
- RUN_PYINSTALLER=true
install:
# Setup X
- |
if [ $TRAVIS_OS_NAME = "linux" ]; then
sudo apt-get update
# Xvfb / window manager
sudo apt-get install -y xvfb herbstluftwm
elif [ $TRAVIS_OS_NAME = "osx" ]; then
brew cask install xquartz
fi
# Setup miniconda
- git clone --depth 1 git://github.com/astropy/ci-helpers.git
- CONDA_DEPENDENCIES=$PYQT_PACKAGE source ci-helpers/travis/setup_conda.sh
- source activate test && export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
- pip install .
- rm -rf ci-helpers miniconda.sh
before_script:
- if [ $TRAVIS_OS_NAME = "linux" ]; then (herbstluftwm )& fi
- if [ $TRAVIS_OS_NAME = "osx" ]; then (sudo Xvfb :99 -ac -screen 0 1024x768x8 )& fi
- sleep 1
script:
# Run flake8
- flake8 examples labelme setup.py tests
# Run help2man
- conda install -y help2man
# Run pytest
- pytest -v tests
- labelme --help
- labelme --version
# Run examples
- (cd examples/primitives && labelme_json_to_dataset primitives.json && rm -rf primitives_json)
- (cd examples/tutorial && rm -rf apc2016_obj3_json && labelme_json_to_dataset apc2016_obj3.json && python load_label_png.py && git checkout -- .)
- (cd examples/semantic_segmentation && rm -rf data_dataset_voc && ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt && git checkout -- .)
- (cd examples/instance_segmentation && rm -rf data_dataset_voc && ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt && git checkout -- .)
- (cd examples/video_annotation && rm -rf data_dataset_voc && ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt && git checkout -- .)
- pip install lxml # for bbox_detection/labelme2voc.py
- (cd examples/bbox_detection && rm -rf data_dataset_voc && ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt && git checkout -- .)
- pip install cython && pip install pycocotools # for instance_segmentation/labelme2coco.py
- (cd examples/instance_segmentation && rm -rf data_dataset_coco && ./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt && git checkout -- .)
# Run pyinstaller
- |
if [ "$RUN_PYINSTALLER" = "true" ]; then
# Cleanup
pip uninstall -y $PIP_DEPENDENCIES
# https://github.com/wkentaro/labelme/issues/183
if [ $TRAVIS_OS_NAME = "osx" ]; then
pip uninstall -y Pillow
conda install -y Pillow
fi
# Build the standalone executable
pip install 'pyinstaller!=3.4' # 3.4 raises error
# numpy 1.17 raises error
# See https://github.com/wkentaro/labelme/issues/465
pip install 'numpy<1.17'
pyinstaller labelme.spec
dist/labelme --version
fi
after_script:
- true # noop
Copyright (C) 2016-2018 Kentaro Wada.
Copyright (C) 2011 Michael Pitidis, Hussein Abdulwahid.
Labelme is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Labelme is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Labelme. If not, see <http://www.gnu.org/licenses/>.
<h1 align="center">
<img src="labelme/icons/icon.png"><br/>labelme
</h1>
<h4 align="center">
Image Polygonal Annotation with Python
</h4>
<div align="center">
<a href="https://pypi.python.org/pypi/labelme"><img src="https://img.shields.io/pypi/v/labelme.svg"></a>
<a href="https://pypi.org/project/labelme"><img src="https://img.shields.io/pypi/pyversions/labelme.svg"></a>
<a href="https://travis-ci.org/wkentaro/labelme"><img src="https://travis-ci.org/wkentaro/labelme.svg?branch=master"></a>
<a href="https://hub.docker.com/r/wkentaro/labelme"><img src="https://img.shields.io/docker/build/wkentaro/labelme.svg"></a>
</div>
<br/>
<div align="center">
<img src="examples/instance_segmentation/.readme/annotation.jpg" width="70%">
</div>
## Description
Labelme is a graphical image annotation tool inspired by <http://labelme.csail.mit.edu>.
It is written in Python and uses Qt for its graphical interface.
<img src="examples/instance_segmentation/data_dataset_voc/JPEGImages/2011_000006.jpg" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationClassPNG/2011_000006.png" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationClassVisualization/2011_000006.jpg" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationObjectPNG/2011_000006.png" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationObjectVisualization/2011_000006.jpg" width="19%" />
<i>VOC dataset example of instance segmentation.</i>
<img src="examples/semantic_segmentation/.readme/annotation.jpg" width="32%" /> <img src="examples/bbox_detection/.readme/annotation.jpg" width="30%" /> <img src="examples/classification/.readme/annotation_cat.jpg" width="35%" />
<i>Other examples (semantic segmentation, bbox detection, and classification).</i>
<img src="https://user-images.githubusercontent.com/4310419/47907116-85667800-de82-11e8-83d0-b9f4eb33268f.gif" width="30%" /> <img src="https://user-images.githubusercontent.com/4310419/47922172-57972880-deae-11e8-84f8-e4324a7c856a.gif" width="30%" /> <img src="https://user-images.githubusercontent.com/14256482/46932075-92145f00-d080-11e8-8d09-2162070ae57c.png" width="32%" />
<i>Various primitives (polygon, rectangle, circle, line, and point).</i>
## Features
- [x] Image annotation for polygon, rectangle, circle, line and point. ([tutorial](examples/tutorial))
- [x] Image flag annotation for classification and cleaning. ([#166](https://github.com/wkentaro/labelme/pull/166))
- [x] Video annotation. ([video annotation](examples/video_annotation))
- [x] GUI customization (predefined labels / flags, auto-saving, label validation, etc). ([#144](https://github.com/wkentaro/labelme/pull/144))
- [x] Exporting VOC-format dataset for semantic/instance segmentation. ([semantic segmentation](examples/semantic_segmentation), [instance segmentation](examples/instance_segmentation))
- [x] Exporting COCO-format dataset for instance segmentation. ([instance segmentation](examples/instance_segmentation))
## Requirements
- Ubuntu / macOS / Windows
- Python2 / Python3
- [PyQt4 / PyQt5](http://www.riverbankcomputing.co.uk/software/pyqt/intro) / [PySide2](https://wiki.qt.io/PySide2_GettingStarted)
## Installation
There are options:
- Platform agonistic installation: [Anaconda](#anaconda), [Docker](#docker)
- Platform specific installation: [Ubuntu](#ubuntu), [macOS](#macos), [Windows](#windows)
### Anaconda
You need install [Anaconda](https://www.continuum.io/downloads), then run below:
```bash
# python2
conda create --name=labelme python=2.7
source activate labelme
# conda install -c conda-forge pyside2
conda install pyqt
pip install labelme
# if you'd like to use the latest version. run below:
# pip install git+https://github.com/wkentaro/labelme.git
# python3
conda create --name=labelme python=3.6
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
pip install pyqt5 # pyqt5 can be installed via pip on python3
pip install labelme
```
### Docker
You need install [docker](https://www.docker.com), then run below:
```bash
wget https://raw.githubusercontent.com/wkentaro/labelme/master/labelme/cli/on_docker.py -O labelme_on_docker
chmod u+x labelme_on_docker
# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker examples/tutorial/apc2016_obj3.jpg -O examples/tutorial/apc2016_obj3.json
./labelme_on_docker examples/semantic_segmentation/data_annotated
```
### Ubuntu
```bash
# Ubuntu 14.04 / Ubuntu 16.04
# Python2
# sudo apt-get install python-qt4 # PyQt4
sudo apt-get install python-pyqt5 # PyQt5
sudo pip install labelme
# Python3
sudo apt-get install python3-pyqt5 # PyQt5
sudo pip3 install labelme
```
### Ubuntu 19.10+ / Debian (sid)
```bash
sudo apt-get install labelme
```
### macOS
```bash
# macOS Sierra
brew install pyqt # maybe pyqt5
pip install labelme # both python2/3 should work
# or install standalone executable / app
# NOTE: this only installs the `labelme` command
brew install wkentaro/labelme/labelme
brew cask install wkentaro/labelme/labelme
```
### Windows
Firstly, follow instruction in [Anaconda](#anaconda).
```bash
# Pillow 5 causes dll load error on Windows.
# https://github.com/wkentaro/labelme/pull/174
conda install pillow=4.0.0
```
## Usage
Run `labelme --help` for detail.
The annotations are saved as a [JSON](http://www.json.org/) file.
```bash
labelme # just open gui
# tutorial (single image example)
cd examples/tutorial
labelme apc2016_obj3.jpg # specify image file
labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save
labelme apc2016_obj3.jpg --nodata # not include image data but relative image path in JSON file
labelme apc2016_obj3.jpg \
--labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list
# semantic segmentation example
cd examples/semantic_segmentation
labelme data_annotated/ # Open directory to annotate all images in it
labelme data_annotated/ --labels labels.txt # specify label list with a file
```
For more advanced usage, please refer to the examples:
* [Tutorial (Single Image Example)](examples/tutorial)
* [Semantic Segmentation Example](examples/semantic_segmentation)
* [Instance Segmentation Example](examples/instance_segmentation)
* [Video Annotation Example](examples/video_annotation)
### Command Line Arguemnts
- `--output` specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on.
- The first time you run labelme, it will create a config file in `~/.labelmerc`. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the `--config` flag.
- Without the `--nosortlabels` flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided.
- Flags are assigned to an entire image. [Example](examples/classification)
- Labels are assigned to a single polygon. [Example](examples/bbox_detection)
## FAQ
- **How to convert JSON file to numpy array?** See [examples/tutorial](examples/tutorial#convert-to-dataset).
- **How to load label PNG file?** See [examples/tutorial](examples/tutorial#how-to-load-label-png-file).
- **How to get annotations for semantic segmentation?** See [examples/semantic_segmentation](examples/semantic_segmentation).
- **How to get annotations for instance segmentation?** See [examples/instance_segmentation](examples/instance_segmentation).
## Testing
```bash
pip install hacking pytest pytest-qt
flake8 .
pytest -v tests
```
## Developing
```bash
git clone https://github.com/wkentaro/labelme.git
cd labelme
# Install anaconda3 and labelme
curl -L https://github.com/wkentaro/dotfiles/raw/master/local/bin/install_anaconda3.sh | bash -s .
source .anaconda3/bin/activate
pip install -e .
```
## How to build standalone executable
Below shows how to build the standalone executable on macOS, Linux and Windows.
Also, there are pre-built executables in
[the release section](https://github.com/wkentaro/labelme/releases).
```bash
# Setup conda
conda create --name labelme python==3.6.0
conda activate labelme
# Build the standalone executable
pip install .
pip install pyinstaller
pyinstaller labelme.spec
dist/labelme --version
```
## Acknowledgement
This repo is the fork of [mpitid/pylabelme](https://github.com/mpitid/pylabelme),
whose development has already stopped.
## Cite This Project
If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.
```bash
@misc{labelme2016,
author = {Ketaro Wada},
title = {{labelme: Image Polygonal Annotation with Python}},
howpublished = {\url{https://github.com/wkentaro/labelme}},
year = {2016}
}
```
FROM ubuntu:xenial
# http://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/
RUN export uid=1000 gid=1000 && \
mkdir -p /home/developer && \
echo "developer:x:${uid}:${gid}:Developer,,,:/home/developer:/bin/bash" >> /etc/passwd && \
echo "developer:x:${uid}:" >> /etc/group && \
mkdir -p /etc/sudoers.d && \
echo "developer ALL=(ALL) NOPASSWD: ALL" > /etc/sudoers.d/developer && \
chmod 0440 /etc/sudoers.d/developer && \
chown ${uid}:${gid} -R /home/developer
RUN \
apt-get update -qq && \
apt-get upgrade -qq -y && \
apt-get install -qq -y \
# requirements
git \
python3 \
python3-pip \
python3-matplotlib \
python3-pyqt5 \
# utilities
sudo
RUN pip3 install -v git+https://github.com/wkentaro/labelme.git
USER developer
ENV HOME /home/developer
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.47.8.
.TH LABELME "1" "August 2019" "labelme 3.16.3" "User Commands"
.SH NAME
labelme \- manual page for labelme 3.16.3
.SH DESCRIPTION
usage: labelme [\-h] [\-\-version] [\-\-reset\-config]
.IP
[\-\-logger\-level {debug,info,warning,fatal,error}]
[\-\-output OUTPUT] [\-\-config CONFIG_FILE] [\-\-nodata]
[\-\-autosave] [\-\-nosortlabels] [\-\-flags FLAGS]
[\-\-labelflags LABEL_FLAGS] [\-\-labels LABELS]
[\-\-validatelabel {exact,instance}] [\-\-keep\-prev]
[\-\-epsilon EPSILON]
[filename]
.SS "positional arguments:"
.TP
filename
image or label filename
.SS "optional arguments:"
.TP
\fB\-h\fR, \fB\-\-help\fR
show this help message and exit
.TP
\fB\-\-version\fR, \fB\-V\fR
show version
.TP
\fB\-\-reset\-config\fR
reset qt config
.TP
\fB\-\-logger\-level\fR {debug,info,warning,fatal,error}
logger level
.TP
\fB\-\-output\fR OUTPUT, \fB\-O\fR OUTPUT, \fB\-o\fR OUTPUT
output file or directory (if it ends with .json it is
recognized as file, else as directory)
.TP
\fB\-\-config\fR CONFIG_FILE
config file (default: /home/wkentaro/.labelmerc)
.TP
\fB\-\-nodata\fR
stop storing image data to JSON file
.TP
\fB\-\-autosave\fR
auto save
.TP
\fB\-\-nosortlabels\fR
stop sorting labels
.TP
\fB\-\-flags\fR FLAGS
comma separated list of flags OR file containing flags
.TP
\fB\-\-labelflags\fR LABEL_FLAGS
yaml string of label specific flags OR file containing
json string of label specific flags (ex. {person\-\ed+:
[male, tall], dog\-\ed+: [black, brown, white], .*:
[occluded]})
.TP
\fB\-\-labels\fR LABELS
comma separated list of labels OR file containing
labels
.TP
\fB\-\-validatelabel\fR {exact,instance}
label validation types
.TP
\fB\-\-keep\-prev\fR
keep annotation of previous frame
.TP
\fB\-\-epsilon\fR EPSILON
epsilon to find nearest vertex on canvas
.SH "SEE ALSO"
The full documentation for
.B labelme
is maintained as a Texinfo manual. If the
.B info
and
.B labelme
programs are properly installed at your site, the command
.IP
.B info labelme
.PP
should give you access to the complete manual.
# Bounding Box Detection Example
## Usage
```bash
labelme data_annotated --labels labels.txt --nodata --autosave
```
![](.readme/annotation.jpg)
## Convert to VOC-format Dataset
```bash
# It generates:
# - data_dataset_voc/JPEGImages
# - data_dataset_voc/Annotations
# - data_dataset_voc/AnnotationsVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt
```
<img src="data_dataset_voc/JPEGImages/2011_000003.jpg" width="33%" /> <img src="data_dataset_voc/AnnotationsVisualization/2011_000003.jpg" width="33%" />
<i>Fig1. JPEG image (left), Bounding box annotation visualization (right).</i>
{
"flags": {},
"shapes": [
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
191,
107
],
[
313,
329
]
],
"shape_type": "rectangle"
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
365,
83
],
[
500,
333
]
],
"shape_type": "rectangle"
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000003.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
91,
107
],
[
240,
330
]
],
"shape_type": "rectangle"
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
178,
110
],
[
298,
282
]
],
"shape_type": "rectangle"
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
254,
115
],
[
369,
292
]
],
"shape_type": "rectangle"
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
395,
81
],
[
447,
117
]
],
"shape_type": "rectangle"
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000006.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "bus",
"line_color": null,
"fill_color": null,
"points": [
[
84,
20
],
[
435,
373
]
],
"shape_type": "rectangle"
},
{
"label": "bus",
"line_color": null,
"fill_color": null,
"points": [
[
1,
99
],
[
107,
282
]
],
"shape_type": "rectangle"
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
409,
167
],
[
500,
266
]
],
"shape_type": "rectangle"
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000025.jpg",
"imageData": null
}
\ No newline at end of file
<annotation>
<folder/>
<filename>2011_000003.jpg</filename>
<database/>
<annotation/>
<image/>
<size>
<height>338</height>
<width>500</width>
<depth>3</depth>
</size>
<segmented/>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>191</xmin>
<ymin>107</ymin>
<xmax>313</xmax>
<ymax>329</ymax>
</bndbox>
</object>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>365</xmin>
<ymin>83</ymin>
<xmax>500</xmax>
<ymax>333</ymax>
</bndbox>
</object>
</annotation>
<annotation>
<folder/>
<filename>2011_000006.jpg</filename>
<database/>
<annotation/>
<image/>
<size>
<height>375</height>
<width>500</width>
<depth>3</depth>
</size>
<segmented/>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>91</xmin>
<ymin>107</ymin>
<xmax>240</xmax>
<ymax>330</ymax>
</bndbox>
</object>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>178</xmin>
<ymin>110</ymin>
<xmax>298</xmax>
<ymax>282</ymax>
</bndbox>
</object>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>254</xmin>
<ymin>115</ymin>
<xmax>369</xmax>
<ymax>292</ymax>
</bndbox>
</object>
<object>
<name>person</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>395</xmin>
<ymin>81</ymin>
<xmax>447</xmax>
<ymax>117</ymax>
</bndbox>
</object>
</annotation>
<annotation>
<folder/>
<filename>2011_000025.jpg</filename>
<database/>
<annotation/>
<image/>
<size>
<height>375</height>
<width>500</width>
<depth>3</depth>
</size>
<segmented/>
<object>
<name>bus</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>84</xmin>
<ymin>20</ymin>
<xmax>435</xmax>
<ymax>373</ymax>
</bndbox>
</object>
<object>
<name>bus</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>1</xmin>
<ymin>99</ymin>
<xmax>107</xmax>
<ymax>282</ymax>
</bndbox>
</object>
<object>
<name>car</name>
<pose/>
<truncated/>
<difficult/>
<bndbox>
<xmin>409</xmin>
<ymin>167</ymin>
<xmax>500</xmax>
<ymax>266</ymax>
</bndbox>
</object>
</annotation>
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
try:
import lxml.builder
import lxml.etree
except ImportError:
print('Please install lxml:\n\n pip install lxml\n')
sys.exit(1)
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'Annotations'))
os.makedirs(osp.join(args.output_dir, 'AnnotationsVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
data = json.load(f)
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_xml_file = osp.join(
args.output_dir, 'Annotations', base + '.xml')
out_viz_file = osp.join(
args.output_dir, 'AnnotationsVisualization', base + '.jpg')
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
maker = lxml.builder.ElementMaker()
xml = maker.annotation(
maker.folder(),
maker.filename(base + '.jpg'),
maker.database(), # e.g., The VOC2007 Database
maker.annotation(), # e.g., Pascal VOC2007
maker.image(), # e.g., flickr
maker.size(
maker.height(str(img.shape[0])),
maker.width(str(img.shape[1])),
maker.depth(str(img.shape[2])),
),
maker.segmented(),
)
bboxes = []
labels = []
for shape in data['shapes']:
if shape['shape_type'] != 'rectangle':
print('Skipping shape: label={label}, shape_type={shape_type}'
.format(**shape))
continue
class_name = shape['label']
class_id = class_names.index(class_name)
(xmin, ymin), (xmax, ymax) = shape['points']
bboxes.append([xmin, ymin, xmax, ymax])
labels.append(class_id)
xml.append(
maker.object(
maker.name(shape['label']),
maker.pose(),
maker.truncated(),
maker.difficult(),
maker.bndbox(
maker.xmin(str(xmin)),
maker.ymin(str(ymin)),
maker.xmax(str(xmax)),
maker.ymax(str(ymax)),
),
)
)
captions = [class_names[l] for l in labels]
viz = labelme.utils.draw_instances(
img, bboxes, labels, captions=captions
)
PIL.Image.fromarray(viz).save(out_viz_file)
with open(out_xml_file, 'wb') as f:
f.write(lxml.etree.tostring(xml, pretty_print=True))
if __name__ == '__main__':
main()
__ignore__
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
# Classification Example
## Usage
```bash
labelme data_annotated --flags flags.txt --nodata
```
<img src=".readme/annotation_cat.jpg" width="100%" />
<img src=".readme/annotation_dog.jpg" width="100%" />
{
"flags": {
"__ignore__": false,
"cat": true,
"dog": false
},
"shapes": [],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "0001.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {
"__ignore__": false,
"cat": false,
"dog": true
},
"shapes": [],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "0002.jpg",
"imageData": null
}
\ No newline at end of file
# Instance Segmentation Example
## Annotation
```bash
labelme data_annotated --labels labels.txt --nodata
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person-\d+: [male]}'
```
![](.readme/annotation.jpg)
## Convert to VOC-format Dataset
```bash
# It generates:
# - data_dataset_voc/JPEGImages
# - data_dataset_voc/SegmentationClass
# - data_dataset_voc/SegmentationClassVisualization
# - data_dataset_voc/SegmentationObject
# - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt
```
<img src="data_dataset_voc/JPEGImages/2011_000003.jpg" width="33%" /> <img src="data_dataset_voc/SegmentationClassVisualization/2011_000003.jpg" width="33%" /> <img src="data_dataset_voc/SegmentationObjectVisualization/2011_000003.jpg" width="33%" />
Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)
Note that the label file contains only very low label values (ex. `0, 4, 14`), and
`255` indicates the `__ignore__` label value (`-1` in the npy file).
You can see the label PNG file by following.
```bash
labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png # right
```
<img src=".readme/draw_label_png_class.jpg" width="33%" /> <img src=".readme/draw_label_png_object.jpg" width="33%" />
## Convert to COCO-format Dataset
```bash
# It generates:
# - data_dataset_coco/JPEGImages
# - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt
```
{
"version": "3.14.2",
"flags": {},
"shapes": [
{
"label": "person-1",
"line_color": null,
"fill_color": null,
"points": [
[
250.984126984127,
106.92063492063491
],
[
229.984126984127,
118.92063492063491
],
[
221.984126984127,
134.9206349206349
],
[
223.984126984127,
147.9206349206349
],
[
217.984126984127,
160.9206349206349
],
[
202.984126984127,
167.9206349206349
],
[
192.984126984127,
199.9206349206349
],
[
194.984126984127,
221.9206349206349
],
[
199.984126984127,
226.9206349206349
],
[
191.984126984127,
233.9206349206349
],
[
197.984126984127,
263.92063492063494
],
[
213.984126984127,
294.92063492063494
],
[
214.984126984127,
319.92063492063494
],
[
221.984126984127,
326.92063492063494
],
[
235.984126984127,
325.92063492063494
],
[
240.984126984127,
322.92063492063494
],
[
235.984126984127,
297.92063492063494
],
[
238.984126984127,
286.92063492063494
],
[
234.984126984127,
267.92063492063494
],
[
257.984126984127,
257.92063492063494
],
[
264.984126984127,
263.92063492063494
],
[
256.984126984127,
272.92063492063494
],
[
259.984126984127,
281.92063492063494
],
[
284.984126984127,
287.92063492063494
],
[
297.984126984127,
277.92063492063494
],
[
288.984126984127,
269.92063492063494
],
[
281.984126984127,
269.92063492063494
],
[
283.984126984127,
263.92063492063494
],
[
292.984126984127,
260.92063492063494
],
[
308.984126984127,
235.9206349206349
],
[
313.984126984127,
216.9206349206349
],
[
309.984126984127,
207.9206349206349
],
[
312.984126984127,
201.9206349206349
],
[
308.984126984127,
184.9206349206349
],
[
291.984126984127,
172.9206349206349
],
[
269.984126984127,
158.9206349206349
],
[
261.984126984127,
153.9206349206349
],
[
264.984126984127,
141.9206349206349
],
[
273.984126984127,
136.9206349206349
],
[
278.984126984127,
129.9206349206349
],
[
270.984126984127,
120.92063492063491
]
],
"shape_type": "polygon",
"flags": {
"occluded": true,
"truncated": false,
"male": true
}
},
{
"label": "person-2",
"line_color": null,
"fill_color": null,
"points": [
[
482,
85
],
[
468,
90
],
[
460,
110
],
[
460,
127
],
[
444,
137
],
[
419,
153
],
[
410,
163
],
[
403,
168
],
[
394,
170
],
[
386,
168
],
[
386,
184
],
[
392,
182
],
[
410,
187
],
[
414,
192
],
[
437,
189
],
[
434,
204
],
[
390,
195
],
[
386,
195
],
[
387,
208
],
[
381,
212
],
[
372,
212
],
[
372,
216
],
[
400,
270
],
[
389,
272
],
[
389,
274
],
[
403,
282
],
[
444,
283
],
[
443,
259
],
[
426,
244
],
[
462,
256
],
[
474,
270
],
[
477,
280
],
[
473,
289
],
[
471,
296
],
[
472,
317
],
[
480,
332
],
[
494,
335
],
[
498,
329
],
[
494,
308
],
[
499,
297
],
[
499,
90
]
],
"shape_type": "polygon",
"flags": {
"occluded": true,
"truncated": true,
"male": true
}
},
{
"label": "bottle",
"line_color": null,
"fill_color": null,
"points": [
[
374,
159
],
[
369,
170
],
[
369,
210
],
[
375,
212
],
[
387,
209
],
[
385,
185
],
[
385,
168
],
[
385,
165
],
[
382,
159
]
],
"shape_type": "polygon",
"flags": {
"occluded": false,
"truncated": false
}
},
{
"label": "person-2",
"line_color": null,
"fill_color": null,
"points": [
[
370,
170
],
[
366,
173
],
[
365,
182
],
[
368,
185
]
],
"shape_type": "polygon",
"flags": {
"occluded": true,
"truncated": false,
"male": false
}
},
{
"label": "__ignore__",
"line_color": null,
"fill_color": null,
"points": [
[
338,
266
],
[
313,
269
],
[
297,
277
],
[
282,
288
],
[
273,
302
],
[
272,
320
],
[
279,
337
],
[
428,
337
],
[
432,
316
],
[
423,
296
],
[
403,
283
],
[
370,
270
]
],
"shape_type": "polygon",
"flags": {
"occluded": false,
"truncated": true
}
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000003.jpg",
"imageData": null,
"imageHeight": 338,
"imageWidth": 500
}
\ No newline at end of file
{
"imagePath": "2011_000006.jpg",
"shapes": [
{
"line_color": null,
"points": [
[
204.936170212766,
108.56382978723406
],
[
183.936170212766,
141.56382978723406
],
[
166.936170212766,
150.56382978723406
],
[
108.93617021276599,
203.56382978723406
],
[
92.93617021276599,
228.56382978723406
],
[
95.93617021276599,
244.56382978723406
],
[
105.93617021276599,
244.56382978723406
],
[
116.93617021276599,
223.56382978723406
],
[
163.936170212766,
187.56382978723406
],
[
147.936170212766,
212.56382978723406
],
[
117.93617021276599,
222.56382978723406
],
[
108.93617021276599,
243.56382978723406
],
[
100.93617021276599,
325.56382978723406
],
[
135.936170212766,
329.56382978723406
],
[
148.936170212766,
319.56382978723406
],
[
150.936170212766,
295.56382978723406
],
[
169.936170212766,
272.56382978723406
],
[
171.936170212766,
249.56382978723406
],
[
178.936170212766,
246.56382978723406
],
[
186.936170212766,
225.56382978723406
],
[
214.936170212766,
219.56382978723406
],
[
242.936170212766,
157.56382978723406
],
[
228.936170212766,
146.56382978723406
],
[
228.936170212766,
125.56382978723406
],
[
216.936170212766,
112.56382978723406
]
],
"fill_color": null,
"label": "person-1"
},
{
"line_color": null,
"points": [
[
271.936170212766,
109.56382978723406
],
[
249.936170212766,
110.56382978723406
],
[
244.936170212766,
150.56382978723406
],
[
215.936170212766,
219.56382978723406
],
[
208.936170212766,
245.56382978723406
],
[
214.936170212766,
220.56382978723406
],
[
188.936170212766,
227.56382978723406
],
[
170.936170212766,
246.56382978723406
],
[
170.936170212766,
275.56382978723406
],
[
221.936170212766,
278.56382978723406
],
[
233.936170212766,
259.56382978723406
],
[
246.936170212766,
253.56382978723406
],
[
245.936170212766,
256.56382978723406
],
[
242.936170212766,
251.56382978723406
],
[
262.936170212766,
256.56382978723406
],
[
304.936170212766,
226.56382978723406
],
[
297.936170212766,
199.56382978723406
],
[
308.936170212766,
164.56382978723406
],
[
296.936170212766,
148.56382978723406
]
],
"fill_color": null,
"label": "person-2"
},
{
"line_color": null,
"points": [
[
308.936170212766,
115.56382978723406
],
[
298.936170212766,
145.56382978723406
],
[
309.936170212766,
166.56382978723406
],
[
297.936170212766,
200.56382978723406
],
[
305.936170212766,
228.56382978723406
],
[
262.936170212766,
258.56382978723406
],
[
252.936170212766,
284.56382978723406
],
[
272.936170212766,
291.56382978723406
],
[
281.936170212766,
250.56382978723406
],
[
326.936170212766,
235.56382978723406
],
[
351.936170212766,
239.56382978723406
],
[
365.936170212766,
223.56382978723406
],
[
371.936170212766,
187.56382978723406
],
[
353.936170212766,
168.56382978723406
],
[
344.936170212766,
143.56382978723406
],
[
336.936170212766,
115.56382978723406
]
],
"fill_color": null,
"label": "person-3"
},
{
"line_color": null,
"points": [
[
308.936170212766,
242.56382978723406
],
[
281.936170212766,
251.56382978723406
],
[
270.936170212766,
287.56382978723406
],
[
174.936170212766,
275.56382978723406
],
[
148.936170212766,
296.56382978723406
],
[
150.936170212766,
319.56382978723406
],
[
159.936170212766,
328.56382978723406
],
[
164.77327127659578,
375.0
],
[
485.936170212766,
373.56382978723406
],
[
497.936170212766,
336.56382978723406
],
[
497.936170212766,
202.56382978723406
],
[
453.936170212766,
193.56382978723406
],
[
434.936170212766,
212.56382978723406
],
[
367.936170212766,
224.56382978723406
],
[
350.936170212766,
241.56382978723406
]
],
"fill_color": null,
"label": "chair"
},
{
"line_color": null,
"points": [
[
425.936170212766,
82.56382978723406
],
[
404.936170212766,
109.56382978723406
],
[
400.936170212766,
114.56382978723406
],
[
437.936170212766,
114.56382978723406
],
[
448.936170212766,
102.56382978723406
],
[
446.936170212766,
91.56382978723406
]
],
"fill_color": null,
"label": "person-4"
},
{
"line_color": null,
"points": [
[
457.936170212766,
85.56382978723406
],
[
439.936170212766,
117.56382978723406
],
[
477.936170212766,
117.56382978723406
],
[
474.936170212766,
87.56382978723406
]
],
"fill_color": null,
"label": "__ignore__"
},
{
"line_color": null,
"points": [
[
183.936170212766,
140.56382978723406
],
[
125.93617021276599,
140.56382978723406
],
[
110.93617021276599,
187.56382978723406
],
[
22.936170212765987,
199.56382978723406
],
[
18.936170212765987,
218.56382978723406
],
[
22.936170212765987,
234.56382978723406
],
[
93.93617021276599,
239.56382978723406
],
[
91.93617021276599,
229.56382978723406
],
[
110.93617021276599,
203.56382978723406
]
],
"fill_color": null,
"label": "sofa"
},
{
"line_color": null,
"points": [
[
103.93617021276599,
290.56382978723406
],
[
58.93617021276599,
303.56382978723406
],
[
97.93617021276599,
311.56382978723406
]
],
"fill_color": null,
"label": "sofa"
},
{
"line_color": null,
"points": [
[
348.936170212766,
146.56382978723406
],
[
472.936170212766,
149.56382978723406
],
[
477.936170212766,
162.56382978723406
],
[
471.936170212766,
196.56382978723406
],
[
453.936170212766,
192.56382978723406
],
[
434.936170212766,
213.56382978723406
],
[
368.936170212766,
226.56382978723406
],
[
375.936170212766,
187.56382978723406
],
[
353.936170212766,
164.56382978723406
]
],
"fill_color": null,
"label": "sofa"
},
{
"line_color": null,
"points": [
[
246.936170212766,
252.56382978723406
],
[
219.936170212766,
277.56382978723406
],
[
254.936170212766,
287.56382978723406
],
[
261.936170212766,
256.56382978723406
]
],
"fill_color": null,
"label": "sofa"
}
],
"imageData": null,
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
]
}
\ No newline at end of file
{
"imageData": null,
"shapes": [
{
"fill_color": null,
"line_color": null,
"label": "bus-1",
"points": [
[
260.936170212766,
22.563829787234056
],
[
193.936170212766,
19.563829787234056
],
[
124.93617021276599,
39.563829787234056
],
[
89.93617021276599,
101.56382978723406
],
[
81.93617021276599,
150.56382978723406
],
[
108.93617021276599,
145.56382978723406
],
[
88.93617021276599,
244.56382978723406
],
[
89.93617021276599,
322.56382978723406
],
[
116.93617021276599,
367.56382978723406
],
[
158.936170212766,
368.56382978723406
],
[
165.936170212766,
337.56382978723406
],
[
347.936170212766,
335.56382978723406
],
[
349.936170212766,
369.56382978723406
],
[
391.936170212766,
373.56382978723406
],
[
403.936170212766,
335.56382978723406
],
[
425.936170212766,
332.56382978723406
],
[
421.936170212766,
281.56382978723406
],
[
428.936170212766,
252.56382978723406
],
[
428.936170212766,
236.56382978723406
],
[
409.936170212766,
220.56382978723406
],
[
409.936170212766,
150.56382978723406
],
[
430.936170212766,
143.56382978723406
],
[
433.936170212766,
112.56382978723406
],
[
431.936170212766,
96.56382978723406
],
[
408.936170212766,
90.56382978723406
],
[
395.936170212766,
50.563829787234056
],
[
338.936170212766,
25.563829787234056
]
]
},
{
"fill_color": null,
"line_color": null,
"label": "bus-2",
"points": [
[
88.93617021276599,
115.56382978723406
],
[
0.9361702127659877,
96.56382978723406
],
[
0.0,
251.968085106388
],
[
0.9361702127659877,
265.56382978723406
],
[
27.936170212765987,
265.56382978723406
],
[
29.936170212765987,
283.56382978723406
],
[
63.93617021276599,
281.56382978723406
],
[
89.93617021276599,
252.56382978723406
],
[
100.93617021276599,
183.56382978723406
],
[
108.93617021276599,
145.56382978723406
],
[
81.93617021276599,
151.56382978723406
]
]
},
{
"fill_color": null,
"line_color": null,
"label": "car",
"points": [
[
413.936170212766,
168.56382978723406
],
[
497.936170212766,
168.56382978723406
],
[
497.936170212766,
256.56382978723406
],
[
431.936170212766,
258.56382978723406
],
[
430.936170212766,
236.56382978723406
],
[
408.936170212766,
218.56382978723406
]
]
}
],
"fillColor": [
255,
0,
0,
128
],
"lineColor": [
0,
255,
0,
128
],
"imagePath": "2011_000025.jpg"
}
\ No newline at end of file
{"info": {"description": null, "url": null, "version": null, "year": 2019, "contributor": null, "date_created": "2019-03-09 01:48:36.742451"}, "licenses": [{"url": null, "id": 0, "name": null}], "images": [{"license": 0, "url": null, "file_name": "JPEGImages/2011_000003.jpg", "height": 338, "width": 500, "date_captured": null, "id": 0}, {"license": 0, "url": null, "file_name": "JPEGImages/2011_000025.jpg", "height": 375, "width": 500, "date_captured": null, "id": 1}, {"license": 0, "url": null, "file_name": "JPEGImages/2011_000006.jpg", "height": 375, "width": 500, "date_captured": null, "id": 2}], "type": "instances", "annotations": [{"id": 0, "segmentation": [[251.8142292490119, 107.33596837944665, 230.8142292490119, 119.33596837944665, 222.8142292490119, 135.33596837944665, 224.8142292490119, 148.33596837944665, 218.8142292490119, 161.33596837944665, 203.8142292490119, 168.33596837944665, 193.8142292490119, 200.33596837944665, 195.8142292490119, 222.33596837944665, 200.8142292490119, 227.33596837944665, 192.8142292490119, 234.33596837944665, 198.8142292490119, 264.3359683794467, 214.8142292490119, 295.3359683794467, 215.8142292490119, 320.3359683794467, 222.8142292490119, 327.3359683794467, 236.8142292490119, 326.3359683794467, 241.8142292490119, 323.3359683794467, 236.8142292490119, 298.3359683794467, 239.8142292490119, 287.3359683794467, 235.8142292490119, 268.3359683794467, 258.81422924901193, 258.3359683794467, 265.81422924901193, 264.3359683794467, 257.81422924901193, 273.3359683794467, 260.81422924901193, 282.3359683794467, 285.81422924901193, 288.3359683794467, 298.81422924901193, 278.3359683794467, 289.81422924901193, 270.3359683794467, 282.81422924901193, 270.3359683794467, 284.81422924901193, 264.3359683794467, 293.81422924901193, 261.3359683794467, 309.81422924901193, 236.33596837944665, 314.81422924901193, 217.33596837944665, 310.81422924901193, 208.33596837944665, 313.81422924901193, 202.33596837944665, 309.81422924901193, 185.33596837944665, 292.81422924901193, 173.33596837944665, 270.81422924901193, 159.33596837944665, 262.81422924901193, 154.33596837944665, 265.81422924901193, 142.33596837944665, 274.81422924901193, 137.33596837944665, 279.81422924901193, 130.33596837944665, 271.81422924901193, 121.33596837944665]], "area": 15689.0, "iscrowd": null, "image_id": 0, "category_id": 15}, {"id": 1, "segmentation": [[482.81422924901193, 85.33596837944665, 468.81422924901193, 90.33596837944665, 460.81422924901193, 110.33596837944665, 460.81422924901193, 127.33596837944665, 444.81422924901193, 137.33596837944665, 419.81422924901193, 153.33596837944665, 410.81422924901193, 163.33596837944665, 403.81422924901193, 168.33596837944665, 394.81422924901193, 170.33596837944665, 386.81422924901193, 168.33596837944665, 386.81422924901193, 184.33596837944665, 392.81422924901193, 182.33596837944665, 410.81422924901193, 187.33596837944665, 414.81422924901193, 192.33596837944665, 437.81422924901193, 189.33596837944665, 434.81422924901193, 204.33596837944665, 390.81422924901193, 195.33596837944665, 386.81422924901193, 195.33596837944665, 387.81422924901193, 208.33596837944665, 381.81422924901193, 212.33596837944665, 372.81422924901193, 212.33596837944665, 372.81422924901193, 216.33596837944665, 400.81422924901193, 270.3359683794467, 389.81422924901193, 272.3359683794467, 389.81422924901193, 274.3359683794467, 403.81422924901193, 282.3359683794467, 444.81422924901193, 283.3359683794467, 443.81422924901193, 259.3359683794467, 426.81422924901193, 244.33596837944665, 462.81422924901193, 256.3359683794467, 474.81422924901193, 270.3359683794467, 477.81422924901193, 280.3359683794467, 473.81422924901193, 289.3359683794467, 471.81422924901193, 296.3359683794467, 472.81422924901193, 317.3359683794467, 480.81422924901193, 332.3359683794467, 494.81422924901193, 335.3359683794467, 498.81422924901193, 329.3359683794467, 494.81422924901193, 308.3359683794467, 499.81422924901193, 297.3359683794467, 499.81422924901193, 90.33596837944665], [370.81422924901193, 170.33596837944665, 366.81422924901193, 173.33596837944665, 365.81422924901193, 182.33596837944665, 368.81422924901193, 185.33596837944665]], "area": 17254.0, "iscrowd": null, "image_id": 0, "category_id": 15}, {"id": 2, "segmentation": [[374.81422924901193, 159.33596837944665, 369.81422924901193, 170.33596837944665, 369.81422924901193, 210.33596837944665, 375.81422924901193, 212.33596837944665, 387.81422924901193, 209.33596837944665, 385.81422924901193, 185.33596837944665, 385.81422924901193, 168.33596837944665, 385.81422924901193, 165.33596837944665, 382.81422924901193, 159.33596837944665]], "area": 873.0, "iscrowd": null, "image_id": 0, "category_id": 5}, {"id": 3, "segmentation": [[260.936170212766, 22.563829787234056, 193.936170212766, 19.563829787234056, 124.93617021276599, 39.563829787234056, 89.93617021276599, 101.56382978723406, 81.93617021276599, 150.56382978723406, 108.93617021276599, 145.56382978723406, 88.93617021276599, 244.56382978723406, 89.93617021276599, 322.56382978723406, 116.93617021276599, 367.56382978723406, 158.936170212766, 368.56382978723406, 165.936170212766, 337.56382978723406, 347.936170212766, 335.56382978723406, 349.936170212766, 369.56382978723406, 391.936170212766, 373.56382978723406, 403.936170212766, 335.56382978723406, 425.936170212766, 332.56382978723406, 421.936170212766, 281.56382978723406, 428.936170212766, 252.56382978723406, 428.936170212766, 236.56382978723406, 409.936170212766, 220.56382978723406, 409.936170212766, 150.56382978723406, 430.936170212766, 143.56382978723406, 433.936170212766, 112.56382978723406, 431.936170212766, 96.56382978723406, 408.936170212766, 90.56382978723406, 395.936170212766, 50.563829787234056, 338.936170212766, 25.563829787234056]], "area": 102701.0, "iscrowd": null, "image_id": 1, "category_id": 6}, {"id": 4, "segmentation": [[88.93617021276599, 115.56382978723406, 0.9361702127659877, 96.56382978723406, 0.0, 251.968085106388, 0.9361702127659877, 265.56382978723406, 27.936170212765987, 265.56382978723406, 29.936170212765987, 283.56382978723406, 63.93617021276599, 281.56382978723406, 89.93617021276599, 252.56382978723406, 100.93617021276599, 183.56382978723406, 108.93617021276599, 145.56382978723406, 81.93617021276599, 151.56382978723406]], "area": 15781.0, "iscrowd": null, "image_id": 1, "category_id": 6}, {"id": 5, "segmentation": [[413.936170212766, 168.56382978723406, 497.936170212766, 168.56382978723406, 497.936170212766, 256.56382978723406, 431.936170212766, 258.56382978723406, 430.936170212766, 236.56382978723406, 408.936170212766, 218.56382978723406]], "area": 7256.0, "iscrowd": null, "image_id": 1, "category_id": 7}, {"id": 6, "segmentation": [[204.936170212766, 108.56382978723406, 183.936170212766, 141.56382978723406, 166.936170212766, 150.56382978723406, 108.93617021276599, 203.56382978723406, 92.93617021276599, 228.56382978723406, 95.93617021276599, 244.56382978723406, 105.93617021276599, 244.56382978723406, 116.93617021276599, 223.56382978723406, 163.936170212766, 187.56382978723406, 147.936170212766, 212.56382978723406, 117.93617021276599, 222.56382978723406, 108.93617021276599, 243.56382978723406, 100.93617021276599, 325.56382978723406, 135.936170212766, 329.56382978723406, 148.936170212766, 319.56382978723406, 150.936170212766, 295.56382978723406, 169.936170212766, 272.56382978723406, 171.936170212766, 249.56382978723406, 178.936170212766, 246.56382978723406, 186.936170212766, 225.56382978723406, 214.936170212766, 219.56382978723406, 242.936170212766, 157.56382978723406, 228.936170212766, 146.56382978723406, 228.936170212766, 125.56382978723406, 216.936170212766, 112.56382978723406]], "area": 15203.0, "iscrowd": null, "image_id": 2, "category_id": 15}, {"id": 7, "segmentation": [[271.936170212766, 109.56382978723406, 249.936170212766, 110.56382978723406, 244.936170212766, 150.56382978723406, 215.936170212766, 219.56382978723406, 208.936170212766, 245.56382978723406, 214.936170212766, 220.56382978723406, 188.936170212766, 227.56382978723406, 170.936170212766, 246.56382978723406, 170.936170212766, 275.56382978723406, 221.936170212766, 278.56382978723406, 233.936170212766, 259.56382978723406, 246.936170212766, 253.56382978723406, 245.936170212766, 256.56382978723406, 242.936170212766, 251.56382978723406, 262.936170212766, 256.56382978723406, 304.936170212766, 226.56382978723406, 297.936170212766, 199.56382978723406, 308.936170212766, 164.56382978723406, 296.936170212766, 148.56382978723406]], "area": 11735.0, "iscrowd": null, "image_id": 2, "category_id": 15}, {"id": 8, "segmentation": [[308.936170212766, 115.56382978723406, 298.936170212766, 145.56382978723406, 309.936170212766, 166.56382978723406, 297.936170212766, 200.56382978723406, 305.936170212766, 228.56382978723406, 262.936170212766, 258.56382978723406, 252.936170212766, 284.56382978723406, 272.936170212766, 291.56382978723406, 281.936170212766, 250.56382978723406, 326.936170212766, 235.56382978723406, 351.936170212766, 239.56382978723406, 365.936170212766, 223.56382978723406, 371.936170212766, 187.56382978723406, 353.936170212766, 168.56382978723406, 344.936170212766, 143.56382978723406, 336.936170212766, 115.56382978723406]], "area": 7597.0, "iscrowd": null, "image_id": 2, "category_id": 15}, {"id": 9, "segmentation": [[308.936170212766, 242.56382978723406, 281.936170212766, 251.56382978723406, 270.936170212766, 287.56382978723406, 174.936170212766, 275.56382978723406, 148.936170212766, 296.56382978723406, 150.936170212766, 319.56382978723406, 159.936170212766, 328.56382978723406, 164.77327127659578, 375.0, 485.936170212766, 373.56382978723406, 497.936170212766, 336.56382978723406, 497.936170212766, 202.56382978723406, 453.936170212766, 193.56382978723406, 434.936170212766, 212.56382978723406, 367.936170212766, 224.56382978723406, 350.936170212766, 241.56382978723406]], "area": 44532.0, "iscrowd": null, "image_id": 2, "category_id": 9}, {"id": 10, "segmentation": [[425.936170212766, 82.56382978723406, 404.936170212766, 109.56382978723406, 400.936170212766, 114.56382978723406, 437.936170212766, 114.56382978723406, 448.936170212766, 102.56382978723406, 446.936170212766, 91.56382978723406]], "area": 996.0, "iscrowd": null, "image_id": 2, "category_id": 15}, {"id": 11, "segmentation": [[183.936170212766, 140.56382978723406, 125.93617021276599, 140.56382978723406, 110.93617021276599, 187.56382978723406, 22.936170212765987, 199.56382978723406, 18.936170212765987, 218.56382978723406, 22.936170212765987, 234.56382978723406, 93.93617021276599, 239.56382978723406, 91.93617021276599, 229.56382978723406, 110.93617021276599, 203.56382978723406], [103.93617021276599, 290.56382978723406, 58.93617021276599, 303.56382978723406, 97.93617021276599, 311.56382978723406], [348.936170212766, 146.56382978723406, 472.936170212766, 149.56382978723406, 477.936170212766, 162.56382978723406, 471.936170212766, 196.56382978723406, 453.936170212766, 192.56382978723406, 434.936170212766, 213.56382978723406, 368.936170212766, 226.56382978723406, 375.936170212766, 187.56382978723406, 353.936170212766, 164.56382978723406], [246.936170212766, 252.56382978723406, 219.936170212766, 277.56382978723406, 254.936170212766, 287.56382978723406, 261.936170212766, 256.56382978723406]], "area": 14001.0, "iscrowd": null, "image_id": 2, "category_id": 18}], "categories": [{"supercategory": null, "id": 0, "name": "_background_"}, {"supercategory": null, "id": 1, "name": "aeroplane"}, {"supercategory": null, "id": 2, "name": "bicycle"}, {"supercategory": null, "id": 3, "name": "bird"}, {"supercategory": null, "id": 4, "name": "boat"}, {"supercategory": null, "id": 5, "name": "bottle"}, {"supercategory": null, "id": 6, "name": "bus"}, {"supercategory": null, "id": 7, "name": "car"}, {"supercategory": null, "id": 8, "name": "cat"}, {"supercategory": null, "id": 9, "name": "chair"}, {"supercategory": null, "id": 10, "name": "cow"}, {"supercategory": null, "id": 11, "name": "diningtable"}, {"supercategory": null, "id": 12, "name": "dog"}, {"supercategory": null, "id": 13, "name": "horse"}, {"supercategory": null, "id": 14, "name": "motorbike"}, {"supercategory": null, "id": 15, "name": "person"}, {"supercategory": null, "id": 16, "name": "potted plant"}, {"supercategory": null, "id": 17, "name": "sheep"}, {"supercategory": null, "id": 18, "name": "sofa"}, {"supercategory": null, "id": 19, "name": "train"}, {"supercategory": null, "id": 20, "name": "tv/monitor"}]}
\ No newline at end of file
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
#!/usr/bin/env python
import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys
import numpy as np
import PIL.Image
import labelme
try:
import pycocotools.mask
except ImportError:
print('Please install pycocotools:\n\n pip install pycocotools\n')
sys.exit(1)
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
print('Creating dataset:', args.output_dir)
now = datetime.datetime.now()
data = dict(
info=dict(
description=None,
url=None,
version=None,
year=now.year,
contributor=None,
date_created=now.strftime('%Y-%m-%d %H:%M:%S.%f'),
),
licenses=[dict(
url=None,
id=0,
name=None,
)],
images=[
# license, url, file_name, height, width, date_captured, id
],
type='instances',
annotations=[
# segmentation, area, iscrowd, image_id, bbox, category_id, id
],
categories=[
# supercategory, id, name
],
)
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
if class_id == -1:
assert class_name == '__ignore__'
continue
class_name_to_id[class_name] = class_id
data['categories'].append(dict(
supercategory=None,
id=class_id,
name=class_name,
))
out_ann_file = osp.join(args.output_dir, 'annotations.json')
label_files = glob.glob(osp.join(args.input_dir, '*.json'))
for image_id, label_file in enumerate(label_files):
print('Generating dataset from:', label_file)
with open(label_file) as f:
label_data = json.load(f)
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg'
)
img_file = osp.join(
osp.dirname(label_file), label_data['imagePath']
)
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
data['images'].append(dict(
license=0,
url=None,
file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)),
height=img.shape[0],
width=img.shape[1],
date_captured=None,
id=image_id,
))
masks = {} # for area
segmentations = collections.defaultdict(list) # for segmentation
for shape in label_data['shapes']:
points = shape['points']
label = shape['label']
shape_type = shape.get('shape_type', None)
mask = labelme.utils.shape_to_mask(
img.shape[:2], points, shape_type
)
if label in masks:
masks[label] = masks[label] | mask
else:
masks[label] = mask
points = np.asarray(points).flatten().tolist()
segmentations[label].append(points)
for label, mask in masks.items():
cls_name = label.split('-')[0]
if cls_name not in class_name_to_id:
continue
cls_id = class_name_to_id[cls_name]
mask = np.asfortranarray(mask.astype(np.uint8))
mask = pycocotools.mask.encode(mask)
area = float(pycocotools.mask.area(mask))
bbox = pycocotools.mask.toBbox(mask).flatten().tolist()
data['annotations'].append(dict(
id=len(data['annotations']),
image_id=image_id,
category_id=cls_id,
segmentation=segmentations[label],
area=area,
bbox=bbox,
iscrowd=0,
))
with open(out_ann_file, 'w') as f:
json.dump(data, f)
if __name__ == '__main__':
main()
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObjectVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_cls_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.npy')
out_clsp_file = osp.join(
args.output_dir, 'SegmentationClassPNG', base + '.png')
out_clsv_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
out_ins_file = osp.join(
args.output_dir, 'SegmentationObject', base + '.npy')
out_insp_file = osp.join(
args.output_dir, 'SegmentationObjectPNG', base + '.png')
out_insv_file = osp.join(
args.output_dir,
'SegmentationObjectVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
cls, ins = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
type='instance',
)
ins[cls == -1] = 0 # ignore it.
# class label
labelme.utils.lblsave(out_clsp_file, cls)
np.save(out_cls_file, cls)
clsv = labelme.utils.draw_label(
cls, img, class_names, colormap=colormap)
PIL.Image.fromarray(clsv).save(out_clsv_file)
# instance label
labelme.utils.lblsave(out_insp_file, ins)
np.save(out_ins_file, ins)
instance_ids = np.unique(ins)
instance_names = [str(i) for i in range(max(instance_ids) + 1)]
insv = labelme.utils.draw_label(ins, img, instance_names)
PIL.Image.fromarray(insv).save(out_insv_file)
if __name__ == '__main__':
main()
__ignore__
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
{
"version": "3.5.0",
"flags": {},
"shapes": [
{
"label": "rectangle",
"line_color": null,
"fill_color": null,
"points": [
[
32,
35
],
[
132,
135
]
],
"shape_type": "rectangle"
},
{
"label": "circle",
"line_color": null,
"fill_color": null,
"points": [
[
195,
84
],
[
225,
125
]
],
"shape_type": "circle"
},
{
"label": "rectangle",
"line_color": null,
"fill_color": null,
"points": [
[
391,
33
],
[
542,
135
]
],
"shape_type": "rectangle"
},
{
"label": "polygon",
"line_color": null,
"fill_color": null,
"points": [
[
69,
318
],
[
45,
403
],
[
173,
406
],
[
198,
321
]
],
"shape_type": "polygon"
},
{
"label": "line",
"line_color": null,
"fill_color": null,
"points": [
[
188,
178
],
[
160,
224
]
],
"shape_type": "line"
},
{
"label": "point",
"line_color": null,
"fill_color": null,
"points": [
[
345,
174
]
],
"shape_type": "point"
},
{
"label": "line_strip",
"line_color": null,
"fill_color": null,
"points": [
[
441,
181
],
[
403,
274
],
[
545,
275
]
],
"shape_type": "linestrip"
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "primitives.jpg",
"imageData": null
}
\ No newline at end of file
# Semantic Segmentation Example
## Annotation
```bash
labelme data_annotated --labels labels.txt --nodata
```
![](.readme/annotation.jpg)
## Convert to VOC-format Dataset
```bash
# It generates:
# - data_dataset_voc/JPEGImages
# - data_dataset_voc/SegmentationClass
# - data_dataset_voc/SegmentationClassVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt
```
<img src="data_dataset_voc/JPEGImages/2011_000003.jpg" width="33%" /> <img src="data_dataset_voc/SegmentationClassPNG/2011_000003.png" width="33%" /> <img src="data_dataset_voc/SegmentationClassVisualization/2011_000003.jpg" width="33%" />
Fig 1. JPEG image (left), PNG label (center), JPEG label visualization (right)
Note that the label file contains only very low label values (ex. `0, 4, 14`), and
`255` indicates the `__ignore__` label value (`-1` in the npy file).
You can see the label PNG file by following.
```bash
labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png
```
<img src=".readme/draw_label_png.jpg" width="33%" />
{
"shapes": [
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
250.8142292490119,
107.33596837944665
],
[
229.8142292490119,
119.33596837944665
],
[
221.8142292490119,
135.33596837944665
],
[
223.8142292490119,
148.33596837944665
],
[
217.8142292490119,
161.33596837944665
],
[
202.8142292490119,
168.33596837944665
],
[
192.8142292490119,
200.33596837944665
],
[
194.8142292490119,
222.33596837944665
],
[
199.8142292490119,
227.33596837944665
],
[
191.8142292490119,
234.33596837944665
],
[
197.8142292490119,
264.3359683794467
],
[
213.8142292490119,
295.3359683794467
],
[
214.8142292490119,
320.3359683794467
],
[
221.8142292490119,
327.3359683794467
],
[
235.8142292490119,
326.3359683794467
],
[
240.8142292490119,
323.3359683794467
],
[
235.8142292490119,
298.3359683794467
],
[
238.8142292490119,
287.3359683794467
],
[
234.8142292490119,
268.3359683794467
],
[
257.81422924901193,
258.3359683794467
],
[
264.81422924901193,
264.3359683794467
],
[
256.81422924901193,
273.3359683794467
],
[
259.81422924901193,
282.3359683794467
],
[
284.81422924901193,
288.3359683794467
],
[
297.81422924901193,
278.3359683794467
],
[
288.81422924901193,
270.3359683794467
],
[
281.81422924901193,
270.3359683794467
],
[
283.81422924901193,
264.3359683794467
],
[
292.81422924901193,
261.3359683794467
],
[
308.81422924901193,
236.33596837944665
],
[
313.81422924901193,
217.33596837944665
],
[
309.81422924901193,
208.33596837944665
],
[
312.81422924901193,
202.33596837944665
],
[
308.81422924901193,
185.33596837944665
],
[
291.81422924901193,
173.33596837944665
],
[
269.81422924901193,
159.33596837944665
],
[
261.81422924901193,
154.33596837944665
],
[
264.81422924901193,
142.33596837944665
],
[
273.81422924901193,
137.33596837944665
],
[
278.81422924901193,
130.33596837944665
],
[
270.81422924901193,
121.33596837944665
]
]
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
482.81422924901193,
85.33596837944665
],
[
468.81422924901193,
90.33596837944665
],
[
460.81422924901193,
110.33596837944665
],
[
460.81422924901193,
127.33596837944665
],
[
444.81422924901193,
137.33596837944665
],
[
419.81422924901193,
153.33596837944665
],
[
410.81422924901193,
163.33596837944665
],
[
403.81422924901193,
168.33596837944665
],
[
394.81422924901193,
170.33596837944665
],
[
386.81422924901193,
168.33596837944665
],
[
386.81422924901193,
184.33596837944665
],
[
392.81422924901193,
182.33596837944665
],
[
410.81422924901193,
187.33596837944665
],
[
414.81422924901193,
192.33596837944665
],
[
437.81422924901193,
189.33596837944665
],
[
434.81422924901193,
204.33596837944665
],
[
390.81422924901193,
195.33596837944665
],
[
386.81422924901193,
195.33596837944665
],
[
387.81422924901193,
208.33596837944665
],
[
381.81422924901193,
212.33596837944665
],
[
372.81422924901193,
212.33596837944665
],
[
372.81422924901193,
216.33596837944665
],
[
400.81422924901193,
270.3359683794467
],
[
389.81422924901193,
272.3359683794467
],
[
389.81422924901193,
274.3359683794467
],
[
403.81422924901193,
282.3359683794467
],
[
444.81422924901193,
283.3359683794467
],
[
443.81422924901193,
259.3359683794467
],
[
426.81422924901193,
244.33596837944665
],
[
462.81422924901193,
256.3359683794467
],
[
474.81422924901193,
270.3359683794467
],
[
477.81422924901193,
280.3359683794467
],
[
473.81422924901193,
289.3359683794467
],
[
471.81422924901193,
296.3359683794467
],
[
472.81422924901193,
317.3359683794467
],
[
480.81422924901193,
332.3359683794467
],
[
494.81422924901193,
335.3359683794467
],
[
498.81422924901193,
329.3359683794467
],
[
494.81422924901193,
308.3359683794467
],
[
499.81422924901193,
297.3359683794467
],
[
499.81422924901193,
90.33596837944665
]
]
},
{
"label": "bottle",
"line_color": null,
"fill_color": null,
"points": [
[
374.81422924901193,
159.33596837944665
],
[
369.81422924901193,
170.33596837944665
],
[
369.81422924901193,
210.33596837944665
],
[
375.81422924901193,
212.33596837944665
],
[
387.81422924901193,
209.33596837944665
],
[
385.81422924901193,
185.33596837944665
],
[
385.81422924901193,
168.33596837944665
],
[
385.81422924901193,
165.33596837944665
],
[
382.81422924901193,
159.33596837944665
]
]
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
370.81422924901193,
170.33596837944665
],
[
366.81422924901193,
173.33596837944665
],
[
365.81422924901193,
182.33596837944665
],
[
368.81422924901193,
185.33596837944665
]
]
},
{
"label": "__ignore__",
"line_color": null,
"fill_color": null,
"points": [
[
338.81422924901193,
266.3359683794467
],
[
313.81422924901193,
269.3359683794467
],
[
297.81422924901193,
277.3359683794467
],
[
282.81422924901193,
288.3359683794467
],
[
273.81422924901193,
302.3359683794467
],
[
272.81422924901193,
320.3359683794467
],
[
279.81422924901193,
337.3359683794467
],
[
428.81422924901193,
337.3359683794467
],
[
432.81422924901193,
316.3359683794467
],
[
423.81422924901193,
296.3359683794467
],
[
403.81422924901193,
283.3359683794467
],
[
370.81422924901193,
270.3359683794467
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000003.jpg",
"imageData": null
}
\ No newline at end of file
{
"shapes": [
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
204.936170212766,
108.56382978723406
],
[
183.936170212766,
141.56382978723406
],
[
166.936170212766,
150.56382978723406
],
[
108.93617021276599,
203.56382978723406
],
[
92.93617021276599,
228.56382978723406
],
[
95.93617021276599,
244.56382978723406
],
[
105.93617021276599,
244.56382978723406
],
[
116.93617021276599,
223.56382978723406
],
[
163.936170212766,
187.56382978723406
],
[
147.936170212766,
212.56382978723406
],
[
117.93617021276599,
222.56382978723406
],
[
108.93617021276599,
243.56382978723406
],
[
100.93617021276599,
325.56382978723406
],
[
135.936170212766,
329.56382978723406
],
[
148.936170212766,
319.56382978723406
],
[
150.936170212766,
295.56382978723406
],
[
169.936170212766,
272.56382978723406
],
[
171.936170212766,
249.56382978723406
],
[
178.936170212766,
246.56382978723406
],
[
186.936170212766,
225.56382978723406
],
[
214.936170212766,
219.56382978723406
],
[
242.936170212766,
157.56382978723406
],
[
228.936170212766,
146.56382978723406
],
[
228.936170212766,
125.56382978723406
],
[
216.936170212766,
112.56382978723406
]
]
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
271.936170212766,
109.56382978723406
],
[
249.936170212766,
110.56382978723406
],
[
244.936170212766,
150.56382978723406
],
[
215.936170212766,
219.56382978723406
],
[
208.936170212766,
245.56382978723406
],
[
214.936170212766,
220.56382978723406
],
[
188.936170212766,
227.56382978723406
],
[
170.936170212766,
246.56382978723406
],
[
170.936170212766,
275.56382978723406
],
[
221.936170212766,
278.56382978723406
],
[
233.936170212766,
259.56382978723406
],
[
246.936170212766,
253.56382978723406
],
[
245.936170212766,
256.56382978723406
],
[
242.936170212766,
251.56382978723406
],
[
262.936170212766,
256.56382978723406
],
[
304.936170212766,
226.56382978723406
],
[
297.936170212766,
199.56382978723406
],
[
308.936170212766,
164.56382978723406
],
[
296.936170212766,
148.56382978723406
]
]
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
308.936170212766,
115.56382978723406
],
[
298.936170212766,
145.56382978723406
],
[
309.936170212766,
166.56382978723406
],
[
297.936170212766,
200.56382978723406
],
[
305.936170212766,
228.56382978723406
],
[
262.936170212766,
258.56382978723406
],
[
252.936170212766,
284.56382978723406
],
[
272.936170212766,
291.56382978723406
],
[
281.936170212766,
250.56382978723406
],
[
326.936170212766,
235.56382978723406
],
[
351.936170212766,
239.56382978723406
],
[
365.936170212766,
223.56382978723406
],
[
371.936170212766,
187.56382978723406
],
[
353.936170212766,
168.56382978723406
],
[
344.936170212766,
143.56382978723406
],
[
336.936170212766,
115.56382978723406
]
]
},
{
"label": "chair",
"line_color": null,
"fill_color": null,
"points": [
[
308.936170212766,
242.56382978723406
],
[
281.936170212766,
251.56382978723406
],
[
270.936170212766,
287.56382978723406
],
[
174.936170212766,
275.56382978723406
],
[
148.936170212766,
296.56382978723406
],
[
150.936170212766,
319.56382978723406
],
[
159.936170212766,
328.56382978723406
],
[
164.77327127659578,
375.0
],
[
485.936170212766,
373.56382978723406
],
[
497.936170212766,
336.56382978723406
],
[
497.936170212766,
202.56382978723406
],
[
453.936170212766,
193.56382978723406
],
[
434.936170212766,
212.56382978723406
],
[
367.936170212766,
224.56382978723406
],
[
350.936170212766,
241.56382978723406
]
]
},
{
"label": "person",
"line_color": null,
"fill_color": null,
"points": [
[
425.936170212766,
82.56382978723406
],
[
404.936170212766,
109.56382978723406
],
[
400.936170212766,
114.56382978723406
],
[
437.936170212766,
114.56382978723406
],
[
448.936170212766,
102.56382978723406
],
[
446.936170212766,
91.56382978723406
]
]
},
{
"label": "__ignore__",
"line_color": null,
"fill_color": null,
"points": [
[
457.936170212766,
85.56382978723406
],
[
439.936170212766,
117.56382978723406
],
[
477.936170212766,
117.56382978723406
],
[
474.936170212766,
87.56382978723406
]
]
},
{
"label": "sofa",
"line_color": null,
"fill_color": null,
"points": [
[
183.936170212766,
140.56382978723406
],
[
125.93617021276599,
140.56382978723406
],
[
110.93617021276599,
187.56382978723406
],
[
22.936170212765987,
199.56382978723406
],
[
18.936170212765987,
218.56382978723406
],
[
22.936170212765987,
234.56382978723406
],
[
93.93617021276599,
239.56382978723406
],
[
91.93617021276599,
229.56382978723406
],
[
110.93617021276599,
203.56382978723406
]
]
},
{
"label": "sofa",
"line_color": null,
"fill_color": null,
"points": [
[
103.93617021276599,
290.56382978723406
],
[
58.93617021276599,
303.56382978723406
],
[
97.93617021276599,
311.56382978723406
]
]
},
{
"label": "sofa",
"line_color": null,
"fill_color": null,
"points": [
[
348.936170212766,
146.56382978723406
],
[
472.936170212766,
149.56382978723406
],
[
477.936170212766,
162.56382978723406
],
[
471.936170212766,
196.56382978723406
],
[
453.936170212766,
192.56382978723406
],
[
434.936170212766,
213.56382978723406
],
[
368.936170212766,
226.56382978723406
],
[
375.936170212766,
187.56382978723406
],
[
353.936170212766,
164.56382978723406
]
]
},
{
"label": "sofa",
"line_color": null,
"fill_color": null,
"points": [
[
246.936170212766,
252.56382978723406
],
[
219.936170212766,
277.56382978723406
],
[
254.936170212766,
287.56382978723406
],
[
261.936170212766,
256.56382978723406
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000006.jpg",
"imageData": null
}
\ No newline at end of file
{
"shapes": [
{
"label": "bus",
"line_color": null,
"fill_color": null,
"points": [
[
260.936170212766,
22.563829787234056
],
[
193.936170212766,
19.563829787234056
],
[
124.93617021276599,
39.563829787234056
],
[
89.93617021276599,
101.56382978723406
],
[
81.93617021276599,
150.56382978723406
],
[
108.93617021276599,
145.56382978723406
],
[
88.93617021276599,
244.56382978723406
],
[
89.93617021276599,
322.56382978723406
],
[
116.93617021276599,
367.56382978723406
],
[
158.936170212766,
368.56382978723406
],
[
165.936170212766,
337.56382978723406
],
[
347.936170212766,
335.56382978723406
],
[
349.936170212766,
369.56382978723406
],
[
391.936170212766,
373.56382978723406
],
[
403.936170212766,
335.56382978723406
],
[
425.936170212766,
332.56382978723406
],
[
421.936170212766,
281.56382978723406
],
[
428.936170212766,
252.56382978723406
],
[
428.936170212766,
236.56382978723406
],
[
409.936170212766,
220.56382978723406
],
[
409.936170212766,
150.56382978723406
],
[
430.936170212766,
143.56382978723406
],
[
433.936170212766,
112.56382978723406
],
[
431.936170212766,
96.56382978723406
],
[
408.936170212766,
90.56382978723406
],
[
395.936170212766,
50.563829787234056
],
[
338.936170212766,
25.563829787234056
]
]
},
{
"label": "bus",
"line_color": null,
"fill_color": null,
"points": [
[
88.93617021276599,
115.56382978723406
],
[
0.9361702127659877,
96.56382978723406
],
[
0.0,
251.968085106388
],
[
0.9361702127659877,
265.56382978723406
],
[
27.936170212765987,
265.56382978723406
],
[
29.936170212765987,
283.56382978723406
],
[
63.93617021276599,
281.56382978723406
],
[
89.93617021276599,
252.56382978723406
],
[
100.93617021276599,
183.56382978723406
],
[
108.93617021276599,
145.56382978723406
],
[
81.93617021276599,
151.56382978723406
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
413.936170212766,
168.56382978723406
],
[
497.936170212766,
168.56382978723406
],
[
497.936170212766,
256.56382978723406
],
[
431.936170212766,
258.56382978723406
],
[
430.936170212766,
236.56382978723406
],
[
408.936170212766,
218.56382978723406
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "2011_000025.jpg",
"imageData": null
}
\ No newline at end of file
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassVisualization'))
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_lbl_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
args.output_dir, 'SegmentationClassPNG', base + '.png')
out_viz_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
np.save(out_lbl_file, lbl)
viz = labelme.utils.draw_label(
lbl, img, class_names, colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
if __name__ == '__main__':
main()
__ignore__
_background_
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
potted plant
sheep
sofa
train
tv/monitor
\ No newline at end of file
# Tutorial (Single Image Example)
## Annotation
```bash
labelme apc2016_obj3.jpg -O apc2016_obj3.json
```
![](.readme/annotation.jpg)
## Visualization
To view the json file quickly, you can use utility script:
```bash
labelme_draw_json apc2016_obj3.json
```
<img src=".readme/draw_json.jpg" width="70%" />
## Convert to Dataset
To convert the json to set of image and label, you can run following:
```bash
labelme_json_to_dataset apc2016_obj3.json -o apc2016_obj3_json
```
It generates standard files from the JSON file.
- [img.png](apc2016_obj3_json/img.png): Image file.
- [label.png](apc2016_obj3_json/label.png): uint8 label file.
- [label_viz.png](apc2016_obj3_json/label_viz.png): Visualization of `label.png`.
- [label_names.txt](apc2016_obj3_json/label_names.txt): Label names for values in `label.png`.
## How to load label PNG file?
Note that loading `label.png` is a bit difficult
(`scipy.misc.imread`, `skimage.io.imread` may not work correctly),
and please use `PIL.Image.open` to avoid unexpected behavior:
```python
# see load_label_png.py also.
>>> import numpy as np
>>> import PIL.Image
>>> label_png = 'apc2016_obj3_json/label.png'
>>> lbl = np.asarray(PIL.Image.open(label_png))
>>> print(lbl.dtype)
dtype('uint8')
>>> np.unique(lbl)
array([0, 1, 2, 3], dtype=uint8)
>>> lbl.shape
(907, 1210)
```
Also, you can see the label PNG file by:
```python
labelme_draw_label_png apc2016_obj3_json/label.png
```
<img src=".readme/draw_label_png.jpg" width="35%" />
{
"shapes": [
{
"label": "shelf",
"line_color": null,
"fill_color": null,
"points": [
[
7.942307692307736,
79.82692307692312
],
[
171.94230769230774,
713.8269230769231
],
[
968.9423076923077,
732.8269230769231
],
[
1181.9423076923076,
109.82692307692312
]
]
},
{
"label": "highland_6539_self_stick_notes",
"line_color": null,
"fill_color": null,
"points": [
[
430.16339869281046,
516.2450980392157
],
[
390.9477124183006,
606.4411764705883
],
[
398.7908496732026,
697.2908496732026
],
[
522.3202614379085,
711.6699346405229
],
[
762.18954248366,
721.4738562091503
],
[
777.2222222222222,
634.5457516339869
],
[
761.5359477124183,
537.8137254901961
],
[
634.0849673202614,
518.8594771241831
],
[
573.3006535947712,
512.9771241830066
],
[
534.0849673202614,
513.6307189542484
]
]
},
{
"label": "mead_index_cards",
"line_color": null,
"fill_color": null,
"points": [
[
447.156862745098,
394.6764705882353
],
[
410.55555555555554,
480.95098039215685
],
[
415.1307189542483,
522.781045751634
],
[
422.9738562091503,
522.781045751634
],
[
427.5490196078431,
515.5915032679738
],
[
570.032679738562,
512.3235294117648
],
[
732.1241830065359,
528.0098039215686
],
[
733.4313725490196,
492.71568627450984
],
[
724.9346405228757,
407.0947712418301
]
]
},
{
"label": "kong_air_dog_squeakair_tennis_ball",
"line_color": null,
"fill_color": null,
"points": [
[
419.05228758169926,
266.5718954248366
],
[
343.235294117647,
303.1732026143791
],
[
511.2091503267974,
318.859477124183
],
[
519.7058823529411,
334.5457516339869
],
[
533.4313725490196,
339.7745098039216
],
[
551.7320261437908,
349.57843137254906
],
[
573.3006535947712,
354.15359477124184
],
[
592.2549019607843,
353.5
],
[
604.0196078431372,
345.0032679738562
],
[
613.1699346405228,
341.7352941176471
],
[
687.0261437908497,
365.91830065359477
],
[
696.1764705882352,
358.07516339869284
],
[
727.5490196078431,
329.3169934640523
],
[
677.2222222222222,
306.44117647058823
],
[
651.078431372549,
273.76143790849676
],
[
632.1241830065359,
272.4542483660131
],
[
612.516339869281,
248.27124183006538
],
[
596.8300653594771,
241.08169934640526
],
[
577.2222222222222,
234.54575163398695
],
[
563.4967320261437,
234.54575163398695
],
[
545.1960784313725,
235.19934640522877
],
[
534.7385620915032,
242.3888888888889
],
[
526.2418300653594,
247.61764705882354
],
[
513.1699346405228,
258.7287581699347
],
[
507.28758169934633,
266.5718954248366
],
[
502.0588235294117,
272.4542483660131
],
[
496.17647058823525,
273.1078431372549
],
[
474.6078431372549,
273.1078431372549
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "apc2016_obj3.json",
"imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAOLBLoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiik6UgA0nNMkcgcVCZ5TwigmgRZJwKYWyDTIzIfvjBp5GOaQDQMilAIprOEXPemxXIlJG3BFMZKVB61Eyc0uJAxLHimO7E8DigQ1wAtRhhmpHG7BNMZcCkMXcKYzA80DFNkUgZFACBs1E5yaRsjpRgnmkA0A7qG4pTuBHpSMuaAEzSbgDyaXaNvvURGaTAkDBuhphaossMgVHuPfrSuBOTk0AZpqKSM5pwXimAEkcU3GadyRTTxVABBAqIsKc7EfSomBxmkApakzgU05I96U9KYDTSg4oyMUzkmgB7SACo9+e1KFDdaaBtpDFHNBOKazADimFiT70AKcUtCj5fejBoATI70nB+lKRzRgCgBw+5Tc0hzjihTng0AO60nOeKAuaU8DFSMKcORTfSkGRRcB6/KaeDUeeOTTu1K4EgYUm4HvUeOeDS9BQMVhSgDGaYW5xRI5ReKAHHGaCuaiSTd2p7PikBIOOKUYIqDJPQ0oyDyaBkhxnFNpjttPNG8YoAsJg1LjA9qpq5POaeZTt60gLQ6Um4A4qss5z1pWbOKBFoEEUhwDmq/mkCk849KALg4pyt61XEvyjFBl4oAsEjPBp4eqBlx3qRZ/WgC4X9KlSUBcHrVDzaQzE+1AF8S80NIDg5rOSfBIJqQyE9+KANF33x4FTRNiDaazRcgAAGpo7nH0pCLROKls2PzZqmbhS1SxzKik560AXTOFfBp8cysTzWd5qseTzT4nVX68UAX9/OKepyKptcqrVH9pkDnnj0p3EaQparxzbo8k81IrhhmrU0FiSim7h60hcDqarmQh1FIGyKXNO6AWkzSE0wEbutS5IBzZxxTs0maM0uYBaKYHBOM0F1UctT5gH0VCtzEx4ahp1A4o5h2Jc01mCjJqAXK7ajeYMozUN3As7wRmmiQKDnrVZpOwNM38nPWkMdJMzc0gc7cVAZBzTt2FzQAryYOKiMpIxUe7JzSFsUxiN1pRJTN2401nC84oAfu5oZsVF5melBcd6YEu4UhcDtTUIpGYDigZIrZp3aolYU/fheKaEOMhOQabuxTc55ozQA4NkUoPNIDQaYx+aUnApq0HmgBN+RmlDZOMU3BpyLzmmIeuKce1IKATQAoNKDim5pOlMQrEmlUjNNzmkoAm42nnmo6CeMU5VwOaYgCA808YXk9qQClwCMGmIUOrDilHTNNCgdKDx0oEOJo64pp96AcGmBJwKQYzSZo4FAEuQKM45pmc96aWoEWEYEGl3DNV0znk0/vTEWVpetRoSPenE80ANxh+tTKwqvI23k0qEuoI4FICzuGaXNQjipAc0DHbhRlfWmgd6XA9KQD80tM3ZoLhepoKH0VF5654FL5gI4oAkoqMtTd7DrQBLzTTnNBkULkmovPDE46UgFfJPFRk7GyRTftXJAGRTi4cUATLIGpGkVPvEVGp46UjKpbJoAd5iv0pU2JkgAE1EfVRUZcj60AWWkyMdKYvHWqzSk/Wo98v3gTQBNLOd+AuFphlyOaQyZHIGajzmgBWc9qb5rtwaTcPpS5HpSAaSQQKRi3Y084bAprDA4NACBs8Gg1EwYZpUJA560CHrjnJqPyypJByKcXC8Gml8iiwxuOc02RARmnjkUrY20uUBgOFxSbjSEjtTS3FOwEm/5eKYHz1NRbzg0wNzQInNRyHjFDSrjBIzTDzzQMQHH0pxYdMU2lyMUANPFN3AUrMDzTRg5wc0ALmkyOaM80MozxSGNIGelNIGelPIxURJ3CgB4OKR5MHimknPTil8vPOaAEEhNKM80zaQcGpB6UDFB96azBWAoOR0FN2O4yRzSAeDS+9Rox5UjFOi3YIYUgHZpQeajZijBStSjBx70mgIpUctxyKnVSq04Y6ccU7PBpWGMwOtNDA07aSpqFFw/JpgPOKRxuxSfxUqgk9MAUgIwdhI70Fi3ekkXL0oXAoGNWT5sGnM57U0qN2aViAaAHueBmm5BqOR+mBTFc5oAsKcCgnNNVqVn+WkAoI3inHp1qsrjfgmpHkHSgB4fnrTg4ziqbOVpytnmmBb344pu/BwTVd5MEc0u/dzmkImBy3JqQOOeaqhs80GTAoAsCcBiKDNziqTSANmpA2RnNFgLSyDOTR5xJIHSqfmgcd6QS/N6U7CL6yDuaf523jNZwkGTzSmYDqaLAaSXGcZNTGcBetY3nEHrUn2jIxmlYDQ+1EMMGrST/AC5zWKJPepBcYXGadgNUTA85pxugO9ZS3C461H5rM3XgUrAba3hI61Mt6QmM1gJcjdirImDJ1pWA15Ls4BDVJHdb8EmsJp9qHJpLTUcZyKdgOoS7UDFKbncpIPSsAX6nvQNQXJ+ajUDbN03c8VKlxGcGueF6PWlF7x1pAbkt2ob5TUa3uSQTxWMboZLZqP7YN3WiwG75w3ZDUjzqScmsVL7gjNAuwCSTRYDR388U4zVmi+TNIbsEnBpgaonU4zULuWbrwKzzc45zTGvwEIxSA0ftBDdaDMTxWRBcOxO79atCbkZNMZdMmRTTKSuAaptPzSfaAvemBZMmOM0B896qGVSpbNMaXjg0AXDLioyxY1XD8YNO3nFAEytimyTAMBioxL2pjHPJoGWRIRg9qQsWNQI571KJBigB5Jp8bECoQ2TwalBpgSbjmlL1FuyeKdmgCQcikZwDikztFRnJbNMCyh44p3NQLJtHNOWbBJNAEvOaA6jjNQ+buPFNJ5oAsGUDvR5o3VARSDAOaYFnOTxTicCoV9c08nNFxDgc0mcUwhgalWPcmaYAG5qTrzTNgA5ppfAwKBEwOeho5qFWqcDIFUIM0meaVhim9KYhTzScigHNO4xQIA1KTTcUYJpgSAimGmqfmpc0CJY0yMmptgAFRow24qVTmgCRRjHFKRmjNA5ouIRkDDmkUYGBT8gDrUW8MSAaAJQAaULzUJfaKesowDQBKBxSZX1pA/yZrlJ/E8SXEiFwCrkfdPr9aQG39s5+9Sm6DDk15KfEWo/89etA8RX4CkSE4Hc1NzXlZ64LhAOTQ10oxgivJf8AhJtR7MPck0DxNf7ssenoaXMHKz1o3QYAhhmla43J96vJf+EpvwTg8Ug8W6gCOOnYGjmFys9Z37kHPFMEoBxnHavLh4wvxwQcemaP+EvvRn5T16Zp3DlZ6iMDkU+OZVPNeXDxreY+4fzoHja7zgp19DRcLM9VadT0qJrkDgmvMP8AhNbojlDjPTNNHjSfOfK/Wi6CzPTvPyOGpGmOPpXmo8b3IAxD+tKPHFyesdFxWZ6N5nfikE2OK88TxtMP+WfFSL41fI3Qk+tFwszvxKCMd6YXwcZ61wo8akn/AFTCnf8ACZqeSjGi4WZ2+fenBuK4g+M06eW/0oHjZMbSh69aLhZncBh3oyM5zxXEjxfbnlmI9sVIPGduOBk/hRcLM6ySbB4FIJM81yh8XWZPzHBpR4qsiP8AWEUXCx1LOpFAYY61zC+JrL/nqKnXxJYkczCi4HQIRjrTXfnrWH/wklh0E6/nSDXbNiMzrn3oA2mxnINRs46d6yTrVoeRcIR9aRdUtmfPnLj60Aaec0Y44qh/aVuGwJ0/Op1vYCM+ah/GgCVkJINPGRULXkJA2upz70q3ER48xefegB+eeaRhnkGmiSInHmKfxoMiBsBhQAn40qJtzg03epPUUM4A6/lQAufmx1pQMDrUDOOxqQSYQGgBzE+tM4zmmu+aaCKBkvalVuPpUYbHFODAigB4YHpRTBgdDTwQRyaQxdwPFOB+XioSVB609JOME0AKcHnFCnHSgyKKaJkHakBI4DDJHNMBzTywKZ61EGHSgB4DbuDU4XaetQoe2akLUgHvjHvVc8GnO3vUeec9qBjl4PSpSwAqA5HI6Uze3ekAszAHIoV8rk1XkcnpUaSP0PSgC27Dimt93mohIAeTQ0gxQMDSA80Bt1ICOlAEgbAppcYphbA60zdxmgB6nPNOY1EGGKYznnNAEhbJoLZXiogwI60A9aLCHhiw5NG/HANRg9RTSaAJPMamu5OMGmbhQTTEDOe9ILjA4NI43c5qMqADRYCVZx3NHmnOQag27ulAJXg0WETNPtPWm+fuPXpVF1ka43fw1KoO6nYC55hI601ZiHzmolJpGyG6UWEWftalsZxTvtAI61QC4bPelJOaLAXPtGO9O+0kEEGqGD3NKTxRYC99pAbIqQXY2cms0EinAnHWnYDRa5GzJNQ/aghGKqYyKADmiwXL32njOetM+1HtVYnim5pcoGgt1gdacLrFZmWBqQNmiwGgbv0NM+01QZ8GnLyKdguXkuB1zSi4Jzg1RBOcDmpduKLDuTeec0oueOtVyMdetJjB460WAvicletJ5nrVb7oFOD8UrAWPN245py3GQeaqEk9elKDg4pWAt+ax5zSGX3qtvPalDbutFhljzcjvThLgVB0oFFhlgSZOam8w7elUs4NShjtosBL5mDmmtKetB5FNbG2iwyZZOKeT8oNVgefapC/y4IpWAd5vPFTeedtVuOtPB9qLDJBKwzzSxXXzkVEfm4pyRqDmgCyJSwqTdxUAwop5fOBQBIMsKjyc4zSh8D1qMsS1AiygxTyM0xBxk09SFPNMA2vjnpSYOKsFwUqBgSaAHo2BzUuM81WHUnPNSROzL04FAEpHFADAZzSHJo3HHJpgKznFNDDGTS9qYT1FMQ9WBPAqYP0AqsCF6Unm47UxWLueKjNQiUk+1O3k0xEydOKXGKiBxzmq8skhb5TimIvgikLdqqpM23nrUwPGTQIDSxknNMLZqVOVFMB6dDmnBwpxTCcVHuAbk0CLJnzwKlD/ACVVHFPRiRjFACmQlSB1pkRKtk1JtA5xQBzz3oACS3amfNnHSrAAA6cVBNMkQLE4wM0AUvEGrpo2hzXEjYIXjmvmu48bXD3Mrbjy5P3V9frXX/Ffxe11cHTrWQ7Rw2O1eUYPqP8AvmjRDR6yT7UmT6U8SKOvel8yOsDq5RvNNJx2qTehOQaUshoDlI+Nue9IOtP3Ie4pfk7EUBYbkDjijj0p2EPBIo2rnrQLlG7VznAoIUnGKeAvc0u1PUUBykR2+lJgegqbYp7ikwoPUUBykDYxwKMAHpU7Ih5pCgx1FAcpCMA9KXcvXFSeWuOtJsT1FMLDMrjNN8xR1FSbB6il8lW70gsReajdjQSmfepDbqBgUnkD0JNAWIyynFG5RUggGaX7LnvQFiHKmm/LxU/2bNBtDj1oDlIABng0uAVxTjbMelKbdgKYuUgdcDIJ/OkHTJNTNCxGBzTPJfpzigXKRlsEcmgMx6E0/wAhqPJYdqA5RAz4+8350efKOfMbp60bGPamtG2KLi5RDd3CjiaTP+8ai/tC8zj7S+PrTzA2PTNRm1bOcincXKOXUr0HP2hyfrThrN8Bj7Q/p1qE2rHvTTZue9Fw5S0uu6iox55/OpR4g1FeRcNVEWr9M4pGtpAcZBoFymoPEeoY/wBdzUw8T36oPn5HrWP5D8cUv2dz3xRcOU1v+Eqv8dQaUeLL4dQuayTbnbweahMMgJp3DlN1vF17/s/lSjxhe4zsX86wGikH8NJ5b46GgOU6MeNbnp5Q/E08eN5VGGirlzC/XFNETHsaAsdWPGrMxzD+tOXxsAc+U30rk/JbuMUogb3o0CzOwHjZWA/dEUHxvABzGa45oWA4HNMWB92CtArHcp45g4BQ1IPGto3OCDXBmFuuKTYV7c0Bqegf8JpaFgoJB9cVKvjGzOMy154F6nFNYc9KVhHpJ8W2JGDKPzo/4SmxAGJBz0rzUoSwJFDLkcU7DPTF8T2hH3wPqaU+I7VhxIK8yKnGO1J83qc0rAelf25bueJAKeusW+B+8X868xHmDualCnH3jRYD0k6vbMT+8XP1pTqUOMiRffmvND5gP32/OnF3H8bg9OtFgPS11GIEnev50h1BGJIYfnXmgkmX/lo/50n2i5HSV/xOaLBc9M+2A9WFOS7U9SMV5qt5dD/lu+frTzfXYORO/wCdFguekm7Q9CKa9wCMCvOl1C8B/wBe1SDUrwZ/fE0WC53wuVAp32pa4D+1b3I/edPanrq15jmTmiwXO8E6EnmnCcEVwY1i7B+8D9akGuXfIJGKLCudq0oHSlSUMOa4sa7dDjA/GlGu3Jz8oxj1osB2jSp0FIHVq47+3psY2Dn3qVPEEoGDHk/WgDq9yqOtRtIGNc3/AG+/dP1pP7cbOdmKAOnz8tIGUVz39v5X7h4pV1xCTlDTA6JZF9KRpVNYP9uRj+E0x9Zj3A4IoEbzMMZpoYHvWIdbhwRhqYNYiU45pgb+9cdaXcuOtc//AG1DnuPwpx1q2xyx/KgDd3KeM08kVgprNqvV6c+uW5A2vx70AbhYDvTlZcdawBrFueTJS/2xADxKOaYjeYgLmo92frWQur2+3mUVKNWtcf61R+NAGoD3oz6Gsr+1bbP+uH50q6lCW5lApWGafB5qQEbetZp1KDGBKtH9oQ4H71efegDVUgCn7s1li9iK485fzpRfRDgSr+dMVzVIzQq1mC/TPEgP41LFfITgSLn60h3Lrk5FPHSqBulI++v505L0c4YH8aALvagckGqQvQRwRTzeKB1H50rDLhwaEXmqX2wdQR+dSreAdcUh3Lh5pBVRrwKfalF8pXI5oC5cVcmpduKopeDPapjdLnrTC5ZbIFNJHU1Et2GODTTKjnGaB3LS7cZqTjrmqayqoxml+0jFAXLo6cY5pQMDpVJbpeuanW6XaOaQyTv0p/pUH2lOpYUn2uMtgMDSAtFuM0B+BVdZlPU08OueooAmzzTh1GajWRfWnb1I4amBbDjbTTksMGq6vtPXNKs/z0AX1I6UHHrVdX289zTfMJzk4oAlztJyaeSQg21WJD9DmpQ4AAzSAmD/ACikfkCoSN3Q1IgzwTTAlT7o5pcAnFN6cUBsnNMQ4qOwpjJu5pfNOelKGDcUwBYwBmlXrxSkcAZxTANrdaYiXHHvUbKRzT85FNJHQmgkFUDrUhYMOKjY8Uxm2jg0wJQeamQ1QEp3e1TJMVJ5piJZJQGIqMfOcmombe+TT0OKBE4Yg47VYSUKtUHc5HNSKxYA5pgXDJkYFISQOaaGCpk9arXFwFUMTgCgC55mEJboK5Dxdrv2XT5jH/dxkVbvtSkdNqkhfX1rzXx5qe2z8oNktnIrOU9bI0jDS7PMNRuWv9QeVskk9TQLXI4xUUKF5BjqT2rXxjjH/jtAjpxOxNH2kgnNZX9tWIOBJ9KjfWrU5+boe1ZXOm5sm596abkgferGGr2pH3z69KYdVtj/AMtAPY8Urhc21uuevNOF98uM1gnUYDx5inv1oXUYMf6wZ+tFwub4vAM88UG+PrWD/aEHaQUC/h5zIPc5ouFze+356tSDUD/erD+2Q/31+uaU3cIOPMB/GncVzcGoE85o+388n9awvtMfUOCfQGl+1Jjh1z9RQFzc/tD1Jpv9oc5zWL9pjORvXP1o+0J3YfgaAubY1DgjNMW+fccHisfzl/vDn3oEygj5ue/NMVzb/tAY5NH9oY/irDMy5+8M/WgygfxfSkF2bo1JgMg4pw1R/wAKwfNB707zD2NFwubo1I9DThqeP8a58yEHrS+dx1ouO50X9qgelKNWxwcYrm/NY96USt0NAXOi/tVAf/rUDVgc5Iwa51pOM+tM80+tMXMdINUT2/GgalHgZxXMmYnqaTzWAyD2oDmOqXUFHUCnDUIu4rkxcPzzjml+1MDjmgOY6wXsJ5ApRewk8jj2rlPtj+tAu2P3j+NA+Y6r7VCW9BSG5twcg5rm3lmSEOchT0NRfbX9aBcx1f2m39cfWnia3J5PFch9tYHq350ovCcnNAcx2KvZNwWANNK2x5VwRXI/bWHIJ/OnC+cfxUaj5l2OsCwHo4zSMkf94fnXKjUmBADGnDUyp6t+dAcyOp8hCM7qDbp13VzH9qsMHPT3pf7WYj7xo1C8Tpvsqno9Bsv9oVza6u2PvGnjV2AJ3E/U0ahzROgNnx1FBsDjIYVgjWSOr046056t09DRZhzRNo2LkfeWm/ZXXuKyBqvfzDTxq7ZGGp6ivE0hbSbvu80otZTztzVAaw396nLrTgH5/wBKWoe6XhayjOY6RrVsfMgqn/bD45cYpw1ctwSM09ROxOLYkcLTPsuOqUwapjnI/Cgahnqcn6UC0JDBx/qyR9KYbdMf6s/lT11IYwMGnjUAeMClcqyIPJTuhppgT+7+VWDeJnnFKbqM8baLi5UVfKQY4pDGo6VZM8R52jik82ItwKLhyorGJetAiQ8GrJaHPQUZhHYUXDlKwgWjyV9asfu6blPWi4rEBt1z1pPI96nzH60vyZPNO4rFbyCO9KYSanO3P3qNo9RTuKxX8noBQImxxVjaufvCl2Ds1FxWKhRs9KChz71aEeOppGX0oFYrlGxmkCE1Y20FfbmmFivtNO2njFS7acF46UCIRnvTug96eFHelwMYoAhAPpR8wNTbAaQrjpQBGc0ZJqQKDQFFAiM9aOc1KABS4BoAgI46UbamKA0bF7mgCArzTdoqw0YA60CNfXmgCvjtTTxxVkxCmmEU7iK+OOnFJjjrU5XAxTTGcdKLgViSKbk1a8tSORUZjHvxTAiDNnr0pwkPcmlVVDUrhW7GgBRKezU4SP8A3jUWAAOKQnHegRMbplPDn86UXbZzvbP1qmVyaXYQR70xl0Xkmf8AWN+dPW8lGQJGx7GqCg56VIODmgRd+2Sj/low/Gl+2Sg581vzqg/J64FN2tQBp/b5f+ezfnQL2YZ/fN+dZjZxxQhYA5NIDWGoTr/y2bH1py6lPkEymscMc4yaVC2T6CgDaOqz9RKc0o1e56+a3FYbOR0NIZmxgZ5FAzd/tm5UZErE+9H9t3R/5atWF5jHA7U7efQ0Aby61eE/NKSKk/tq7GcSdawN5BwM04TMDzQBujXbxOjjH0p416+2/fH4isFpvSl884oC5tjxBdj7xB/ClXxDdrkqFz24rC87vjmnLMCeaVgudCniW7HUAU9fE10rZxmsAnilDgDrTsO7OhbxVdD+AHNKPFdyvRQRXOb9wpC1FguzqV8WXR5KLTh4vmXBaMH6GuVD7hmkMmOp4osF2dgvjZ5OBEakHi9yOY64xCoJxTzIAKLILs7OPxbs4K9e9PHi05BKVxHm57U/fxRZBzM7pPGQU/czn1pf+E1iU4Kn8q4YMemaYTgmiyHzM7v/AITiAHGx+fanjxpbAfNuHua4HPrTTytFg5j0OPxlZnnLAn1qRfGFnjliPrXm+QDycUbgef60rBzHpo8ZWR/5ag4qYeLbE/xDivLEPzVcUqVHtQFz0QeKYCxJcbe3NObxHbHGZBmvPPOAx3pwuBn2oA9KTxBbbBulUe+aP7at3/5aDH1rznzd1SRh24ycUxHoX9rWzEBJAfxqx/aEG0YcZrg7f5OMnNWlk5+9yKYjsf7SiH8Q+tSC/jIyHH51xwkJ70olbGQx/Oi4WOwN9GWxuqeC+jVfmYDHvXGLM+PvGpllfuxouOx01zq38MXPvVNp2kOXYmspJsd6cspJ5OKiUmaRii1qDgWT4YA44rxbxbcvcX3lNJnn9K9J8QXaw2bEvxj1rx+7nNzfSPndg4yaiC1uXOWlhLKD94Mdu+a1vLP92q9hH8hJ6+taPP8AkVoYnJY4phXj/GpthAOaYQR2rA6CIrzyMj6UnOfUU9ulNJznigQnb1zSg9qBQKAE596AD/8ArpcHPFHbv+VABj3xQWPrQOnWlcggcYPegQzJ55/Cky2Dg/hRySMUowCaYBljgZP0p+5sfepn+frS5oAXfJ03H86TzJM8sTR160f496AF811OQxz60vnSbfvt+dMI9KT3oAk8+QdHb86DPLn/AFhPsTmmYJ7Udh1oAl+1Tg58xs/Wj7XP2lb86iJyMdeaSgCx9vue0h/CkF/c9DKSDxVc9KUDnNAFhb64A+/+FO/tC4APzfjiqvQ80Ec9MmmItf2hP14/KmjUZx1qseenT60cc/WgC2NSm74znrTjqkhOdozVID2pv0oA0P7Vfui0DVGH/LMYxWceR16UfWgDUOtSFFQr8o/hph1QH+E/nWcaTtjFMRpf2oM52cfWl/tSP+4wrKx3pT17UAa39qw8ZDUf2nCTwCKxyTjFH1oA2BqMRGSTmg6hCeCxA9cVj+vSkNMRtC+g6b+aX7Zb/wDPTFYZz0zTeuP5UDN37ZDnAlUk9gaBdRn/AJaj86weKKYjfFzGT/rV/Ol+0xg/6xfzrnj70hJx1oA6H7SD/wAtBnp1pVuPRwfxrnsnOc0BjnrQI6JrliThx+dILh+fnODWKrsO9Lvb1NAG4LpwPvnNON1Kf4qwRI4/iNOEj/3jRcLG+t7Kcc1MLuQc5rnRPKvRjTjdTE8vzSuOx0iXbBgeo96trOePm/WuT+2T7cFj0608X1wD97PtRcLHWed/tUouCBwa5T+0LjgbunpSjU7hSSCPypAdT9obsaBdMK5U6pcEH5gR7Cnf2tOP7v5UAdR9qb+9SG9I9a5f+15gRwppP7Xl7gUDOp/tAg9eKBqH5Vy41Y948/Q0/wDtc9PL/WnYR0p1EAdKRdQ3Nk5Fc2NVU9YzSDU14wCKAOp+2qOc046gp4rll1QKeQfpTzqcbH5sj6CgDpPto7E4p6369MnNc0NSiB43Ypf7Rh7kg0AdN9vUE89Kb/aq5+6frXOnUoT/ABjrS/b4M4L4piOi/tNMcZzR/aae/wCVYC3sGM+YDTvt0HaQUAdCuoQuvDgfXipPtsY6uK5U3UZPDCn/AGiPAHmDPTrQFjpTfRgj5hzTTfR44auaM6g/LIPzo+04P+sH50BY6cXw7daeLwEVyf2t+SHGPrSi8cEfMc/WmKx1n2lTzuGKTz1PeuXF6wGS/wCtKNQcdZOKQWOqWdQOopPtKZ7YrmBftk4anfbnz1oCx05uEyOaTz1zXOC6JGd3J604XMjDhulAWOhM64oE64rA89wclqX7T780Csb3nrn/AAp3nx4rB+1nrmgXR654oCxvCWI+1O8xKwPtRzwaX7U+PvUAbvmRZzQGiY1zz6g6+/NMOpOpoCx0h8g8AjJpcRY6iuYOqOOcdaT+1JMYwPwpgdNtgPGRQUhwQGBrlzqcmQaQ6pJ69qBHT7IsjpTtsakfdrlv7TfuSKd/akm4AnP40wOoKwtyAufWmmCMnsa5v+1JD3IHYUo1OX1oA6LyYs9iaBCg6Yrnv7VOcfNntSnVXzwT+VAG/wDZ0JzimeQoPNYn9rvjqTS/2uSOKANkwpnmjy481jHVm4o/tfkUBY2PIQ/w0nkR9AOazBrBB74pf7W47ZouBp/Zo/f86aYEzxWcdWGcipP7TGee9FwsXjbjsTS/ZgepNUP7WA4xkU8aspA460XCxdFqv980fZR2PFUf7VUDnn6Uq6qOuO3rRcLF37MAeW5xQLfp81VP7UU9uvegakoI4zzii4F0W7HjdmlNuy/xc/Sqq6mo9M+9OGpIeTgUXCxOIWxyRTvJbb94VX/tBD2p4vkzRcLD/LcKMEUeQ5IORTRfR5Ao+2Jmi4WHeW46YNKEf2pBeRnrQLxMckUXCw4RP04pQjjjH6037WnrTvtkR6Hmi4DsP6U3Dgk4pftUYHUUv2mPH3uadwsIAx4wRTDFJkjHFSi5iIA3daQ3EZHXNFwsV2ikNBV1XFT+fHj71NMiE/ezSuBHEWLcfrVgrJtyKjV40bgipPtEZHLCgB6RuwxUqW8jDtxUAu4sZB6U77ao/j47UAWkDpwRwKsJKRjis9dQ+XOQR71It8meQDTEaIuWHOKct0fSqP22Nugp6XUTHBBFAF03R5qSO5IAGTVIyR8c1IJEBHNMDQF0oHXmpUvMnA6VnZRjTipA+U0h3NYzgAGopbtgpIPIrNF15fEg6UyW7UjINKw7mN4n1NjbMHPrxXC2qsz/AFbqK1/Elw01zsB4J5+lVLCI5BxyOtCQ27mlbpsjA71Nn6fnQgGOlLnHcUyTFeIFxnnPpVeaAdVFa0kO1iuc81DsBGQK4lI7XExZIipPHHWomU46VqzxdcL+VVzFngCrUiGilyD/AIUYyKlMRBNDKRxincmxGB0zjIpCOOoqQg9vrTSMUwGAUo579aXAFIevrQITHejA6UvbFIefxoAQ+9Hft1o6DPSl9qYWEOKPpTsEjim7cmgAI+tJ1peOOPzoxznqaADHtSUvb2oHIxQAnGcGkxzS+gpaQDQKUYzigD1o6en1oATP50UflR78nimAh6cUnalP1pD3piF4OT1pDQORxR7YpAGKbx2p3NJ/KmAhptOIwKMZHSgBvQ0H9KMUhNMQnvRS9aTt2oAQ0UUmaBCGk7UpOaaaYBSGl/Cg0ANooPWimAUUUUASqflp34U1PuCnUgEpwpMf5xSgUDHAc0fWgUtIBRzTsY703606kAHFBo7e1IaAEJpppxpretMBppKCcZpO9Ahc5pc0lHNACk8UlFAoAXtRmjqKPegBc0UlGaAHDijFJS80AJ0pSaT+tH5UwDPrS5pKB1pDHBjQCR3P50naimAu4+tG4g9aSj3oAduYn7xpdxHemUuO1IB4dhzmnCWQDrUY/KkoAsC4kXGGxR9pmA++fpUFHagCwL24H8f6UhvZiOWz+FQdKQ0wsWTfTdOKQX03TIqsP0ozRcVi2NQm9RS/2hOeSapj9aWi4WLJvZGPzc0n2xs8iq340Ci4WLQuiTjFL9pPT+tVaXtRcLFkXHJyKU3AP8NVxR0ouFi0LkbeaPPT3qr3oouHKWxcKvr+dSfbI/7pGao0Yo5g5S19oDZP8qPtACniq1NkOIm+lHMHKTm8Bxmg3SHGD2qgOwxR+dO4rF9bmPoWI96DOhORJms/3pM8UXCxqLcRBeTzTfPUfxYrO59aOfwouFjS89c/eqRbgHo1ZOaUEj1zSuFjW+0DP3hQbjphqyeTz6UuTjrRcLGsLhf72fxpRP0GayMnrnn1p4Y4wKLhY1vP5+8fzo8/phvyrJ3nnBo3sepNFx2NkTcA7qUTkdG/KscO3PJoEjY+9xSuFjcFxwMt+tO+0Hn5u1YYkcNjefrSiWTn5zii47G2LjtuH50onO3rwPSsQTPjAbIpftD5+8aLhY3PPb+91oMzf3qxFuHxyaUXUq55xRcLG2LhsnJ5py3DD/GsQ3sp789qX7bIOwHpii4cpufaWpftL9d1YYu5cdacL2TA4460rhym0Lljzk/SnCcjnNYn29x0HfilW+cjoKdw5TaFyTyOtKLhgT/Ksb7cewpwvWIzjjFHMHKbH2hsdTQJz+FY/wBvOMbelH2/plT+FFw5TY8/3NJ5w9efpWT9u6jbSi+GcEGjmDlNXz+eOn1qVbhuuax1vlxgg077aMEA0cwcpsi8I6n9alTUCCcfWsH7apJB4pVu0OMGnzC5DoRfk85PtirUN+McnPpzXNR3IOeTmrUcw3ZqkyXE6iO8xjNW47vnk4rnoJgRjOMdKtCQ7hzxTuLlNeeeN06jPrWVNclAQCaRpCQTn9ax9VuTFFuVvm7YphYy7x2mvW3fw9K0LKMbckVnJIbllYgZzW3CgVAKAJMCjb7fpS9eh/Kl20xBqlobTU5YvfIz71QdCOldX4ttgl4k4XiRetcwVweQcfSvNi7noMqshycgVB5QyfrWiy44xUBjB59+pqrk2KrWwIyvJqo0ZLH8v8/lWps29/xqJoQXOM1SZLRmmIjvTDGw5rQ8rA56ZzUTKD261SZNikyY5I5qM5q26DGBxURjz9aq4rFcZoI5p7DB4FIfX0oEN5pQOc8Y69aT+VOHTFMQvGM03v0pxHpSdTjrQA0A46fnQRS4A4FBwTkUDGnI4oz/ADpcUhHPWgQd6Qfype44o+lACgUjGjr/APqoPSgBM/pTTmnH600j9aYBRj+dAHpRQA2l6dqWk7/WgQh5z3o+lGKKAE60dqT2o70wDI60Z4ANLSHGKAG008innpTetMQh96QnuaWkoAQjim/hTjTeaYgpDS0hoASijNJmmAtGaKTPNAEkfSpPrUcZ61JSAPrTsU0UvekMcKUUmeKWgB340ZpvNFIB3pSH3oyBikoAUnvTCaDSHpTAQ0n9KWkoEApaM0fSgA7Ue9H4UdKBi0evakFLQAUd6KKADNL9KT8qO1AC0mcUZooAB+lLSUZoAWlpKWmAc0d6KKQB+FLSUtAB2ozRRmgBaP60gIFLQAh6UGijjmgBD70f55oxS49qAEx60d6Un3pKAClFJS/WgAHqKcPak7UooAUcCij8aT8KQC/Wjt2o96B60DFFKelJxml+tAB3qOY/IB6mpB+tRS8kUCIqMUtJTATFB+vFL0//AFUlMAooIo696QB/Kil+lFABS0UCgA7c07+Gkoz/AJxQAdD7U7pTQcd/1pe1IYvWik/Gl7UALxTifakH+TR70AA4pBmj2FPA5oGJ7UvGMfzozR04xSAOKXPAoP8Ak0Dr60gFByOlB6/zoA49KXGT9KBiAfnTj0BHSmjnHT8aXvyaAAYAzninHoc/nTeT3pe2ecD0oGNHp/Kn59uvNN708Dnpz70CFxgc4pP8O1PwcAGkAJIx09KQwwMbqTnIBp3bAFBXvigYh6YBOKUEnBz1NHtjrntSDIx/hQIkV/LbAJq5G/AOfy7VRzkf/XpVch1Q9CeuKuLJkjetpRxzWrCN9c/ZPiQDGPaugtQOCD1qyFqx8yskR65rmdTDFgu4muzuY/MtiRj1rjNQBFyQexx9KcWOcbDtNj3EE44FbQXC9faqWnRhYwfSr/A5zVGYnue9GD/tfkaXp2pcD0FMR1moqt/4bDjmSPHXtXGnoAwwfbtXbabC8tlc2xxjH5VxtwhS4dSDgEivKhoekytKelMBBX09asEAjmo9o/GtCCPY2Dg8Z9aYEJBPSrAGBgU0jCmi4WKzrlcjiqrLgnA6VolQByPoagIGSaaJaKDL61HsHPWrrJuB6fyquwHQ9atMlortCWP8qaY8DFTsPz6UnGO1O4rFRkHXimkcGrDICcZppTacCncViHOaT1HepGTBAppT/wCvTEM/Ec0pzk0EHJowe/amAD1xRS4/Sk4Pf8qAGngA80cEU5sc96aBQIQUlPAy2Kaww3bigBOpHrRijHr0o7UAB4PFJ/8AWpT1zSYoACOKQjjP8qUdTzRjimIQ9qT1p2P1pD06UAMxmgUoHpSgUwEIxjFNPSlY03PFAhCeKQ0vammmAd6TNL70hoAaeaSlPSkpiCkNH60lABmkpaSmAUUhpaAHJ1NTVCn36m/pSAP6Uvek5FLmgYv50uaaDR9BSAUH8aXOBTc88UZoAXPPWgnB60maTPFACk0nSj+VJQIXPPNJQKKYBS0lFIBe9A9qKKACiiigApf1pKO1AC5pOKDRQAtFJRQMXpRQD+nvRQAooHpSA0tMAz0pQaT1ozzSAWj2zSfhRQAtFBo+tAAOlLSUtAB9KKP50h70AHU0dqKKACg0UY+uKAD/ADxS4opR6UAFKPbtRgUUDDvQPxpfWjGaQC4ooxiloAQUo796KMetAC9aglPz/SrA+lVZM7ufWhCYnSk69KWkpgHrSEZNH6UY9/rQAUfWjqaMZ6UwAUpzSDP0pfr+tIBaXrTcUuTzQAvpSgUnrS9jigYc/SijvR6UAA9/50ucYpKX05pAKPrinA84600A5p2MdTQADg049ufxpMd+KOcc4pDFPrR3/GkJzzSnrQAehpDz0pfakzSAdnp7Upz1zSKR0z39aU/exg5FAw5zilwc4H6Uds8UoOKAD+Lv+dGMdehHNHcilPTpxQMTGO1KBgnjpRwV/oKdjA4//VSAUnkDr609FG0nHbio/wCL+dLng46UDHDHqSfrQegpCBn2/OnHp+tIBncn+VKOvY0Ac+vtS4yNwH4UwEwMA07uPagH8fpT48FxnvQnqJ7FmyLLIOuTXTWI3KoJrnYUJlXHY9zXR6evI6VszKO5sRJmFh1yK4q+G/VWQfNg4ruCfs1s0j9Aua4e3DT3kkufvNnp2zRE1q7I0oECIPepT/nmhOFH0p2K0OYQDPNLxRS/NQB2OnSGLVVU5CyDH41h6/ZNaanLkfI/zLWxKShjlUYZGB6UniiMzRW1yoJDDr+FeSj02cfJgAYqE5ycCpZUIc5xTdvI9a0IGAc5/SjuR60pbacCk5PPOaAGMCB/hULIQeByas7s8mmsM0xFZlwSMcGq8kY3HOauSYb6CoG689+KaE0VmUbaZ5eR0689KtbOBkUxlI6jNVcmxXVMfe7c0bATjmpQoGOOtIVC4PNO4iuUB9QKhZD1xmrhXIOBn6VG4PTH507iKhXPOKQrU+w5z6daYwGadxEWMCkJPWpAMcd6RlzkYpiIyKTqKdtJpMZoAAOfamkAnrTz+dR9e1MQY4yKTIx1NPAwKQgfiaAG0n8X40pxzSUAHek7Uo5NKR8tACHpTSD1607H5UEZpgN+lKRjofxoHQnNICD3piGMcE00U88/WmYxQIQ9KDSmm9T/APXpgIfpzRR2oPSgBD1pDS9TSHpTENpKU9KSmAUlBo7+1ABRRRQAq8MKm6moV+8KmIxSAUf5NFA6c0flSAKDSGjvQAUZpD+NH86YC0vXr+tJ+lFABR0o60HNACc0UfSigBRj0opB1pc9qACijrRQMKWkpaQhKWkxxQKAFoo/GjtQAUUGigYUCiigBfxoz70n1pe1AC/WkzR1o60ALRRzRigBelFFFAB/WgdKOfwpaACkpetJQAUUvek7UAKBmkFFLQAfypelJnmlFIBcfn70DrRS0DClApBTvwoAO/AooooAM5PXrS0lLQAHOKrv1FTn2qGXl8e1CEMpKDR/KmAUcfhR2pM80AB9M/WlznHvSCl70AFHaijFAB1HpTgM0g680vf60AHVqd0z60g5wcUoHakMQjBzilo70vagBBzTu9JS4NAxfTpS/WkH0pe/Xn+dIBKXkClPU4pOi/1oAMevIpenPagHIz2o65H6UAH60mKUevB+lFIYAYOf6U7OeT1pDwcCnAHHGaADoeaXHUYpBg5ycijpSGOHTJoUA9RSD2HGBTh6fpQAoGaMc9qUdKXGfz/OgBuPmHHWlA9qcB9BS/Q96QxoHOTRj+dKRgEn8qAcjJoAXHPvTgTk/nik5pwUk4x+tAxpA4PH50sa5YEHmnlSVJxTlU56mi4M1LRQQDitizcbxjqKzdNXdECfxrVtYyDvA4FbLUw2ZL4jvvK0oQj78nFYenxBIweM07Xbn7XqaQrysYHT1qzAoWMAcelXHQUnck/Cl7+9IAfalzgdqogRjim7z71DcXG0ED9KoGdc/eP50AeoXsQ3HB4YZFJcJ9t8Njkjyj/KrFyoktyw4IGRUGkhporm3b7h5U/WvIPTOLuItjkk8VAyjucfStDUUKTMCOQSKzXA9fxrREjT8xPHPqKMcH2piEg89Kcz9MUxC8dKjYZ5zRu9qVipUnmgCHZnJHbimlCWHfNTYwOO/rSEAcA/hTERMpGABSqgPBpxbjpzQowOcY+lMRUZNrEe/FJt3Aj9anmQHkVCOvPOadxWEdQOMdRULDLk9M1cYDkY5x3qJkwTxTFYrMpzwKiZNx6VbwAOR0HFRshzj+VO4miptI575o28/Q4q00WcHPH0qNlBc8Yp3EVzGM498UnlnGcVMUIboKTGc07isQMnNMEePzqwUIxwORTdvy9KLisQlR6cCmE9ulTEYJzTGXI6c0wIuM0GnlcmkK4GKYho46UtIP8AOKcPTPNADSuT9aVQOnrTm+Ug96azcnFMBpx0plKc/SmnpQIQ8mkHX2pTTc81QgP9abxinHrSAEmgBDSUp/rSfzoASkpx6dqbTASm+9ONN7UCEooopgFH8qKO1ACjrU5FVx1q2PujvSYEeOvWlpSKSkAUlLSUAH4UlLRQAdKKKT9aYC59KSjrRQAdqT1paSgBaKKKACl4pKKAFopM0fjQAp96KP1ooAWjrSUUgFoz3pKO1MAooooAWjtSZ5paQBmlpKWgAH5UoxSGlH+RQMWijORRQAUvakpaAA0lKaTrQAe9FAo+lABSikpaAFHSl5pKBQA4cUUUe9IYuORmlpO/SlApABo79KCKWgAFB6CjpSd+KYAeRUDkb2+pqf8AlVdutAMb3o/CiimISiij60ALR/WgDFKPpxQAYyKTFL6etFAB1GKWkHXrSjNAxwHAFKOmab707vQAUvt7Ug+uaU47UgA/hRx1/Gj1ox2oGOHU0uec8UgHNL046+tIAI4pOcnvS9aPxNACHI7+9KTnP5/SkODRjHX/APVQA4DPApQueM8UgHr607pzSGIQM4oyeuevejij8aAH4wAT26jNABx3NAyafjj6UhjAuegFKFpyrz0p4Q8e1AxmMc+9KB8wz608AAAEcCk27SO5pAKvpSlcDvTwoz7UpGB60rjI9vBJHvSqvBHYU/APXv60DrzzRcYwjHUfrTkUMfWpNuR6c0KNp60rhYXA6YwPWjvx1o75wRzTgAPei4GnpUg3GMkLW/Ky21m8p4VVzXIITE4YZ/CtG91nztL8jOJG4I9RWtN30Mpq2pUsx59zJKT945z3NbCjAx6VR09NsYrQ7H0rcxYDjFRTPtSpMcVWuOlMRn3Em1GY1k+c/r/48avX5wgAPHWs3cPQ/lQB7hYOLvS4pf76YP1qrp0xttWEXIEny4rP8HX3m2stqSTsOQK0L791dCUfKQwIIryJKzPTWxl+I7cR6jIQMKxyOKwJEP512viSETRxygHJTj3rkHzjDDkGnFiZRcbTUQyTkVZbG8nPNIq8mrJIsEDpSqmRz+tPwASMUDOQCeOtMBGTC8VCykHFWiM85xUTAZHrRcBipuOT0pQu0etOGRgZxRjHB5piI2j4J7Gq4XkZqzICVxnioMEjihAIy7h7UwjKng1MiYY56UvGSMdeKdxFcruAPXmmMuDjv7VZCheOajlBNO4rERX171EYyXX+lTbScY5zU3lhV3L19aYrFJ0xwKjA+b2qxIu5yw6E1EeeP5imIhYH600D0qdQXIHtzzTSPmIoFYgaP9TUbDBB/WrB5FRlAR1pgQlevSkIzzjv1qUqBwfXmk2jvVE2K5GDS7NqZI69BU4jDjgjjmmsuRg07isVyc01upqVkI4qMjjNMBmaG5GPWlxmg5z1oAZ3ppGD709qbgUxCEcgUZ6UrZ4FJTEIRzSEUtJ3NADT0NIaU0UwGYpDTjTaBCUUUUwCiiigAq4nMYNU6uwp+6BHr3pMYmKaePrUu3gU0gVIEVIRzT8fWm0xCfnRRilFADTR6cU6kpgJRxzRSdqAFzzSUUUAGfWj+dFHWgAooooAKX+dJQP50ALS5/Cko70ALRRRQAUGjNIaAFpKTNKKAFooFFAC0opBSikMKUY70lHegB1FIKWgAozzRQKACilpBQACilo4oADQKKWgYfWlo6d6KBCilApO3TPNOUUhhil6UUf1pAFKKTjFLQAh6c0nenH60nGaBiHpmq1WGOUNQGmhDTRRRTEJ1oFHfFLQAd6XvSUv1oAOvSigUoBoAMUvej6UHgUDAdaM4ozk0vbNIBe30pfbBpKUZ60AHT8KX09fSk7H0peoIpDHDqOelH1zR/jSf4UAKeue2aMfpQfeg/TrQAHpyM0YBP60d/8A61OFABg4yaXGQDQBk8c08DP0pDG7eR9aNuPWnhRil6YpDEAyMdDUwjyc59uKYByByfWrAxg+tK40RIOSMfhT+Saco5waNncflSuOxHjsM/SlIx0H1qUDn601gCfcUrgLGCRk07b68/WlXBBweg70p74zQUMxkikAHTAOfXin4A5wc9MUhx264pAKehz1owxP6jilK/8A6qcOeOvvQAzHqPzpVXJwM/lT15xnJ4qUqB0APNAERX5cEVEF826C+h7VYkwF4POKNNQPMX/pWtJamVV6GvbJsjAA4xip/wCdIoxxS9q6TnEOcH9KqSg9+BVzGRUMqZGRnNAGHeoG4PbmsvBHXH/fVdBcxnGcc/Ws4wnP3T/3yaAOu8J3P2fV1RiNsqlTXY6tDmLeByODXmlnN5F3FISflYZxXqMsgnsFccq6g5ryprqejEa++60RHIyyD+VcnqltsxIg4brXZ6YUNpJb5O5c5Hsa53VY8KYxwQxxUJ6lM5UnnuDTg4HXrViaHIbAwfWq2CW5PA961JDnP9RTlx/9agdBxSrz0oEI7bdvQcVEx3dqstgrhvrVZzhiP1pgN5x0p4YNznBpFGcmoj6CgCRyrJxzUKmnd8jOBSkDAwOaYhEyzdOB1pZF2twPfNPTK8+1NkyVGaAGZ3Bc+mKY65B9fepMjHao2cc+uKYiFJfLcMVDY7VIZjIegAPYVA6/N0qwkYCAj070xEbAZxwciq7J3xVtlO7PGQajCZkBJ+WgTKyqU5x36UmMSZ5xmp3PznAwAcCoivOce1O4hix5Yg9u9IwAGBUnA5NOIyD6ZpgViu5c96YBlsfhmpwhJ4pMcn1/pTEQH5flpjDmpSDhs8GmlcDFMRG4BHSoSvb9KsEAnnrRs5zTuIqFcfhSYqdl9KiK4xTuIiNNbrUuPemEdaaEN9KbTyvGaaB1piGmkNOIpp6+1MBuaQ9etONNNMBp60hp1NP1oEJR2oPWimAUCiloAVeKvWp/dEHtVIcCrNs2M4NSxoslajZeKm3ZxSOuRUjKxUZ4ppUelTbSPpTGHtTEMxmgrT/WmnmmAwikxTj1pP60CG02nmkIpgNopcfhSYoAKKKPzoAKKKKACgUd6OtAC/jSikzS9qACkJ5oooATNFFJmgBaM4pKWgBaWm0vagBaXNJS0ALRSDmlB596Qw6UooooAWlpO+KWgANFFA9aQBR1paUUwE56UCnEYooAKMDNGPWl6elIYUooxgelA9qQC/0pQMGgUY7UAH04oxxzS/zo6UANNBpR9aDwM8UARy8IBUBqaU81DVIQlHag+1HegBKWkIFL3oAKBRS/WgA780vFFFAB+NL1o7ClpDDBBHalxxyaQU7oKADPTBo9P6UoHSkIx34pDDHPXinCkFL+PNAC0YoA460pHtSGJj5qXH+cUoUZp5U8UANK7eD1pFGPwNSP8y5PX1pqjkZoAVfunjNOB4FHQHnpSgfQ0higEkCnFSAPXvSqByaVgenekMaBk5wfSpgTTQMLz1py465PFJjFA4PPelGM8Y9KD94jNByOo6e9IYo78fSmsu0gEfhSqcHrwPancbievtQAqjYopccE54prDK461LsIAxjrSGIRkdOnFJj2HFPK4bnihj8vA/8ArUDEbqppAR1HNIA2e9SbRgZz9KQCqQB0FPPI9TTMY579qcATyccc80wILlsKAeSenFaenQmOIcde9Zh/fXig84rehTEYAXHFdNNWRy1HdkmKf15poPPNOA7mtTMMc0pQGgU78aAIHgBqH7H7Kfw/+tV3HtRg+tAGBXpHhy5+2eHNpOWj+Xn9K8y86In5XHPvXb+A7wNLNZ4DBhkH0rzai0O+MtTptMby7wF+jLt59aydeAW/kHQZyMGtQ7oLx0K42tke9Vdeg3Sxy8YYY+tc/U1OWnT94QOhqlJEd2M/StqaD91nHINZc4wxU1smQysSQSucj3pYz8vB5qRsbenNRKvPBpiFLlk2/wAVRhS2d1KOHyRSjJ5zj3xQA0DYMVHkZyRkU4kZyeabkEUwF4I6HFA5XkY54pf4egIpCAAuOopgK3AzjpS5DKOORTQfX9KViFxjp0NAEEpCuAAMEUmw9T6U4oXPseeaGYk4x3piIyo6/rT0bC+3amyDjOBg0AZUHoaBDhhmPv0NRMCp2tnI6mpYW/eZI4PU02THmkj1piKzZJ5zkmkbhx6VISPzNMcYNAhp+lKU+XilGePf2pwHBBHJ/SmIhAwTkjmkZDnIPHpUgUZwwpGGOnSgCJlJHPJPWo2QEDnkVKcF+h4ppGTwOaaEQFcdKXoc1I6ADpUR4BzTEMZRTGUMBjr3qfG5cDrTDz2xTEViABTME884qbANJtBJx+tUIiYYXFN2gEVIw4IBpPr64poREVyOlMIwamYcH6VHgYOaYDCO9MqRhg0wimIYaSnGmkUxCUmKWkxTAKUUnHSlHFADv881PbnBIqvmpIT84pMC5k0ob1qPdRmpKJQQfpTWHPT9aYG+tO3Z96AEIxTSKeWpMjFAiPFJT+wphwKYDelIacabQITH60lLRTATrzSd6U9aSgAx7UUUUAFA+lFFAC0d6KKAA/jSUGigBKKKKACjvRRQAUtJmj/PFADh7U4U0fX8KUUALS0lFIBw/wA8UUg60tAxyD5xmpeMVGnXmpQKAEx2xShR9ailkOcKcYPJpz5zwcHsKAJNo9KXaMcCoSzEM2cBT09akMgCZHX0oAdtBo2LnOKYrMHKnk9aUSny9x5OeKQDtgpfLHvTVclScg/SnI+Yt5wKBiiIev4U4Q+9Nik3gkjHNBm2scLkA4JzQA7ygccml8ketIZx12nGcZqR32AcEk8DFIY3yfRqPI7Zz+FOWdducMOcYxzQsqsu7aeuMYosA37OexpkkJC53VZjdXXcvIplwcJ7mgDOfBY57VGakfqcE81H3qiRKPajvSjrQAmKPal7dKTv2oAOaUUg9qUfnQAv4UUCnYpDADFKBxQOtOHJpAHNKaCOtA6c0DEFKRnn3o5z0pwH4UAMxjnmnbc8U7b36+lAHNIA2joDQBgZpcc4pce9AwUY45p4GV5pB0Bpw9O9IYnJz6d6Bwacce/tS44HHHvQAn8/WpFFR455qZD8oOOfSkxhtxk9KUc0E9+SaMYXOM0hgAMdeacAeBjgcUwNgk08Me1IBcDOTzSlcn+ppBnnPWpANh5HPX60DGLhTg9/alHLduOMU5gAAe+cUIPXrSGIcYyD9easLjbnoe9REAP0qTcW7dDQMOGPrmlDDoPWkBGTx19OtIo5yecUgHcAZ4yf0pTztz1puSH5HHXNLzg5/DrQMOvH5059qxEnsPxpAeQRmo7lh5QXnLGnFXdiZOyH6dEXlMjA9cVuqOAAKo6fD5cYz1q907YrtSsjjbuxcfnTsU0dKcB7GmIWlx60g+vFLQA7NLk46Gk96OO3T6UAcT5Kk5xW74VvxpetQPn5C4DANjNYw4PpUi53BlxkEVxtXR0p2PcNQTM8cqfdccEd6ralEZ9Kyoy8bZ/CnaJc/wBqeHbWd+ZAMNznkVZhKm6e3ODlelcTVmdSehyuN6EH0rJvYtuG/Aity5U295LEQV2seKydQBMgx0IzVREzLkyRwcH2poUk4HWnT5U4FRIXEnetCQbOelWLeMSxlV+/1571G4yvaktmKThuwPNMCKSErncO+DUJIBIPrWxPHnkYINVbixJYuo/CmIqx/dxjI7U0H5jninrnGSORUTq2Qc5FADx1OKCBjpzUana4I7mncjHPGetAxeOnFO4x7U1ByQeaeB8rA4xmgRG3EnXI9KcF3HkY75p0cQBJ9KJQExt7UAV2UB8LwO1Dgc8HmnEAY+nFM5Zuv50xDDGCuc0iKplUPjB44qZeAeMgjFR7DtwM5pgRSJsb5en+f/rU3r9albOCO9NZCo+v50yRgGeDTpVxkjpSKvTpSS8kAH60AR4z2z+NR5A6Z47VaQDIIGKhMfz5xxQIjc9cZ54pojyOTk5qYpuJI4pMLg9j1piIGXbnmoiODnpUzJ8/UetNAHUimIr4wMGkwenpTyM8daAp4FUIYAc1FjBqccNUeDkUxMZjjJ9KYy85HFS8c5xTD0piIWXA+nFMx3qcjPeo8H0piIW/OmH8KmYYqIjmqAZig040mM0xCUUo6UmKACpIv9YKjFSRsFctgn6UgLXNNNRG6HZDS/aU64NKwXJKXpxUQuYyOh/Kl+0xdyfyosFyQ0nTjpTPPix96l86Mj79AXHZPrTT+lMMsfZhR5iH+KgBe/vSUIGmkWOP5mY4AHenTxS20rRTRtHIOoYYpgMNFJuHrSDHrQAp9qKTj2paAAmk70UZoAWik7U4KWIwKGAlFSmCQ9BSfZZ2/urSuhXIvzpKkNpKBwQfeke0lSPIJZs9KLoLjDSd6YPNUEsCFHqKRZSxwFP4UwuS0Ud8UUALRSUuaAFpc02nZ+uaBi80UmaWkAoPNO7UwfpTxQA+PFSfhUIODTt/OKBjmRWIyBS+V828MR6UzeaeJKAF8n34PJGKc0YYe/rTd59KPM9qAFCEZOfmNJ5X7sKSDzmgSe1L5nqKAAIwDHI3GhYm2KGbkelKJR6UvmdOlIYRxbVwzUnlPgrjgnOc08SADODSiUE5oAb5JZwAMLnJ5qWSIuyf3RnPNIJlPGCO1PEq46UARKjRlGKk4JzinYKxsWDAsc/LUomQeop3mp/e/SlcY23UpEoIwaivGAIHftU3nL6k1RuZBLNkdAMUAQt1yOaYTzSmkPrVEiUUUUABoo/nRmgAoBoHQinCgApSeaBzilwQaQxQOuad26UgHQ0o5PpSAce/XNAA60pFAHPrQMUDk0DjpQvXrxSk4INIYqjKgnpTSPmB6808cjjp3pQo64pAIeuaXb+NL34oHbAOaBjcc+uad0789TTtvTFIAc+1IBRyMYp3UetIOcUoJyB+dADU5bb6ipgMcDGKizk5xzmnljxgnNIY5sZFGckcCkxn1z605UHX86QxVUHnA6YFKFPII9qcmMA05gPxzQMaMbuOvtTslvxpMAfj61Iq/NSGRnJbBAP1p6jnt1xShcg54zTlXHWkMQpzgDPGKRSQSOfepME85oK9OPwoGJjPOOAKeoPPHtSL8oI9Kfzt4/KgAKq2ccVE4K8YxUo7DHXjFKVIUZGaQEI5I56+tRhfPvAv93tU7gLEW29BSaYhkkLnkk9a2pLW5jVdtDZiTYij2qXigDtil6/Wuk5gANLj2/Cjt1pcGmAopQMjFIKcASeOtAFO/vo7NOvzYzis0a4+Og/OquoQzPdyO6MOeuO1UcN/eP61DlLoaJRsSd6kTg80wcUox39KwND0P4f6oPKnsTkD74FdJezrbazBIeEbAP48V5v4PmMPiO2xJtV8qQD1H+cV3+vBh5WCcjJHtXLVVpHRB3RDrcXl6i0hOVcA1g3ijG4V1F8Rf6FFcqA0qj5uPzrmZhuixis0WzGm4OTTV557ip5/mTbgZ6VXHynB5rUgmPCZ7EVAXC881YZwYvaofKzzigANw4CrnIFW47sTEjaQwrPkUhxzxTs7cnNMRNcgKSQMZ9KrHkcCrsZ8+1JONwNVmQxsVZSPrTArY9B3qRRn5qXyzk56HpTQH65oAUf64cfe4qQ9SAear4J9cjmraSKI33dWAOaBj0CJGzZy+elVmGWyeDmpCMgn1pMgHrwKBDAvzZJqOZM8jsKmyCCBTD06e/HegCMbsYpyrweeQaUAjgjAzQRtzycGmBGEy27pTnUbAT1/nVhUz1HU1DJleM89OtMRBIoBFRtGQNw571Kw3EDFH0HBoEVwTgHPNJu5GeR3qQrnjuKicEjOPemIUnBpCBgUoUle+aaevGaBETDGfWoxx261Mw6560wDv2qhEIXn6Gmnjp1qXGM5qJjknvTExvFCj5gD3PWkXqM08jEhPQCmIh24Yjv/ACphXripmHOc/nTCO1O4rERH+FMx/k1KVJPemOMHGO9MRCwwOlRN1/Gp2Xr61E3IqhMiPAoxzSnt1pccdaYhp6U3FPpO3SgBKVeKKTvTESE0mPQUAUYHegAAHoKMDnilooAQKufuik2r6U6k60ANMa9hSeWtPpKBDUzFIrxsyMvIKnBH406eSS4k8yeWSV8Y3OxY/maSkoAZsHvSbPen9KKYDdnuaMH1NOopAJ83rSqrs2Bmgc+9aFpbHGSOTUylYCGC1dmzIeKvJCF4CgVYWI+lTJGVH161hKdxlXy8U/ys9M1ZEYHY08KOKzcgsUvKI7delL5J6+varyw7sUhiVetLmAoNb5BDDIqhJpxRiYWwT2rf2gdeaiaLI6cU41WhWOX+zyRy4dgp9SaexRWClgc9xW1d2STREEYPrWHd2a2oHzkk+1dMJqQbCnjrnmkDCmRz7yEfHoCKey7TitAuLvX1pwZeeRUdFAEgYetPyPUVDgGlxRYdyUYwCSKUEZzkVBShQe1FguTZGeopdw9RUOBRjvSsFybeM0/IHOcZqtsFLtFFguWNy4NG5epaoNgHrRtHvRYdywCM9RQSBxmq5QdjSbB03UWC5Yzz1pc1W257n86Nh/vGiwXLW/3pQR2qns9zSiM/3jSsFy9jPfrTl69qohGH8bD8aUIQfvt6daLDuXyKMHB9KpAP081/zpw34/1jfnSsHMWmbCnFVFPBOeaN5RhuJYU0HJosFxSfWkozR1pgJRQfpRQAd6PfFHWjGDQAo4NL3pKdQMVQcZ6mn44FIvXmnc1ICY6UoGPSlA5pe+DSGKB78e9N5/Cnjr14pCBgCgAH9KXgdaFHFOC856UDAZ6d6eBSAYGaCfUcUgAdyKcBxupnAHJzUmcKMfpSGNY/5NKen49aCMf4UtADlGB7Z/SlIx/9akycdfpT8ZPtSGR4I5607HQ44xTgvY8ZpByOtIB8Q3Z9qeP0x3pFG1dw/WlGM0FDuOMUZAJOePelVSGyDQRg4PX+dIYuMAnAHvUiDg5PX0piAbCMc1KBwT7UhiBecU8LyN2KaDgnjj6U8HjJ70DELDPUj+lNXaF68UuQVzjA/pUfUHjrSAfgZ6DHXNSAcYqNeABzUqDOD/WgYnXnPHalIYqCentRjB70EAKaAK1052BBkA9vWtPTogkQ456/WstVM9yqH7q+lb8CbUFddJWRx1JXZLxS84pBxS1qZhTsetIOaXoKAFxmnjg8HGKb3pwoAnZreWPEsCsai8mwHH2GL8RRwetG0mgDix69KUAfhSDgcfrTq5ToLFjObW7imB2lHBB9MV65qeLzTIbtOpAavHR644r1fw3djUfCSJgF41KEDsO1YVl1Nab6EukO01jdWbAcDcMd8/5FYTxp8y5x2rT0aYw6wEc/fUqeO4qjqcajUJgBj5z2rA2MCVTHI0bdulV26nmr1/G6upxwR1rPOea1RLFC78jPApxIxxUffANIQQOtMQrgsMg9OKWNQyNu/OmKSTtGMEUsWcsO2PzoAntpURipyB2IqS4QOdwPPoaqAdcrn2pwlcEZ5FMQx8g+o9xTuSBz1IqcqrjgHBqsMA7evpQBNLGsGD1B5qsWJPtU+3eoUk+2ag2npkCgCVW/cjnpTZPvYppGFA/lSdFJ9O1ACgbcH+lIwJGe/pSr82OtPA544oAQEk/MaGB25pDjIPTFBJKbcH2oAliIYEL1Ud6hugchs4zT1OyTOCG6VMyBgBjnHSmIomPJ3elBLDg5wTT2Qgt2+tIo3bhjpQBHtIPPHvUWwk5PAqyDkFSP0ppUAHBGe1Ait070gAyOBipWAH4UhX8gO1USRumTnHQVCwB9qsMCT17c1A2enegCJ1z0x+NRldx6fjVhQDnP5VGVAOf1qhEBjO4fypzj5GP0FSHoM/nSMvyp78mmSQ9Kaw4zUrLntgCo3HH0pgRdye9McA088UxuaYiJl+UVC/FWGxjHeoXHNUhEdJ0HFOx6Uh6VRI32oxRRQAnSkzig9RSCmIkHSlpB0oJA96B2FopuST2pe3ekFhaP6U3PvSjJ+lMQdOtJS4pKAEpKKDQITpR34oo70AFFIDnJxTlBYgDvSYFmzg8wliOB0rZhhxgkHNV7KPaoA6Ec1qxIAM1y1J3Y0MSL25+lSpHlsd6fjI4FPRGHbis7pLUrYbsC+9MKgVbEQODilMIJxio9qFyFeB/Wm+UHlOOwqfyih6cUxPkzk8k5q1KMgIfLGelI0fb27VbGDxQ0R9KzkrA0Z5i+Ug1Ru7MToUKg+9a7JweKhdOOetOM2mSYK2EcQxjLDvVe4gwM4GRW3JFVOaMMCK6YVGwMTvS1JKu1yOlR10piCloA5pKAFFLSCl70AOxRj8KBS0AGMmlxikzSg0DCiig0gD/9dHWil9aAEFLigenSloATFLtxS9qXtQA3IUcnFP8Al7MD9DRgEcikCqDkDmgYuKXFGQaXP+NAiCdTsyBUUL9jVqX7hBxVMfK+KALGPzo60A5FFIYn0opaTrQMOlLSUtAC9adimr3p4/WkMUDnPanjHcU1elO/GkA40BehoPJpR0xSGL9fWl9xRig9CPWkMB0pxHy0i8/hSk//AF6AAeg59qPek7+5p+3OMg0DGEY61IBwAcUjCnL0z70gAH1/GlXr1600Cn+9IYu3n+lSKuOnH1pq4759qkQ5z0xSAbIDn5R+VMwAO59qlxkjPejAORjn3oGCHI/xp45PNNVeeO/SnJ97HOMUikSjnn1pNobk/wAqAD705RhaQxVHHajpzmjGO/40HjgEjAoAOn0pHYnkDpxwKDyOtOwSDnmgYv3vvDJ+tM8r8BjvT/1px7kjikAzndgevSpVyBUa5J749qkH93NAxevTOcU1m2ZJ7A9qdgDDY5qvePhAmcluKcVd2Jm7Ik0yNmcyEZ5rbUD0qlYQ+VAufT0q91Fd0VZHE9xfr1ooxSimIUClA7ijrSgUAA607ApOhHPNLnvmgBcYNJkeg/Kl6UZ4oA43PJpR07U0YApc9xXKbjwc13/w4vDuvLRiSCN6r6etefDNdF4JvDaeI4FLMFlypAbrx6VE1eLLg9Trbpza6t54U/u3LVe1+0VkivY1G1wN1R63F5V3nHyuKvQSNfeHSpUFlUgYHpXGzpOQuwHhPqORWI+5gB37iuhkUeWST2rHdAJDVxZLRVRCrZ7Urrk4IwankycAEComwcKwz6GtBDVVQRk04pjkU4gdvwp2cLkdMflTEQqPmxkUMoAzn86UCiQcKScevvQA+3k3A+o4NR7cOWPJojKq/HTpUk2EXPAIoAULng/jVdxtcrzkE8/jT1nHO0HjtUZJJJ/mKABxhguBn+VMZcE96lkJKLjqOKazANkE+/NAEfYc8+1SqM556c1H1HGamVG2o3HPUUAN5z605jgnHanINzMARnGRUbfL26UANyxBOc1aEiqFyRkYqAYIBB7dKaVZjgcnpxQIlnG5gV5zjFQrEASTnB5q7DCwjDPjrxiq8pCDZnJPNMRABgg4yKjlOGxjoKmY/KMnrUTfOuKAGqMDceeKbIQIV29T1AqXGAQWwQOopjjJz260wI2I2fWq8gJIP6VYYZQA5puMsB70ySJAQAKjcdsfpVjqc/pUTfeJ7CmhEBX1p91lTHnsooIzx/KllIZR7YpiITz2+tMbOP8AGnA5TrTWJYHFMCFhhs9qjbpUx75FRSA561SEQtz1qNyKlI6f4VEcE+1UiWMNNNSEUz1qiRp44pOgNDHmmFuMUDsB60o5FNqW3KA5aPeewzTHy2Gj9KUZY4AyatLPanhrT8n6UgjOSUG1e2etILohEMmR8jflT/JPBY49qmMgQDDEnp1qFnJPWgVxpCp3FHXHIpmOaOnQ0xDiueabs56UGkx70CGspHvTTx14qTJoILA96BEJkGOFJ9KRiQ4z8p7irfmpHErBA2OGXuKr3EqTlTGpz0wRzQhEbSMrAL0/nV60USOMg1SaCYFSQK1bGNl5PFTN2QI17WMYwR9avDj5RyT3qvb4CZ749KkTLNnPFcT7miLEacf55qwEwPc1EoHWpg52CueTuIlCBlA7/Wjbg5x0pUHHU1JhQMnmswK5GcmgxZXpU+xWFLsHb0ovYZVKEDGOM80oOBVnaCpBHNVmBRjwSDWkJ9GNCOoPSq0qDHI4q0GBB4qOVSVyKqStqJoz5U/iBrNvHCfjWs6nBBrntRfDt+QrajqJK7KMzAvkCo8kkADJNMdiB3p1vcPAN21SCe9dyWmgT0LRtcY+cA+h70XMHlIHIPJqS7miu9MWUHEiONy56VTkuXkt1iJyFOQTRGMnqZ3ClpuSpUOCMjIzTh1qmUPGcUUgNGc96QwpaTpQOKAFBz1paBR25pAFAoo+lAC9TR3pR7UD1oAWjFFOB96ADt3o6iiigBaUU38aXNAA3SqUwwQatMeKgkGQRTAfGcr7U+oIWwCCeanxwMUmNCUd6Wk5zSGB6UuPWgClx0/nQADinjH4Ug69acvf0pDHCnfnQMD/APVQB06Uhh179qUdaQAjinKtIB3v3pG7elKeM96UDOOlIY1cgUuCMZpwUdRRjk9BigA4J96f1AwRx1puMdOlKo655pDFPzd6F6YHpSkdf/10KcL70AA+7nj86X8c0qAjocUpHNIYDBQnHPSnKxC0KpxjI5o5JAHrSGSdOvWjHP1o/hz/APqp3JTNIYgyHz78U9AN3PYZyaQcHPT+lA65OM0DJCR0Hp29KkTlM45qMMAecipQcL06+lIY0nAHH0pucDOMZpSCPu9KFBbOR07UDHrtODxwM0gJyT2zRwTyPpSov5e1IBM4XGOaUZYEe1IwxwDT48D29xQMYo+b6dqlboCO9MaPGWHXuKcGO0e1AChc9OlVYR518c544zVpm2QM+cHHU03SoW3GTue5raitbmFZ2VjWij2qKlHFIBjrnFLXUcwuPpQPfij+VRzzrDHk8k9qTdgSvsSPKsYyxwKoTasinEY3VTubhpOpPrVBu5FYyq9jdUu5fbVrhmyAv5Un9pXAxyPyqjgVKozyecGo9pIrkialtq4ZgsgwfWr/ANri/vD865vYBlucVGbog4yfzq1VfUh010IwetKOKb0PpTgcVIx2cVa024+zanbTngI4Y9qqg5FBHuRSaGnY9p1SH7XaLIOTtDKQPaqehTArcwA4ZhlQfpijwlfrqfhxFZizw/Ickk1BZMttqikqdu4oT+NcMlZ2OuLurmPMpGVbI5wazLmNVJHcciun8RW4t9RPljAcbj9a5y4GTu7d6IsGZx5znseOacTv7c0jcOwzjmlRgrHPetiBUxtJ6GkQkqTzSOwd8A4A4FIHZDx0piFTnjGeaSbGADTVbBOKGOVPOR2oAQDkZ7dakciRSO+OtNQjAyBn3709ACcDGCOBQBFtCR9MZpg4HJzWhJDHswSAMd+1VTayKpY4we470AIP9XxzUJUZBWpgDswc0xuCOe2KAEQHOeoFSJiSTac5PIpi8cYppYiQMox6UATquJQe470+T5nOB15qFZAzc8E9icVNIQm0k5JHrQIrcBgOgPFPVijcEZ7E9qRV3kkdqdjjAoGPjneMbjypPIqEqZnwMZbJHPem5OME45oUnOc9KBWEkz0IPFNI+UBe1PkZi/PIzSsgwCOhFAETjIznqaRiAoXH41NsYuMd+maWaJN+c5GOcetMRWbLIMepqMjHc4q0wAQBcdPyqrKpGVP6UxCYwT7VDgnIxxntUy5MeTjOacqFkyOtMRDGoVix6gGoByrD34qzNujjUkY3dKgj6E0xEW0gZ7Uzbx1qVm6ios+tUhETjB5FRHk96lkIznFRZNMRFKcZx+VRYwvpUs3ygtiqrSflVoVrisQBUZORgU/YTnsPekLIjfLyaofKRkcc00jNWUglmOei+tWYrSKMZYbm96AukUY4JJPuj5fWra2wCAFicfhVk4HA/KozIN2Np+tMhu4ixrGP3ceT65qOQStnKnntUwkA4xkntTi5HJBoEUtjDqhpCD/dNXc7hnBoxQBn/MTwDSbWHODWhTSKAKJOOtIuTwKulfUCkx6AflQIgEI6kmmSSKowOakuGKqAO9VetA0gBIyTjB4IPerOnIhkO9FwOQc1VAyMGlQlG46UA4mjduqt+6KE+56U+zlJIzz71nO26prSUxH2zWc1oHKdKDiLA71LGDkGqUUyyBcMCKvRt8wx61yVNEMshuOakJwvBzUeeQQakXp8w/KuZiHqHbnPFSgkcGgEjBHpTshsVAxwI9adu6VCODipACOR0pNAPPSmOAFNLnA/wprkAYzQhlbJDH60+U5TFNfkjmk5wa6FrEZRucxozVzF6S0gz9TXT3obyzn6Vyly+Lp+eBxXTQWg4EaQNKrEDkcDirZ0wiSOMKMMuST7VLpU6AyhwPl5q1aaik4kZgBsz37Vs5TWyMpu7M6+04WSBxzG3B9qnNmraZCYwPOHXA6g1El8l6jWsvGT8hqxLerbanGuQqiPB+vNNyqWS6ozJdZt4/IjQKPNhwCR3FYxXacGp7jUPN1AtuJixjPrUNw+JOCCOx9RThGSWpSEozSUd6soWlzSUUAL396AeaQGikAtKKbmlHpigBwpRTQaWgB2aKb3pc0AOzx2opMjFNPpnmgB5NGaTzpQpTKlfQgfzptAA2femHmnGkNCAiX5ZcHvVgGq8g5DDtUyNlaGNElJSg/L70lIYd6UUCjPNIBw+lPAJpi/5xTx1xSYxx9qUde1BP50UhjhxkilpBnHvTiOgpDE64p4746mmgcj0pecd6AH5OOtGB2FIDxSikMcRnjoKE5P1FJjjIpV69f1oGOPQmm4ycevanEY57Uqrg80gALTwpB96AOMg5p4+uD6UhjVGP8A69GKcynJx+NOUHJ5pDHDBOPQZpRxgDvQo4Ynv+tJ/FwOO3NADtnFIBt+lPzweOaa2SCR1oKDpjrUwwR+HeowBkr2HWnqpxz2FIBdvIBOaNuDnNA+9ljinYGeuaQxiDLZqQ+gFCKFAp4GDkigZFIDu6exxTo1wwxSMSc565zTVY7ucke1AEh+8efzoA5wD75oJ/ixxSqMvj1pAV7xjsSIDljWlYReXAuRWXGDLqAVuVXIrfiUKgHFdlONonHUldj+1LSfjTq1MxskgiiLE8DtWLJMZWLMT9PSr+oSgFYx261mOOwxg9a5qstbHTTjZXIpWBHTvjiomHXgU5x83cYoHOBzWRoLGpbtx71MF5wBQMhc9KBywAwf1pAQ3Z8uEkZHGTWJ9olPOwf99Vo6tckoI0HJ4qgLdQAD5me+DW0I6GM5WZ0GyMfwL+IoNvG3JQY9RxS54p43YyM4+lXYRWktgozGc47GoR9K0QMKWYcY4rPfAkPbuKloZ2Xw/vhDqclmzELOuVHuK6fVUCXEgGRu54FeceH79dP1m2nbIAcA4969U15Ve2WZOe+R6Vx1laVzopO6GajbjUdGW8z++WPPHc1xj/NFnpmux0md5dKuIRglM7R9RXKSApvjddrgng1kjVmVICrjuKjYYGR0qedSSTg5B7VCcZG0VsjNkAYq/se5qYRlunWophiQHpViOU+XtwDTEQhSrEZ6mhQCuR1pZODuPBzSqFwT2PNMBue/GBUZfBDg4549al2DcCaR1Rcdxn8aAFQv5nzMSOxz2q/A4kBVvvHtWeCCgK5BHGKnBwikdQeooAJrdovm6j2qqwIYfLnPQ1ZLsUZS+DnNRqwXgjPuaQDUj3zYzjPTNEiBOO/enx4eRcetRTOGncdgelMBhXGDT958rB5IPFI43e1NGdvJoAepweDnPWncbxmo84II7j1px3c5FABKgRlIHBPNJuG4HFOc5jVs49qiVipGe/agLj2AL5OMUMCVyD2HSh13RHB4zT0G1AB+tAiKIgtjpjp706Ujaox9aQAq+cd6eQGGD6c0AREjbnnOagkUiU5PFTsMMQOlRHleKaJGKNyEY49amiXAODz/AEpMAZAxjFMgm8lmJHABx70xEV2Qz4HIQYBqGMfepW5P60Lww+lUIgkHzE/pUWNo96mkwZMZ+tRspP07U0JkTYP0qLbg1JxTT0z71RIwOY5FYKpIOcN3rRbWbcxFJdMgbPUhQP6VmHliRxTW6e1UguTPcaczHNgyjsFc1JBe6PDkvp8jtnOWPT9aoMKilAqkJyZtf2vo7EZsplX2b/69B1LReD9nnA7/ADVz+KQiqsRc3jqGinpFce/zU37ZozdftC+2c/0rCwKTFFhG79o0YE4e4+uBTvtOk/8APaYfVBWBikPU0WGdB5mlkZF2w+qUuNOYZGoLn3SudxSkU7AdEILNiAt/Cc98GnnSjjK3MBH1I/pXOKoxmn4x3osFzdbSZ15DRN9HH9aYdNu8/LEW+jA1jb37O34GnG4nPWZz9WNKwrl24067K/8AHtICOny1msrKxVgQw6gjpU63l0n3Z3HtmnNqNyeWcMfVlBosUpIq0cGrH9oPn5oYm/4DSLcRv961T8CRRYfMiEdfepY+2Kd5lofvRSL9DmpFks+NsrA/7QqWmO6HozIwKsQavQ38in5gG/Gq62xcBomDjpkU8208fJQ49awnFPce5qJqkWPmyD9KuR3sDjiQfTOK57bIOSjfXFG7saxdJMOU6iOdDxu4NTiVR05FciGIIwSDTxPKowJXA+tZugHKdasybgf6VL5ileK5Fb26U8SnAHepF1O6Xup/CpdBiszqC6jnIo27hu9a5pdYmByUBJ96lGuMfvRn86XsZBZmzJtXPrSIMjd6VhtrCt/CwNSrrK4IJIz7VrGnJIepb1E5hIJ5rj7rH2mTt81bl1qkEnAY591NYd06SSllPXqK6KEWlqOOhWbIPyORkc0zlAcEgng+9PoxkV1JkuIwZUqyfeBzmlkkaViz/eJ604Ag0pBai5PKIr4UpgY+lPgjaeRUHSmAFWB7ip4ZPLDEDDHjNNvQlxYFSrEEdKSnxyKrlpFLg9eaJEQgvEeP7p7VJVhlLSoEbO59p9xxTmgdfQjHUGkFhnajNIaKYhaWkooAWlziko6UgFzS00Hml/HpQAtHvRRQAGkpc/WkoAG6U00GkpgIwJFEJ6ilpg+Sb2NAFoD60YoByP8A61KcVJQnc0DucUClByaQDlH5U8HBxTQMUo4IpMY8jt1pMZOKUcnoaccE9KQwQZ7+9SMcEdKavHT6U5j+lIYe+TS8ce1N3fL2p+CcYoAQAAcjIpexNO28be9NBOcY+tIY7b8vWlUYK/WlC9MUrY3UhisCxOPwpB1Ap6AdSaFHfsPakMUAgD+VL0boc0oPWlAPpigBcnPPTrTgACememaYvLVKgDNweRSGJjr/AFpQvAzwPWnAYGcZyc5oPXGM8YpDE4dcA8844pygD5s8du9KBhPwoPUY6jtQMVQCCR/+ugjBzRG2e3GPWnAc5PYUgDJwSfeheu4HHek+6AxP1pNoU8HrzQMezAHNCnBNR5zIF/XpUmew6Y60DEJyeox1NKgGM496aT3zwaeDyO1AD/QADFV538sEjpipi43A1UuTvZEBwTVQV2TN2Ra0qAklyRzWyowOtVrKIRwgYxxVrFdq2OJvUPw/SnJ1GaQDuBTwOnPNMRk35/0huKpO5X29Oa19Ut+ROo4xhqx5SC3TpXJUVpHXCV0REjqeeKI1JbkcUEDOM5p4+n41BQ4gAcH9aY8hiXcByRS52g84AqGO3l1CTESnGcdKqEbsiUrIqxQPe3a92PT2roRpNuAAQ2e/C/4Vd0/S47Fc/ec9TV/H+yv+fwrqUUczkcvvHccUocDoOD2zVzUdHuNLaPzCrxv9116fSqB9PTvWZqSyybwAMeuKrXK5jEijODg08elKBuBU9CKTApE8gnnnpXr+j3A1bwnbudu7y9rY5wQP514+3yuUPUV3Pw71PbLc6ZIx2yL5iD3GAa560bxua0nZnQaHP9m1BVY4WX5T9e1M8U2qwmK4G3czlTz7UuoKbe8ymVwd2RU3iKSObTIZRyHKsDXJ1Ok5OZBgg9azjlHwenrWjMcrnHNVJflk3c81rElkFwoYg5xTYX2ptxketTSKGBzUUAIB3DjPpVkEjgvGueDSkDaB3pedowOBQ2CoYCgBhJ+7TGBYnOfQfSpF+ZumCfaldCpz2PFAESR9eeBT14Bx+PvSqQPkHOeKjdzu+Ucd/rQAH5iePSmsxPvinOoZMA+lIq7cAUACgryBjHNLIAG56nFOVSc4J/Ch15BbO7jj2oAiJJGQOmKUAEYoRd2eaMHI54oAbkKwJFTsvynBGPSoQN0pGKmDZG0jpxmmBEDtTH5YpPLLEA9u9PCljjIpxO306UCCRWVVXH1NNXkdc4p25njAPXPFRMMYHvQA0Es2Pyp+CD6fWo1IaQDnj1qbHPB4ycUAMfO0njp1pmAYyR6VI4JG0GmDldo4piISDtP59aiJ5wanZcRk55HaomxuBzTEyFkwMikOVbPNSEY9qbIBtGeOaZJXlALFh1+tRkk9f/1U6Q/MT2NM6riqQiNxjPvUTHjHarDfN+VV2HNWiRAM0wjrUijGB0oKjB96YiAgCq0vLVbfgEkVTcfNVIljMcUnanU2rJEIpKceaTFADcUdqWigoAOKVVyc0YzT1GKYmA7Ud6ax9KTNBI/86TtTd1LnNMBcUmKUHmjFICNhUsZAXGKTGaQcGhiHSIGGKgZNrVODk5PWo3xuzUodi5p909ucDlfSuutXV41II5HauFVyp4roNI1FGURPww6Vz14Nq6GtDoDCmeUX8qieyt5DzEv4cYqVJAcc8+9LnBxjiuG8kO5SbSYGxgkVWk0ZsnZL+fFbHTvTd+DVKrJFczOffTrhD0B+lV2R1PKH8q6hwCBt/GozGGHKg/UVard0PmOWOeRjBppOa6SS3iOCY0/KoJraGQHfEv8AvLwf0rWM0x8yMAjNIxwMmrk1kyyHyjlewJ5FV3srvyyy20rKBkkITitlqUUZGyTTFXOcjimlvmIIIOehqVPmjwK02BlcnFKCakaMBSTUagk4qriHDkUtR5I7VKDxQAgzSiiigB1A5PWk5pf50gAoRUkc7KNpzimKStO+Ujgc0AKV38rUWSDzUoBQ5DEe1K+xl3HrQS0RClpRjbhf8mimQxOnNLSY5paAClpO/tS0gClpPaj3oAPakyaWkoAQ0lBo7UwDvTJBxkdafQeQaBEkJDL71J2HpVaBtrEVa6ipZSG4pQPrQelOHT/61IYo7jNPApuPSnjpUsoMYH0pc9+cUYz2pccUAL0GadjJHAzSdh/SnZ+b60hibc1IigKcUH/OaVT2NIY7FAGT2pe4PT6UvAP+NIYgx3FKc4wDSDqePrQcfiaAJVGEz+NNyFyfalUYXNHbFIYqdCad/CTjBoB+TjFKV470gEBzz0z1qUcMB3poX5cg0+JflBPXp9KBocR+mcUoU8nv1zSdQTj2p27070ikOxyQO3FJz1zx3po3ZOcc8cU/OBjPNIYKvWl3d+1KvTPWiUDAHQ0ARs3QHJHtR2xQeCOOKUtuA9KBjW+97/WnAFxxjNB7cfSpAuAOeDQAgTjGefakC5fjOKk7dKATjFIYbcdeT3qnbp596DnKr0q1K3lwls9BTtKh+Xeeproox6nNWfQ1o1woFPxQAAMUvSuk5wxzS45xQOp5pRQBDqMmywI7k45rn3GRmtPV5gXWMH7vOPestj3A4z1rlqv3jppq0RvINKrcn0qMsSOtKW8tM9hWdirjJg00qQoep+aursohbwqkaheO1YGj25muGnf6CunjXaBXXCNkc03djsUnNLS49x+dWQLqifbI41f7kWWzmuUcq0jFR8pPAruJLcHSb1zy3lMBj6VwkbDGD+NYs2QMMcg5FAPPFScY7800xtyQrYHOeaQyrdLtKyYPIwTU2jai+marb3aZPluCw9u9EmZYyhGT/Ws8g9COnByKTSejGnY9j1oq/lXEXMcg+Vgc0GM3nhkRquSgxk9RisPwvfjVPDEtozlp7Y5G88lexH8q2vD90xuHtmfEbpkfWvPkuV2OyLurnNmMGPjkmqVwh25xyK2763NrqE8IPyhsr9KoyLknI600xMyGkBI4NLH0P86b5eMjoc4qRCVGDWpADIBpOgA7U89x+VNHJH65oAaGwR65pz8hSPypq7VYnB980gO1Qc0wEB8ts9800lSSSevNMzkBj0pVQujcHHakA1c5wDnnpUxCqACec1GB5fA60vJOT1oAch2ucDrS3BKlcDnPWmfxBupFLKMkHHagAjwvb3yaGU457U5che1IWxwegpgMBKsCMZx3pxchuQMU1tpxnH1NNGST9M5oAkB4yODSnAAqJCckEUvVwQSMe9AiRQAwJNMcgg5PP8qJODimHg+tAAgw7egp4Py+uKbuUcHjinHvg0ABPJHrzULDa/H1p5bBBJAps52tt/ipkiMC3f8ACmMhQHPJpyEnJHpRIeOeppgQsPlPtUMnKjHNSup2HBqDI/IUxMjfr900w8HpUsq52noTUec+2TVEkbYIx3qAc1O464xUZU5qkJjdo65oOKfwO/FDAKuaZJUlPQelVW61Yc8moCOa0RDGUlOxQF9qokaFzSFeasJHx0604x5HBoGipikxUrLg9Kb1oKuIo7U48ClAA9Kax5pkjD9aSlpKAEopaTvTEKDzS5pKWgBQaUnFJjimk0hpCZpKX2pKRQUquyOGUkEelIBTgtDEbVjq/RJuPetyO7V1B3AjsRXGqlTRyyx/ccgexrmnRi3dE3OvaZSeG5A7Uol49a4w3DK3PJJzmp1v3BBEhXA4Gaz+rBc6zzKBLtGK5tNUnPWUH8BVlL6YOo3b1J54qXh2h3Nh5SRgVWklJzUbXKDqwH1qrLfRJxnJ9jSjB3C5JvxJnOB71E2sravmKYhh/cNZV3dtL8oPFUCprqhDuHMb/wDbtheHZqFmpyf9Yo+b6kjmo30yOXLadOk0ZGdrNhhWFilDMpBDEEdCK15RqbNGaCWIYkidfZhioVxycVLba7e2/DsJo+6SDORV0anpN8m25s/szn/lpDwB+H/1qXKylIyGQqMk9aAePpWu2li6jzY3cM49CdpH51Tm0u/tlLS2soUdWC5A/EUykVqBQDjrQDQULS0lLikAUA4OaOlKKAJ8qU54xzVaRxkhfxp0sgSIJ/H39qhTkimkS2TDpS0gpaDMKKXtSUAFHPFApaQBRR0oFAB2pEleJshVOOfmGc0de1IaAFknM7lmjRP9wYplHNHemAtHWkpaBDR8soPTNW1OR1qo4+XI7VLAxwDSZSJiuaeBx70n507FQUKBwKcBkUnFO4wKQwHSjPNKBzQRzQMUd6cOSKQLjJpR8q980gHkfT+lKoIJpB90k/ypy5xikULn3pQeTSEYFLgYOeaQDl4Ofwp2wHAPSmDrj+tSDkfypDAHApo4zzT1GG571IiDJ9fegCMZ6eh608Hjj6UhXB4pyevrmkMNoUetTAYiAFRgk9KcO3H5UhjmA3YyKACXHNPdQxGBmkH1560hidselPxuAP8AKgkbSfbHFPRRsBzzigYwHA60pOVDdu1ABySc+tIWJX0BoAQEHAppBGcc0lORSSTQA5F3YPQCpSoBximAgZzwBSs2Op/SkULkZODn0pR8zAUiDK5z+VP+XcOwoAp3kgYrCG5JyRWxZRCKIKCfbNZMCCe/L7cgVvIAF4FdtONkcNSV5Due9Lj3PNAH0NHGBzWhmLinKM4pBT04INAHO3533UmT0OKpHritnUtLmSQzxKWibk47VkPG4PzLz6VzSg2zpjJWGbRu9vao3LSyCGMZJParENldXb7IomYZGTjgZrd0/RksSJJMNMRz3xVQp9yJT7E2n2Yt7aNQDkDmrtFLitzIKTIz9004DNG0+1AjdeF1sLiPYcshGMe1eeS6beQqSbaX8VP+FeumzmK5G3PoTzWdNOEJVuoOCKyZseY2kTPcRxOCAzAHIrqUZATAsa+V90rjg1rzNDKQSiEjuRVYxW4YvsCnrkUgOJuE8i5kjPRGIrMu0xKSOjc1o30ofUJ2Q5RnJU1TuF8yE92XkUAbfgO6MOuiAybUmQrg45PUCuwDfZNYGARiQH3weteU2dxJaXsM6OFaNwwJ6cHv7V63qqrJFaXych1U5HcEVx11rc6aTurCeI1P9pI4B2lOvrWSXUDLdDW5qkZvdIt7xMhlGGH6fzrnJMZwTWKNWZ8wVJn54Y8UzGeSadOAzg8EZqI4wB1P8q1RDAMWApS2R0pMHHSn9BjFMRESpbjjI/Wm8PxilYEYx1HP0oB28j8qABkwQvpUgAC7f6UxF3dTz3pxyF3H0PSgBjbWOcnGDUWc4x+FSgExkjpSKvA4oATcCCDwaUngEnimScEdead99cdqAJCQDjjrTJVxtYN16ijOcDjI7UmSeooAOcgH9KXIHTuelJnA46dMU0jJxx6UwG8hzz1o3gMOafKpOCp4GKhcHgUCJZGG0EfWmlskYH1oDbl2j06U0kBuBwO3pQA+TsSfrxTCxPA+mKCSw79eopQACTjJoENz3zyKYx3yc9fpUj4xjPTtTADnP5UxD1AVsA49MVDIcnHpUnX2qLHJHfNMRG2SvXio8cc9qkYnFMPSmBFKPlBOB2phxtzipG+7z26VGPmXnrVIljGpvXApW5p0a55x3qhDGUZwKZK3ybRwe9WnGeQRVCUhmJHc1USWQOMdfyqHH61NJ1qPHrWiMyPFSIlCrzVhUANMQKuBQRT8dutMYEUAVpQM1GBzUrjPWmYpgIeP/wBVRMKeTTDQMSkpaMUCEoFLilApgJS4oxmg8CkCEJpp60poxmkXYQUYp2MdqMc0AAGTUqp7UIvoKnVcVDYmMC012C/WrHQdKryp3qU7kFdjubNNxmn4pMD0rUBoGOlODuBwxH0pQOc1Mqg84qWA0bmGWYk+9LipNtIRzUgQlaYVqYrTcCqQEBXqaYRVgioyPaqTGR4pKcRSUwAZBBBwR3FaNprmo2YAjuWIHZuaz8UYoKRuPqljfKPttqI5SeZIFC5+tNGkx3AJsr2GU/3CdrVj9qUEqcg4NKxSkzSGj6luKiymbHOUXI/MU1dOvSxU2soPfKED86LfXNRtQAk5ZR/C/NaUfiqTYPOtVdu5Dkf41NmVzGa2nXCcEL/uhwSKruPs4+bhz0B/nWjPr4lyUtQpPctmsaR2lkLucsTyaaQXEOScmnx+tMxUq8CmQx4paaKUfrSEOzSZoooAWjPHFJ70UALRSUZzSAXtTT70pPNNNMBO9FFFAgpf50UUALjINJA21ivpThUZ+Vw3rSGX1+vFL2PqaajcY6gU7HOahloXFPzTf4aXv1pDF6nNL6HvQRwQKUdBkc0higcEfjS49RTiuFznt2pANw9KBjlHFP680xeSPSpjgKMdakBh54IFO6U0dvWlHXp+FIYqnjn9aXJDcYxRg54/KlHDA/pQMfwD+NSof4ccVEOWJ7dMVIox1HINIBSm4nHH0pdu3A6cdafke9IMk0DGgc4xigAkHnHengfMAOe9DkByQOvTikMch4xnjNIx459aavA5PSnvzHuI6UhirgnANSnAGBUUYw44J+goOQ2O5oGOBIP/ANaomJDc9/apBz0ph5P9aAF6YbnPTFPRvTnI546e1JwQM0Y6/wD66BkikMM+3cUEZkGc4z1qNcrnHpUu4dzSGOAxx2qK4cpHkA56cU8nGMVVnLTSJGOPaqgrsibsi5pUWFDHua19vHFVrWPy4lB7CrIruRwth1FKRzQBz070oqhCgUvYUg604GkBLFO8XTt2IqUzxE7jbQlvUrVftS44pgSPO7jAwoHZRio+vvRil/lQAvalHWjj6UAUAFGPenYoz70gO+YmRgF6DqazL6CKecuDyetXbiUgGOPgdyO9Uj96szUzJtOcE7JOD7Vl3NjdIGOd/HABrp8EjioZBjh1osB5ZPDLC5WaNkYddwquD8x616bc2cU6EFQ6n+Fua5m/8NxNua2JjYf8sz0NIZxM6BJiB0PTmvT/AAtONU8ICJ8eZbkqPoORXBXOlzvII8BXUkHccV1XgKKeyvLmzlZDHMmVKnncPasK0bxNKTtI6zR5luLa4sjnDLuUenrXP3cDQSSRuOV4571q6fnTtcSNxnLbfwNO8U2rw3UcyqPLlyD9f85rjOs5K4gx8y5zjPFVsMXPatGeMkHAJz71mZ+bnqD2rSJDJkGOTS8uDgDFNDbo8dutKGPltjj6CqJIpG2t9aUYznAxmkKEnPtS9EI9KAFIJO5R+FM3uxAA607OOR2pEBDfSgCTGE24H5U1squ7vmpXGCPmHJxTHAKnOfrQBARuJ7c0AZOOw4zQzZwecdKfGAFwc5NAARzwevrSAjtz/Sl6/KT2po4IHtQAmQxAB5pj/wCsJPWnkEZxTduCSc0xAewB7ZNMYYBpw5OckmgjJPr796AGD6UPjjingKB/jUfVwSOOtAmPBAUdqa5w7DFOOORx9KhZ/n7mmA/ng9v505SATnnHpTFYEU3k5HvQIkAAx/MVGyk/MM8jmpN2FAwPxphPIwfxpgV9nOe1MIqw3Ax/KoSMCmJjHVTETjkVAFwOD6VYb7hA9KjQA8c+mapEkJX5sVKi7V5oI+fjpUm35TTEVpjhMKapN65q1O2SQvI9aqsuRWkUZyZE3NNxk08gj0pVXmrRIqoMVJ9KMACjvTEB6U1jxQTgU0mmBGy1E3tUrc9P5VGQc0AREelJipNtMxz6UAMNFPIzSAUAJg9KUClA4/wpQB6UAIBTGqQ9OKjPJoKQ2np0plKDSKHsOKRBk0hOafH1pMROg4HvUoFNXGBUqisWyRAMj3prxjb0qUA0hGam4ig689KYVq40Q61GYjWqkIgC59akXginbMU5UyeRQ2AoGKCDTwoFIwyKm4yIimkVIRTSKq4ERGKjYVMRUbCqTAiYUypCKbiqQxKMUtLTGJSgcUYooGHel7UUUAJRSmkoGA6ipBwKavXNP70hMWl7YpBS0iRaKKKBhRSUZoAWg5pOaKQAab3pc0nemAfhRRT1glcfJE7D2WgBlKKTBBwRgiloEKP0pHGUNLThQMdatlMZq0AcCqVudkhB/Cr681DKQY+uKUA0vQUq4A461JQjZHFKpwc+9IeaXHGec0hkv8qRCN2KM9MUgOD1/GkMf34PPrTydx9s0zHINL3AH1pDHDpTuopMjn1p45FIBvsafjnPtxSIMMM9B2p7/MTxxQMQZXtT165wcH0FNzz/ADp+cLjsKQDlJ+lP/LNQ/qKkU8HPb9aQ0PAIJ5/KhuML704YDE0ds89e9BQzt1qROVwT0FR4G7jpT1xtPt+tIBUAxkdR+lISC2KADjHfOKaSAmR60DFb5vpjtSAEnoeOaf0AJHH0p0fOcj3xSAaqnvz1pWB2kjqO3rT8EHnANJ04xmgY1Dlc9OcUqcNjrj370KvJI47dakZcjPQn1NAEUnyofp1xUdirS3JbBIFLO5ihLdMVe0uHbCGI5NdFGPU56z6Ggo+UU+gDFH+c11HML37UfWigHnNADvWnCkFKKAAZp4603GaXpSAXHSlHpSU7se9MAAzz/OlAJNA60tAB0oz7Uvfmlz9KQzsIcvGG9alEILZYcelFshRAG5OKsBC7e1QaEBiBIAXiobvylRUwpYc1PeXBggOzGc45rFaZmbJ5J70MCwsaOOmKguooNudvzDvQbsKuFDEgYx0qlOuoXQO1VRf1qWUkYeqR25vUYDHHzYrH0ua70/VY5PtDblfAyOoroJdKuR8zFWPqTUMWluupW8sgUovzMKzkmzaLjE6HWwY5LW/TgnAOB+NbWuxm90RGUZBAcY7Vk6g63mj/ACZ/cn8Kv6NMkugPCxJaPOBnoOorhkuV2Nk7o4yQHkcgDisiYFZiPWuhmj8x2CqOpyBWLfBSAU6r3NOIMhU7V25pQ5x1puMkYNKpC8961JJN4IPr6U3byT+NAGSD705TklWGM9qBEXmAAjGc8Uituye/amuNuRxkHmm496ALO7eAcdKHbscYxUKFgO/407O8N+lIBD8xBH4VKxCAnggUxSRj5eRSSbmCjsOvvQABiSSPTFQkjdkcn86kBCDJxkmoFz5hPamBIHIHP50jOCOOD0p0iDAYd6hbgc/nQIkQr949TxzTgM4NRrx0xn607cAOaYgBVmIyQKj6lh6U5hkZyMGmA+n40ANOc9aQJkZ6ihmOfxpV6H36cUAAOGApGYKx4pRxzSbs5yOKBDWJzz60DgdeafgYOe5pnXNMQ0tyO9IwJOBQ3AxSA5XI70wG7SXxSoAoxjgU9eHprEEkAfnTER7cnJ4pk7FFCjO41ZYBYw3pWe0nmOz8bT0+lVFESZGVJOOtQkc/0qZz1qGtUZsZjmnimgilyMcVQgJycU1m96eWPl7eOuenNRNTEIWyaTPHvSY96TNMQE0h6UlJSGBoIzR1NKKAE29qTbxT89+taGk2C30z+ZnYo57UXAzMAUmPWurGg2hz8pz/ALxph8P22e+M/wB6i47HKt0qImurfw7bnoWH41A/huAn5ZJB+IpXGjm/5UVvt4cUH/XP+VNPh3g7bg/itFyjCp6GpZrUQzvEJQ2w4zSCEf38/Skx8rJ0qZKrrlRjIqZHAI9ayaJcGWOB0FIRn3pglXvx+FKJEPJP51FmLlYhHNNKZFSb4z1YUhZcfeH50ahZkZQemaAKk47EYpMDimKxGR7UzFTkd6iYYpoLDCKawHpTximviqAhb0qNqlPvULHNWgIz1pKU9aM1YxMUtHeigYUUYopjCjFLiigBPeilxxSAc0gHCnCkFKBQSxeaX9KSjtSELmij6UUAHekzQaKAD86OaKBQMQ0ZpD1ooEBJ7U5J7iMho5pEI6FWIptL0NADnlkmbdIdzHqfWkHNJS0AOHFKOtNFOH1oGNf5HDDpV2Js4+lU5F3JUto2QOeallJls96XH1oHp+FOHQ1BQmM0vUDijpmjPekMXjGKUHI7U3P4U4HjikA/HHNPHSmJzSgcnPekMco9fzp69RSKcAn0pVPfFIY4+gNOHoaCRge1Jn5sCkMcOWzj65PWlXrjFIjAnaB7VIAN2c4oAae3Xp6U5WxnIBpQOOnXvSEoSc88Uih+4eufpSg8cdKjjAwQemakDjHoDSGPUDr07fSlxgEY60wnGMninIfmI9aAGkHd1pQO3OOtLJnIA7ck04AYC9jxQMQAFMdqcPlTIpM5+hphzwAaQyYEnkjNMJ75poYjPHaphtHU8nvQA0MFBGD9afu/vfrTSuCSMc0jdOvT3oBuxXufnuEjXB+nrW5boI0UVkWMfnXbSN0HSttRx14rupxtE4qkrsdRR0xk0VoZi59KcD09KbweaM0APFKCabx2pQMUAOzzTqb0PanDjNAC/WlpB07UvX1pAKM04c03pSg0wHcGj5fajn0xRQB3SYA5oknO0qv51GefpTHJzhRWZoQXCl4gDkAnNMt7YAljyO1WmDHAI4FOBCDGKBlee3RgMAbh0NJ5eIc98VY4bmmPjG3tRYDLkjao/J8ycRqfmxknHSrlxLswoGWJ4FK/kwRiHL/apRyF5IzRYVyvZyi6mmsyQ0IQjcB0NL4ck8m8ntGxuPGD3xV/EGlwxxJFlnPzYPNZtx/oOsrcRqfmIbGevrXDiLcx2UU+XUo3ds0N1MjIVZSc89u1YN5C0btlcL64rutfjSSWC5jxlxtz6iucvEQgqcGsYstnOLgkDpRIuH68VM9uIpXH8Ocg5qJ0HmZycDitUSMAYjjIpxDEhvSkGS2D90dKAcA5yR0piGPjzOR15pMIWJ7CkcZf8KQDCnI5oAkB4APQnvT0RmOAM0wZ2Dr1rTULHAoX0yc0AUTDIiFscDrionYqpwOnrVszoQT0x2qsQHO3IGelAiHduHzLg+goAAA9u+aAhGcimseFX9aAFdvlAA69ajcZIOeRxSbj0weKTd2FMBx6nvxQc7gBSE4JNKDx/OgQdAN1NBIzuxx3oc8HFMyc8cigBMc4xTl9OtNbufypw+6SO3pQIUk49qTGMmmjGPenDBUk85oAAR+tAUA8U0fhxUoAA6HFAhjDnbjmmEY46ccVMeX/ANmmOuGA796YDBwc0MAG/wA80YIYZOKcQu47jx3piK19JiAIh+Zv5VVSJ2Vti5CLuPsKR3Ms8kpJI6L9KYWIPHFbRVjJsYxxkVEfWnk0wmrRIwjtTgPWk7U7NMQHgU1uaGOKYT9KYgozgGm5pC1AAcelNI9KM9eaT6UAGMUc0tLjigBhziut0C1WLTlkfG6Q7vwrmIYWuLiOFersB0zXexwpFGkY6KoA4pMaGmNSeDRswcfyqUKAOlKUB7DmkMrkf7VRlQT15qyY0xk4qJkQDqcfWgCEoP7xqtcSeTC8hP3QTVrZz1rM1of6GUDEbzigaTbsjkHcySM5PLHJNJ3rStdHlvJCsUijHJLdBVpvCt52liP4kU00Di1uYgJ6A/lS5bGMnHvWw3hq8j6vF+DVBJod2n9wn/ep3ROpnl2x94/nQJHz9449AauHR77/AJ5A/wDAhTTpF8DjyfyIpaD1IS7/AO1+dBZwcndU39l3w6QH8CKadOvepiP0yKLILsYZHJ43Y6UvmHqGP5Uv2G7xxA+aabO7Ax9nk/AUrILsXzG9f0pGnbaORSG3ugcmKUY9jUbCUMQVYH0Iosh3ZJ57D0p3mtnkZ/GofmzlgaN+P4T7U7ILsl38cr+tNJUj7nT0pnmD3p4lUjBBosHMxB5ZPKGl2x4yVNDEFff6UoUY3AinYOYaUjPrR5cY/iNOwfw6U4NhW9COc0WDmCC3jnnSMSYLHFaB0BywCTfmtZ9h/wAhGD/ersVBHf8AKkx3uc2fD9x/z2T6HNNOg3fZ4j7ZP+FdWqq+ck5pfLwODSuBx76NfJj5FP0YVEdNvVPNu34c1223OM4JFOEQb0ouI4Y2lyh+a3kB/wB2oyjjqrDHXivQBaJ2T8aBaBf+Wfy0XEefd6O1X9YhWHUpFQbVznFUQKYg/lR60ox3pcCgBvak5xTiKTbmgBtFO2ikoGNopTRjmgQgpaKO9ABS0Ud6AHUopoNOHrSGPxketRwHy5ivY1IODUUvykMO1AGgpzyKkU/MKrxPuUH1qwgyCazZohSAVOTTV54NOPWkxz0pDDHelAPp3pVxjHP5U7bkZ7UgFTt2p6jB+tIMcAH8qU9M/jSGLjHGRTlyCePwoYDAxmnAYORSGNJwBilTn3oIYnNL0bp70hjyAhHel645NIfm/GnJ14NAD8gLg0xMhsHNKfvA9valVcnk0hjkX5Tg9KR/p9Kehw1OYEDP60ihi9hyTUuMfWmIRg+tPyOM/WgBTjIPrSZ4zTSMkc05SCvvSGKoJU46io2BJ6j1qQH0/GmuCCCOuaABQAuRngU9cMTn6fWmg9u/pSrwnYGgY/JyAAfriobp/LQgZ5H51OB09arTjzrlYgMnvV01eRFR2Rf0yLZCMjkjNaPTvUUCBIwMc1L1ruRwti9TzQaT8eaXnH/1qYg9/wBKXp1pBgd6XNIYvH0pQccU2nUwHCnfSmA04daAHDrTs8033xSj3oAdnFL3pB1pwoAcCTRzQBntVgQkgcUAdYwIHNN3bTxjmtKaEOOR+NUXhKEZFZmiFHK4JqEEs2DUgBwT2FU4mYuzc89KBlokKCO/aoZXCL7nt604E9e5q9bW6RxeZIm9uoGM07CMj5bOL7ZcA+Z0jSrFlAtrG1/dZ82U/KD1FC2hub8z3aFY4+UQ9BSXri7uAu+LbjaoLUpOyLpxu9SBo3urhmRQCTycf/XpdRg2RI/3tg2k+1UnurjT7t4BbPHhQfOWIsrewPb8aXSr261KCVNRhlieYHb8q7ePTkmuWpD3bnQqnvcqNAr9s0AheZIOPrjn+VcxMAsxyTyOlb+k3DQzNC33WJQg+tYmsWz2l4yycAjcuD2rkiasybtgSpxjBwaqna2cYqzIpeJ1OMkZGe+KoxZBJ4rVEDgCTio2XnHpUwGDzzTW5JPvTERSJgZ689aYOR7mpyQPlJqIgA49e4pgSQruZee+eankm6gH2qKJAIWc9elQhvn9BQBHkj5SOT6UqkFtvfsaGGccjrikHLjsR6UCJWBUHnOPeogSDjt2qR3JkwBwPbrTGG4cDGTQBCTsJ5zzTSSACppcZFBUhduKYhnVABSnJ7c03J4x+FPAJ+tAhzD5R61Fn2pzMM7aRRgE8gnimAm7I5zShSAcUhXCkk0gJznJznFACtxn1FCj5Rjk/wAqYxzxjrQPqKBDlyCT15qUMCDj+dRgAL2xToyMjB4oAcMnkfnUmO/HWhec/TGKfGFxQBXcEEY6VX1FtsKqCN8nHB7Vbl5fk4C+tZTSGedpm/3V9gKuK6kSfQaVCJgemKgY8+lTP+dQN39a1RmMNM69KeelMPWqQmGf85o+lNz6UmSD/jVEik5NRnNKzcUzdk9qAHGmGl3etNzQAHrSf560tHagAFPFNpTjFAG34YthLqLTsrFYl4x6muu4LfdYfUVQ8OWRtNKQ+X+8l+dv6fpWq24fewKkZFimPIO5/OleUg8DmogjSnv+FAyJpQWOD+lN2qee/rVryQq5K4H0qNtuDQMr7VHU1hatMskwjTovJroiqcljgDknFcpeMJLmRlxjPGKmWxvQjeVzT0azLWryFSd7cHOOn/16l1a4ntEURttbaSen4f1rUsIRBYwx8cKM49aw9Tk87UgNhKq4B4/hUZP8v1pxRnUd5Mge5nYTefNhIQATjGTgen404P8AvXUMWAbygQc5bA5/WqUhlNqmUYGSTzGJ9B8x/U1c02zdYraR8AEGU85yT/kVRmStlS6hyfI+Zz/e/wA80y5mNtMwDMSVB2noOadCd8bvgkyzAfhnJ/rVK7cvdSMezfy4P8qQE32pnEsm8rsx26ZGP580glwInzy7KRx2I6VVdgunuFXLSSYz64+WrE3yzRrnhckY/wBlf8TQAi3yC6eMZA4C4HTOKljunEyxN8+SdzdOn/6qy7VTNqHb/WYHbhQf/rVahk3TSOO0bP07nFAGhDK9zAXACHoKztTUrKgbBYLz71pWKbbVPU5P6ms/UyGu2wegAqWbUlqZ+KKd70m3FSdNhpUEdB+VV5SFcKFA464q1imLa/aZHw23aMlu2KpMyqxutCuGypHH/fIo6cEA/hVhbFmYiORXOOmCM0n2OYKGOwA9MtjP0q+ZHPyS7EH5D3zikVkJwxYe46VM1lcEooTO/wC6Q2QaiEEgbLADHXmi6BQl2LlpbKLyFgxyG7106E7eTmsC2cG6iLDC7hkV0X7pvudam5pUio7Cqfm4NPznviowo6g08Af5NBkPHpnNPHJ64/CmKvvUigd80ATIG4wykVOpbvtNVwoyCJCPqKmVnHIkB/CmI47xKuzVT/tKDWP1roPFi5vIHI5ZCP1rn80wYUUUUCA9jmjvRRQAlJ0pfeg0ANJ9aKKPwoAKKKBQAtKKSj/PNACjrTwKb2pRxQMdQ43AjrR/OlpANt3OSnTFaCnjrWW2Y5g/Y1fQgoMelTJFJlgdKOhpoJxTv0qCwOM5qUDge9RgDv8AlTydoHakMco+lL60wHOOPanjODnj0pAPUBmA7U9ye1Rg4PSlBODjrSGOXGPfNLgHnmkT0ApeQ2PWkMcgyx609fl/DvTIwccc1JJlT8vSgaECbiCOpPNPKY4xzmmglSpIqUjc/GBUjGgFePXrUo3Zwe9NI568GlGSBj8cmgZEVK9uM0+NeMkA47VK6YDd6TbgCgBegOaaAASO2M0E/Kv1/Kjnt19KQwPTvg0q8njFNJwec+1PTp70AIR8/rmgDn17c0h5YkdKM/MCetAx+cHJPvzTLBfOuHlPrximXLgQkDqTitDToAtupxyea6KEepz1pdC6o46UufWlx+FFdRzDfxpw4pCMA5PFVZ7khSE9OtTKSitSoxcnoWZJY4lJZgMDuaqtqUCnADN+lZkkhZs9c1DyecHH0rB1n0NvZI1Rqy5x5ZqxHexufSsYLjt9TVmFNxJb7oBJpKs76g6KNtWDDINPFYGmaj5krwseh4JOa3h04710p3MGraDgfWnDPWk70o60CFHtTxTVp4HemBNbgySCPHU4roFtVCgbAeOtZ2kW+6Yvjha29p9aQG/lahkQOvtWWPEmn4yWce22kPiOwMiRmR9znCjbWSnF7Mu6JZIWk4HC9z61EUWIYFST3saMqM4BPQVRluAzYB4qhliIB5MnpV83KxrgdayVuVAwDUNxcuY2EbBWPQntTuFhmsaiXHkISCSMn1qXS4/NjWaXY6j7vHes02xmdWnnACnPNayXtsm1RNGB6BqyUW5XZ0SnFQ5YkeradeX93BJDcxLCgIaGVCQx9eCP1p9no62sqTtK0k44LEcAegHQfhVyC4gmJCSoT6ZqZmCgnsKqSTRjqncwNSgNpeCZPljkOfo1O8SqL3TLe7VR8vJI49jVy+je+0pxwJFPy57EdKzQWv8Aw/JEoDSR/MAK81qzO1O6OafAxk8mqLLtJBwDmtBgPKbIwy8kGqTqXAcdc1aJYBgQRyCBTHJwMDpT9ozk8ccYqIyHJGc1QhBhhyKNoJHIx70iHIznmmEHzCT25pgKJcQFcnOc00HLYxSkcZGQT60ijk+/agBGHHejpyOfWlchU9+3vTRjBb1/WgQ7qxzTX4GAORTS+1vp60BgCAaAGMcMMUvUg4x9KR+WyM4pTzxnimIaPmY56jmkBwCQeRSElXB6/wBaDypoEMHB5NPXoKYfenDC+4pgDcjkcUnAbtxinNg+lM7AUANxkk0h5OMnNPHQZOM01Rl+nT3oESPgDH6U6IDGcc9aaRnPrUsYOOgyaAJEG0cY5604EqfekAw2D6dac3bP1oAzdScmFYx9525+gqvgKgApC4muHmbvwuO1KxBAraKsjFu7In4qFutSkfhUbfpVokiPBppPPFPOOlM4piGn8TUbVIeKiYmqEMY5PrTc0HpSH3oAM4ozikooAXPfmlB4ptFAEmansLZr3UIbcc72AOPTvVXPFdV4MsWeea9PRBsXPqetIDqxFIsaqGCqowMVEwYnaoz75qwYnkPL8egGKmjg29cUDKSWxJ+YCrAXZn5QBipnYJzx7VTlkeRjxxQBFI2eOtR7Se1TBDzx+tKQw4C/lSGihfqIbKRjuHy/nXKFRkkkZNb2vTzCNIScAnpXPsh2nBJI96zk9T0MPG0blhdZu4/kEzYHGTg8flTzrN55YPnknoBtU/0rPRW3Hd0xSAExE9WHT64ouU4LsXjrd9Gw2y/+Oimtq2oXBDmTczdgg/wqnuAKnad2PmxikExRQFHXPJ7UXJ5I9i1JrF5EQjOvr90U3+17lmO7Z6/cFQ7WOCc0nkk5ouHsV2Jhq0xXJjiIHT5e9POozHlo4ifdarfZwFHPTmkwRRzB7GPVFhb/AMt9yW0APXIWnLfhSSLaIZGDjjiqqhS4D5C98VJ5URcDzeME8j8qd2L2UexaXVSqhRAoUdg3/wBaqE0rTStI/VjUghU7sP0GfxzSeQpPEg6ZwaQKKWxBijH6VN5IDkFxj196BbuRngHPc0DIaWN3hcsmDkYIPeneWQm8jgnFOSGRgCF+nvQDQsN4YGLJCm4jGTk4+nNP+2740SWIMEyFPTANQ+S5HC+9J5cg/gPFArE6XKqyBUwqNuwTyagnKyMdoI5zyaNjjqD+NKQe+aAsSWvFzFnj5hXTKYyfT3rmbf8A4+Yv99f510+BwNp/SmjGsthdo6g0oCg9BTclacGFUc45VHYinbfQn86QEEds+9KCB6ZoAkBZfvKalRvcVCsmeDj8akBUjBUg+vWgDC8WITDbyehI4Fct3rsfEkQbS9wOdrg1x5qkJiUfyoooELSd6M0UAFJSmkoATHNFH8qKADrQKKKAF781Zhu7dMCSySRf99garUYoGWLiS1lk3W8TxA9UZt2PoajFMFOHJpAO7GlGKQdAaUGgBsybkPNSWsmYwM8jg0lQg+XL7GkNGmDke1PHQVDE3y1LzjrxUNFokI4yKNpPX60g6Y9KfgipKEHAAqXoMUgOe3SgtyMfpSAcOTmgc57UKeOPrS9Qc0hiKwJqVvvZ689qhA+bjp71Ny3JOaQCo2FIxyad6GmfxYqUfSkMcR0bHOKCWA+XnPrSZ4xnik/PP86RQ5GJ4HUdanyFAxUG0K2c57e9Lk59aAJX2sASOMUikk8Ht3pM9OBg9qVRnJx1pFCHnJ4z0pVcZXFKenf3zTeM0ASOvvigrtIHrTwCy5796YclgMYA6kUhjGwMMoobBQ+van4/H8aY2FJznFNCZXGZZ0THGea6GJQqKvYCsXTI2aYu31rcHAxXdCNkcU3di0lHOetB4Un0FWyCvcSjPl/nWe7Y9cCpixPzdz71VkcbmGMAetcM5OTO2EVFEbY69DRFnOOKDg8L0pynHI7VIx68t0pL2f7NYtsJDucCnoC7cZ5/SsjVrjzLoJGchVxn0qoq7FJ2Qukky3gIU5H612kWdg4/Ouc0G0YDzTn2NdKoIFdsVZHG3cdSjk0UDr0qhDh1qRBuYCmLz71o6XbfabxVxkDk0AbVjbmG2XjGRmre05qbyiTjPApvlf7VSB54pQZ34HpnvSJiS5WRWLMxA2g7SigdBWVLOyszyEFuwHQfSs+W8kBJSRlOOxxXpVaMakbM4qUnB3R1v9qw/bYxc3UjzyNtwg+SP0yT1P0q6935OV80sc/ez2rzlptpDA/MK1jqMt1boytjjDY7muCrRVKzTO6lN1NDYu/F0UBZII2lcd+grKl8Q6xqEhit9sfHO0dPxNQvaK8YYttc91FNsrQ2crSvJuboAM1CasaOLubGnpfxhzd3BlLoPlJzitvTopZXVAPbPtWBFLJO4AYgD0OM11ehT2YjkRbmNpk/1gLcrQNaElzYC3cSEiRXO0HGCpq1pc8haa2d2eNUDqW5I5xioZ76K7lVISHCnIA6k+v0pF1HT7BDE91D5zn5sN+lcTspNx2O6b/d2nubMLdYwOoyKx7X/QtWkiPEcjZA+tQSeJrC2aM+aCzNgBT096fqkZSdLkHgn9DWE9zOnsZWqWzW17KFU7ScjNZFxhEyTzXTa8Vks7e5UHP3WOa5e4IbvnIxREpkRk3Rds+1RA/MCce9KBtGCKaQSpIArQkAdvGeBQz7QTjrSNlsY6CmynAHGPegALkknnrSKxBx2pBgginLgYwM96AFdwO1GQcEcZpjgAClHH0piEYKQQeo60wdD9ae+cHPU8VCsgVuVyP50CJeevFOGD1+tRl8kEcAU3zeCB+dADnODkjAppHekzvPOeKTPp3piEbJI5/Shs560gx+AoY4/wAaAHIw9TSH07CmginrjuaBCDpxyKVRgHNMHXPNOPTHamBLGB16GpRwQf61XQknHHtVngAYySaTAVPnb0xVPVpSEWFCQ7ct9KuqQqljwByT7VjIzXNxJcOMAn5R6Cqgru5MnoOEYSMKOwphHHSpsYHJqFiOea1MyJuPrURFSPTWNUIjbhqjI65FSseajY4pokjYiomPPrUjkVEcYpiGUhpfpSdaYxKWigUCEP0oopRQAgB6L16DFep6Jpo07SYIGKh8bnx6nk1wfhywfUNbhVR8sZ8xj7D/AOvXphhkwADtH50DQEqg+8KiaR24U4/CpfJUcs5JpRgdOlAyoYnPPP4mk8tgcHFWHc9BgUwhj3H5UARYYdAPzpjCYAlVHAzU5BA7VBcTNDA7j0pDRyWqyTXN387DK+1Uhbt13VJLM00rux5Yk00MTxniudu7PZpwiopDTB33Z+tNMB9RUrHGfmJ/Cmj7wyTSuW4xG/Z1H3mH0BqZESPlsAg8cdaY6bmJJ7cdqj2gdRQKyCaUPIxXuewqOpdnGcU0gKaZLQ0DIJAprY6nFWAF2EYO7txUZTDEdR60yWVzj1ppx0qcIhdd4woPOKc0VsXXnA5zwfwpmbK4UkHGPzpyBckOSPSrsWmxz7dhI7ZGcE8cZ7Gi905Lad03MGVNzAnPp3FBBVKQ7WcOTjHB4571G+0H5TkY/KpZIIRv2scY4O7/AD70jWgALCTP9fpQAqBFAbeD9e1PZDGcLJnBwNp/lioTCUwGJOVzx2pfs7hd29cYzj0oAm2TAsokA2nHIzQS6xsHCn5guBzyB/8AXphglHVuh55zTCJFJAOdp5x2oAlKOc7kPXHPtSP/AKok8cgdPSm5uF6bjk9j3pnmOY9jJ8meuO9A0LCn7+M5/iH866Xy2C965uADz48ZzvGBjrzXV44BHNVE58R0K43r1FOz7VYUEHJXIqNl/wBk/lTOYarEYPNP3A+lIB6ClBGeuKYDwYyMFRUiovVePoajGQOxp42kcr+QoAq6zEX0e4GM4UH8iDXDV6DdxpLZTRg4yhArgCuB700Jkf1oNLjmkI4qhCUopKKAFzxSUUUAFJ/KlxRQAlFFFIBaXtSUtAC0opAKcAaBi0vWkAIpwpAL/KopkyuR1HNTCgjIxQAttIGUZ+mKtE1lxkxzlOxNaYO4D8qiSLTJUGSO1SDOcZqND7dKdn5qgof2/pSZ45pybcEsMjHemgZpDFQ8Hn6VL1GBUSr61IowhpDFC4IqUdOBTUBOCRz60oxkY70gFPABPUU7JP40MPlHGaRDz/KkMf8AT607AJHNNHPFOKEKT1INIpDwmVIP4Goxnvz6VKpLRY6HvUWNrDp9cUDJABnHP0qReMkZNRYwRxz6VJnnjpmkArHIBXjIpCBuGehpcDb6e9DDPI6UDJUYqm7tmmr3J60oOxcCjPG00hgQQOMfiKr3bbFCgj5+tWc/LxVRh592iHotaUleRnUdomjp8ASIHHJGau80yJQqgCnmu5HEwpwXcGXuRim8U6PhqAMuXMalSOQcGqLncc9+9aWrMPNBGASPmArLfOM8dK4pRs7HYpXQBsnNOLc8Dn6VGp+X6052CxlyRwKkdxr3RigZVPzt8uPSm6Xo7XEvmTZEYOST3q3pNhHP/pM+5uche31rfGAAAoAHQCuqELI5pzuxsMKRIFRdqjoKnxTAP84p46VsZi/XrThTQOKeoyaAHqMnFdToNusVs0jZ3t3rnbSLzblE65NdjFtjiVEGFUUmBIW+YgU35u1Ju74oy3rSGeFyXQOec+1VpJieh/8Ar16C/g7STpttYyuY74oziRSNzNjnPqAe1ecTI9vPJBIMSRsUYE8gg813xrqZzOlygXOeetWrGcAtG3Q8is/OTU1vOLeeOUdjz71nV96LRpSfJK50NvKZFywxjoadJIOOKDc2zKTkEdaY1zbEEM6KOvJrhR1t3LthvlYrEsgLAgMq52n1qP8A4RbXIr6MQRMwfkXCHCgdyT2rofC81kyANdWyKT0eVR/OuzubqxWEQx6hZBf4sTr/AEq4TcSJM5uQvY2UdrBGZZ2GGdVxvPqapW+hTR5d4Q0jHOSRXQPe6Yhw2p2wxxlct/IUqajoAQmbV+ewSFj/ADrOUEw9o92YqaImT5tlHKxGM5HArSuI2k0yIsBhW8s4OcKen9Knm8XaJa28iWUdxNIEJRiuwM3oe+KpWmrw65a3Vsth9nk2b8B9wY5/CsK1O0TWlP3gt4vtOnXFu4BYc4Pc1yMylWZGPIP511FleeVfQkjaso5B/I1ma5bC31JwANrfMK5Y7nSzExjHGeeeaNqtkClbjIxyKVOe9akkJwmfXpUTncoUVNINuagY88cmgQ5VHQUAYQkd+M00ZABPBPanDOOKYDHJB6E59KN2AOfzp5UE89cVG64wP1oEHLZpi/ewR0qZV7gjpUecOTjkGgBCccDqKApzk0KDnp+dLu4IzQIaRjtzTcgHHpSuc8jrSqoKn+9TAZmgnjNLs+YYpjfMQB0+tAh+cgcCm59ufWl4HalCk0wBQG475zTjwe1KE2DOcHp9KjY8/SkA/ocirKD5QKrRkZ7VZkdIoTIxwoGTQIqapctFEIU4aQ8+wqCLCRgAc96gWRrudpmBx2z6VPnAFbJWVjNu4HJHtULDn/GpC2R1qJmyaaERt0ph56CnnqcUwnA4qiRpqJ/pUhOOKjY0xELUwjNPbrUZpgNI5o60tJQAUlLSUxBRRj1qW1ge6u4rdFy0jAYFAzt/B+mJBpxvZAwlnPygEjCjpXTrCzfxuB6Amo7WNYII4YoiFjUKPwq2hPUjH4UIdyu1vk/ek/Ol8kgcMfxxVhl3H7wP400gKcZBPtTC5WML5Pz/AKCk8qQfx5/CrBGelIqnnqaLBcqGKU9JF/75/wDr1la48sNptJXD8cZzXQFSO3Fcx4kl3XCQ5OAuSO1RN2R0YePNUSOcxx0P50uMduKk2jHFL5YAHIzXOevYiP0pCnG4dKlIwcEYz3FO2ggqACfWgVitR1OakZOfSggdhQKxFkgcVIlv5zLnb/hSlVPPQ1Nas0T/ACjdwflJPp1/z6UXE1oILe0eVFic8uFGfTPJ6Uxra3Dy7ZMFWwh3Z3c/pTI4t7bedw6e9RkEjd69KdyHEma0tWYgXAJCAjnAJzyM1HHZo8zBZCVXkkHNOhhR1kZ32hV3AY+8fSkt96hzGcM+UHHUHr9O1FyXEtrJ5O8maQRINqlW6t78/Wqs0G4mRptxYgAZzjPr6U4lrmSC23ARxnaGA6ZPJqxMbGKJYYA7dTI7DBY9se1O5LiUDZys4CMDk7fTrTVhmxgFSSQuCMc/jTyXjkDKCrDp60w7hjJJx0BNFxcgRxuUyCMhgNpHrSbWZvLCgknGM9TTjOzbc4GPrSK4SVXABIbNO4coMkuNuwkDg/NmlLSjduUgseeMUqyfNhnKg88KDk/pT1uXSQbWUqDnB4zQKzIfPkBGARyDwKRrjdEEKAc7s1IZnAjAAxH0x9c80wyAxsvljJIOaAsNhYfaI/8AeFdQCeP8a5eMfvk9dwrpQHAGVUcetUjnrrYsiRgAMZ96fl3UE8j1qruYcbP/AB4U5bhk6I36UzmsTMNrfLn8ulMJyeQc/Sm+eSclGH4UeavdT+VA7D+BxnFSIwH8YqESKeOfyp3mR/xcUxWJiAyEfKa8/uF8ueROoViK71JISeCOfQ1xOpoE1O4A6FyfzpoTKdN/CnUnaqIGHrRTiKbQAUtJ9aWgYYoxzS9qKAG9O9FKaTqaQCiikHvTqAFFKBSY9KUdaQxwFOxxTQead0oAOlOpKWgCvcLjDdxV23cOgwahYbgR1qK0bZNsJx9allI1V6CnYpARgGhW9azZY4dD60q+p7UmRz9KU8DOaQx3PG3FSrjaB1JqH0p6NSGSKdvykdP5U8cEkd6Yx5GOfSnbww/nikMAzbufypQoDgn1piDLgHP1qxtHftSGCjkk5PpTyeMDnNR52nHWpMr7UhjUHXtSkZ7nAPSgfeGc+5p+exNAwHTdSjpnPfNKCAmBUYyrZHSkA8fnTiVz14FCjHfBpSuelAxSc+n40HGA1IAeSR0oY/L3zSGNd9gPt3punpvm8w9jUd0wCAY+Y1o2EYSBeMZ5NdNCPU5q0uhd9KKSgGuo5xQe1O9Tmmjj60jEiJz3CnoKQIwr6Yy3DnJwDgVAH+8M80Sbd3BpgrjerOtaIch5OeKY+Z5o7dDjcRk02SQIOeT0xWhpNk5P2p8jPCirpwu7mc5aWNe1jEcYUDAAqwD+opqjbT66bGAopwptPHTNMBw7H1qRRTFFTRLuYAdfagDa0W03bp2Gey1vFcKMcEVUsbdre2ReMdTVv1Oc1IxpRzjArSWxG0ZPOOar2kZlnHPC81tAgD7opAeL6teP/wALJ0yMHaiRY/76z/8Aqrk/GCCPxTebQAGIbj1xz/n3r0CXRReeJ7TW0dfs8cBz7nt+h/SvMvEN2L7xBeSxAshkIXAJJxV037wS2M8v1xTS3emFgR2pGPFbORCR0FjZ29xYRStHy2cnJ5xT3061H/LPn3JqHQZMW0qE52tnBP8An0rQc+ua55bmiehWtrSKBgUXHNaH2tkGAq4qAfdzimNkjNICwb1u6Cg3+RjYM/Wqbc/560z/ADzQI2bXULdGHmRk4/GtbSNatrTUkkUEK52Mp9K5HIFJl9wwcGpkk1ZlRdndHoGrp9nupmjGPLkD9ezUuuQtdWUF7Hk7RhxjtRHLHqGl2d2FY74fJk3HIDD1/LrVvTZvO02WF+Qv6CvNejO9ao5Aj94SRgEVHkIeO3tVi4ADuFzgMR0qrg7/AFzWqJYhw/bk1B1bH4cVYJIcjtVcj5ztHGaYhZGyVA4AGKVQQAf0NNJBNSqACB1oAa5yOnI5qFhnHfJ6CrDAbuCKiP3s+lAhy5A7Y61E3LH696k3Fc1E/PJOKAFLYXk8UzfQx+U56UigEZx19aYhec5I680biuSKGA2574puR04oAc5yPlHPpUezIz3p2eR0pd2cZHNAC7SDk04Z2k4+lAYH5SDUTElsZ49KYh5JIwWpq4xSds96UcUCJY1B/OoNVnCxx2y53nk/SrEXCliPlHJ7VmZa6vHuGI68D0HYVUV1JkyWNBHGAD9aM+v1pc88001ZAjHI60q20j273AAEaEAknGT7etNJ55qMng46U0Aw/TFMNPPWmHjiqEMNRt1qQmmH3pkkJ5qM1MR2qNh1pgMpKCKKBBRSUUwFFdT8OUSTxraB1Uja55+n/wBeuWFdJ4Cfy/GFnLn7mT+fH9aQ0fQ8cNuSB5SdeuzNWGs4N3MMRB6HaOfwqilxGJNwwAeo9KtpcxlSdwJzzVoRHLp9mwwbSH/viohpenNyLSL0yBV/Adh5bbhgHgdKY8i7eSd3bFAFN9F0s8G0Q/QkU0+HtKEYdIiM8EbznP51YFwd3IPFON0C33QvPSmBnP4X0xkBAlGOuHzWZd/D3RLu4aVjc7j3D/8A1q6XzkZXAk24/hI601Llo33I2GHfFS0nuVCcoO8WcfcfCrRhjy727PurqePxWoB8J9OkkAGqXKBjjlVOBnmuzM7Bsjj1FKJgj7ZM7Tgkr296Xs49jX61V/mOEufhIqXDwf2uwKnA3RA59+DVUfCi5J2R6tGXPQNCR/WvRpZkLkLL5iLwrYxxTVuCrK6th0IINL2USvrdbueXyfC7UAMpf2rH/aDL/Q1Xk+HGtKnE1icf9NG/+Jr1qeZrlWueN27EgVcY9D6c81UEo3crvHUj2peyiV9dqnks3w+16MlTHAxBwQsv+OKg/wCEL8RRqyiz+UnnbMmD+tesvLk8du3tUYlyeO9L2KH9dqdkeQt4U16Fg502U49Cp/kagm0DWQiodMu8KOAIie9exmTtmk83il7Fdyvrsux4wdH1BJCW027VcgcwN7e1Qm2ngRmeKWM5ONyEYr2oyUwv1o9l5h9c7o8Vjm2xqnbrSTXJeRc9EXap6HFezM2eoFQukLZ3RIQeuVFL2ZX1tPoeMylWAPOe+ah2ZGc5r2L+y9NlkAaytBk4y0QwP0qK40bR1kKJYWUgB++sIAP04o5GH1qPY8otSi3CGUDy++Rnt/jVhLi3yTLmXONqGMAA59c9K9Gk0HSZck6dbj6Liqp8M6QWI+x4P+y7AfzpcjE8RBnn5e3MjkhTCc/J5YDDPuKdH9jKrwgU/e3A7q7pvCeijG2B+ev7xv8AGoX8G6UThTOoPo+f50crD20O5xUVkpvCrY8kZwc8H05qNLVlgmaVShUDbnjJzXb/APCD2AO0y3I78kf4U1vAtlvwLyfb2zg/0o5WV7aHc4ONQZUH+0P510ywEADfxitNvAMSMpGoOSp6FAc/katt4fZflFwOPVapJmNacZWsYXk470pUCts6FN93z0/Ko28P3Cc+ahpmFzL3LgZwMcUFVPTJ9KvHRbrsYz9DTBpN2nRFP/AqAKpiAAKvg9wwpN0i9QMe1XBp1+Rg27Y9iKQ6bfJybWUUgKwEbfwiuS16MR6o+B95QR+X/wBau0eznx89vJ/3ya5jxDZOsyOysrbeAw7U0JnPZpD1pxUqSpHI60nFWQNOccU3rT+tIVoAZQKWge9AAKWkHSnUAJj2ppp+COaQ9aAExRzRilFIYopRSA1IsojOfLD/AO9SGNFOFWor60I23GnRsCPvRuUI/mKrOY9x8skr23daAFpaQUo6UAKRVebMciyAdDVimyJuQj1FIC3BIHjBBp44NZ9lKV3Rk8g9K0FYGokjREg5PHSnEke9Kq5FKVIG2oKG+lHcU5elLgE+1AyQ4yPcUoG046Z6UKOfpSt1z6cdakY8ZqRCOnpmolIJHrUi9e9JjQOwDZ9O9KAMjH6Uxvm6AU9GBB9QKQyQdcZBJpQeemKYpJcdMelP2kPyeMUhjc5fFKPoKQglzj86eAdoPGPSgYdAO1Tbfkz3qLJOPy6VIFCxj0pDFzgAUzdgY6/hUgIOeBmmPwC2QMChAysEae6Ee0kKefatmMbVA6VR0vhZHI+ZzjNaGeK74Rsjhm7sX60uabn2pTWhmLn1p6NtbpTP8KXPsaBle40A3JMlpIoJ58tjiqh8Naic5CIPUsK1AzLnBNKXZscnio5I9h8zM630GGBw9zIJXHIVelaQx24HoKb3zSjFUlYQvanZHNN6Ypw60wHD6U4GminqPegCRR0rV0mAPcB2GVXrWWorqdMsxFZru4ZuTSYF1pRt4zSm4AVVCc+tAiBOCeKz7y5kSQx24DFepqRnU6an+jmTuas+Z7GvM7zxhqumSZit90a/fXn9Ki/4WlJ/z5n8cf40wPM4/EmrxacbBLtvs+3aBjkD0BrT0vTf7LlIurlYrme2dwQu4xD29SR+VUdGsNs3nXEbB49jqjDhkY4JqZbiSyeyWNo5Lm2uJbcrJ0IJwM+3FWIwJAquwRiVBIGRg0zOR/WtXXbLyLkTi6W4E+SWVNoDA4IxWXjjPtTuBpaI+2eVDnlc/kf/AK9bA+Zv1NYemDFz1PKkZrdjGFyT+dZy3Gh7ccVERn/GpD/kUykA0gelRMOTipCc1H65oAaT9aQgkY7UpxjvQenNIZ2HhS5W6sLnTSvzD96hzWlYt5OovE3AkXcBnv6fnXG6BeCw1m3uHOIw2G7cHiu41KBUuop0Iyrdu4PNcVeNpep2UXeJk6lGLe7lUp8r/MPbNYu75yeR+NdXr1uk1mLlCDhchh3Gf/11yKDO7nr0qIvQtjmJ6+1RNxGT6mnnrmo2bgAenNWSNzyOakVjj0NQ7enPFTAhTnsKAFbcBkDGeKiGQT1zT1bdxUfAJ9KBA2D9aiLfNjtSkkt/Sk20wD8vpTuNv06UgX88U9TtiOOuKBDWbJzTAefpT9vtUdACH72acOtJjL5I49KVuCAOvemIXsPWmnrkU4gjHNGBketAhQAV5po6UAjGKOis7fdAzQBBfS7YBAp+dvvY9PT8aIYxFEBjk8mq0TNLctK46nNWi+SeK1tZWMm76g3BqNj9c0rHOPSmE5oAQtzTWPtS/jTCTTARjTDTjTCc1QhrfpTDTycVGeM0yRD1ppGaUnFNpgMK80zFSn3FNNMQw0YpSP8A9dGKAEFb/g5HOtrIgyYxn26//qrBNW9NuJra/haCRo2LgHaeoz0PrSY0fQcUxdQTjJHaraK5AxxxyTWVYshtInBzuUHNXxPhQATTQy7DNJbybkxuHc9qd9plL5ZVYn2qkspx2pxkA7mqJLRuG3ZZRSPcqxzsI+lVDNjpz7VJGGKM5ZRt7UASfaIyecj3xSmeHAwxz9KZ+68ov5w3g/dx2+tQmZSMdfwoAm889iKj8yqzuC3HFRliO9AFzzMd6PO96omQ+tJvcmgC28pA61A1wwzzUJeQhj5blVGWKjIAqlLcLnqRSbAufaCCcH9aYZyKzWnB/ipDcf7VK4zT+0ZpPtIrME/+0KPP/wBofnRcDT+0e9MNyPWs/wA7/aH501pvRhRcC690AetQm8561RklwOtVmmak2M1/t7BGQMMNjPHpUX2jHSsnzm609JecnOKVwNJpie9N3nOc81SEoJ4J/KnLOB2z+NFwL252FOViByoz65qj9qfHAp3muw5JoAueec8nNBnXgcj1qgZGzQZCOTTA0jd9OSTTGugVxWfvJ9zRvPakBea5ORnpUUlz78dqqmQ/xdaYxNIZa8/PelD/AEqkSw70hZgR/jSA1I5AGxux9DUhnycFsn2NZQkJYH9KnTI+lAF0uG4PIrhfHkm2a3CkqSOceldiGwetcH43l3alGm4kBM00DOVOc896PaiirIEo7UvekoAaRxSU8imHFABTu/tTaWgB3U8CkPtRR2oASjoaMdKKQxaBz1opRSGG0fjTx0pKcBigAFLSUtIBwpfzpBx1xSigCrJmKcOK0oWDKPr0qlPHuUgDmnWc3y4wMjrSkUmakZNPxk/jTISGHepQPfNZGg0gg0cZ/WnMM4IpADu46ikMcpOcA1IxOMAdaYMb89+3NP3ZODikALgHvUw578DvTMZOQMU8KAOBSKEYA8ClQDJPfFIRzipIwMbiBx2xSBCKDuHb+tSNjOTj8aaBk5pxX5e3HNIoZyRxnnpUgAx168elIq4xnmhRgnH4Uhinh/bt61NjK5HYdqrA5wcEVYjYFMY/GgYDjjvUF22I9uOW96skZGKq7TcXqJ1A71pSV5GdR2iXrOIJEpA681a6Uip5a4yDj0pa7kcTD8aMc9qPSimAvTFKKSl/HNAC9aAPpSd6WgBf8ilooA70AKPU96UUClAzigBwAwOeKlQZNRgdO9TIPegRd021+1XiIRwDk11/kbFCjtWZoFji2a4LYZ+FrcCheCc+9SxozryQW1u8jNgKM5qLSI7e8tPMZx5jnJGazfG17HbaUFVhvc4xmuGsfEc1uoVX4FAz0y80RZVYKAc9K55vB8jMT5LcnPaqFr43mjZcvuHo1bI8arjnP5UBqedS6l5Om20AjU+aJICwX5tyn5B9MsKjgjJ0+/ubm2T7Qk5EzBcspBGMc8DOc1BDYW1ysTtcTG7L/aI4yflVC/8AM9afqN+JppI7C43NLgTSn5RkAqRz6jFO4FTWfLmvVht33wozkuoyNzHJA/KslUIJB7VblTbBCAwGFwFXjHqTUKjJAUZ9BVx1RLNzw7pAvIL+5kcKYIcxgn7zE+n4frVvACgDqOKzbOeSzA2HnOT6GrqTb1zxUyGhzEdKjYinE1GWA/8A11IxpPPFMJ4yKcT2/Smn2pANBxzR37Zoxk+31peAKBjDuByOPTivRLSUX2i285bc6KAcjuODXnhPNdn4Qk83S7m3JbKOGGcYGa58QvdubUHrY3YlaexeDC4yQo+tcbJG9vM0Ui7ShKkGunspsaw9tuyHTIHoRWJrasNUlLHBODXLHc6WZcwKPwSQaTAbg9Ke/TJ60xFJUnOM1ZJECTgHinbgDz+VOZOOahbqR+VMQ5Vx07Gms3YDNLn5f6U3r+X6UAIODnGKM9fTHFOK5ORRt55oEKo+X0xSYwQMY9qfgeWe+RUXt6UAPHK9KaBg9OnFOxx705Iy545piGNGQC3amYy2almbgAHpUPQc0ADEYxSZz1pGPzcelO6ce1MQqjJxVa/n2KsC4yeT7CrG5YkZ3PAGTWYh8+5Mp7nNXBdSZPoSxjYuO/epN1NI54PFJ6VbIFJ54NNBzzQSc9qTNIYE4FMNKTn1ppNMQhIphPNONMNNCEJqMninE8Uw1SEIabmlPekNMkSjvRRTAKTHXmlFFACdKktztuoWHZwf1plKh2Or7Q205wehpMD3fTnP2GEY/gFNvtTNqjLAoluBj5P8kVyemePbNLa1tpLW4acgIdgGM/nWoAZWMjrl2OT9aylPl2LSNODV71Uy4gb6ZzUo1qc8m2jI/wCuhH9Kz44uOOPapVQjjFR7Vj5S+mtunS2TB/2z/hSNrbgHbbqM/wDTQ/4VnmA5J/rTHUIORz9aftWHKXjrTL/y7g/9tP8A61NOuY/5dh/33/8AWrJmu7eEqshG5vuqOWP0FRC5LDC2rf8AAmAqXiOXdlxpSlsjWfXW7W4/B/8A61V28RSIcfYSR6+Z/wDWqkskhIJtV/77/wDrU95ikLE2iYAySX/+tU/W49yvq8+xof21IVBWzzx/z0/+tUf9vTngWQX6vn+lRW7LJAj+Xt3KDt9KsCFDyVNae1ZlyinUr24jCgKF/u7jilis7m6J3SQp+ZqaBEj+6v51fhkRedgNJ1ZBYo3GiSw20konVmVSw+Tjp9axlivWQEeTz7H/ABrpLi9DIyDgYIxUYQpGoC9Bil7RhYwFtrvqWjH0U0fZLr++n4Ia6E+ZjpmkKseq0c7Cxz5s7w9Hx/wCmmxvz/Gv6f4V0XlEn0pRbjPJo52Fjm00y9LZfB+jD/Cmvpl7n5YWI/3xXUFAvAoxRzsLHItYX6Dm3cfiDUMkGoRYI5HfKGu0KEmniNQOBk0+discMZruJgGjQke5FJ/aDBdz28ue+3BrtzBGWGY1P1FNayt24NvGf+Ain7QLHGpqkJA3CVPUMvSpV1WB22+efxQ/4V0smiWUoyI9p/2ary+HAV/dXG36qP6VXOgsY/26IjCzp/wI0n2hS3Dp+ByKnm8O3yZ27GHqDikGi3KqCZU+gycU+ZAMMpY5JBPrTWkIPJqwuiyOR+9j/wC+TThojdPOH4A0udBYqbyepFGTxnpVs6KccT4P41G2l3Kj5ZkI9CKXMhkfGAQ2RSvCykgkHHdTkfnTGs7pOuxh7GnILiMj5Prg07oCWKJAOXx+FTBMDgg/Q1D9pbJ3xED/AHactxAw+9tI/vDFO6ETKOMV5942TbrSkdDEK79ZY2X5WU/Q15/4rmWfUnCspKnHX0FNMTOb6ijp1FHfBFKK0JDBpO9LRQAlIadjikI5oAj+tKKXFJ7UALRjPNJS5oAKKKMUhh0FOApPelxQMWnU0Uo60gFpf0pAKWkA4GlpBTsUAIeRVX/VXIP8Jq3UFzGWXI6jkUDL9tJg+xq6G4zg1k2UoZVB6jitKM5XHoKykjSJLn1A9KMZ6jtSKfn55p/Xg1JQhU4BHTrQud/TjtSjhT60gGCSPwzSGTjBIH86kx0HaolwM49qlU5wP50mNEZJ3H61KhxjFRsRvz6U8Ltxg0hjqdnK7TkUznqTxmgH6GkMepIU4Oacq/Jz3qPftA6fhUhYcDOB0zQManIwRUqjauPxpvKn39qeucYPbvSGSOwVSzdhmq+nxsXMjdTSXjnyxGMYbtVy0TZCv0rqoR0uc1aWtix+FB96SlroOcU0tJRQAtLSfyo7UALn0pf0oH60UCF/GlFJ2pwHemMcOnWlHWkHHFPAzSEOXkmrdnbtc3KRIMliKrKMc4rpfDFuPMa5ZQQBgZ70AdFBAkECRr0UYqdY0frimFgTwKaM8kVJRxfj3Q7i9tg9qSdvOK8mnivbJis0TKQT2r6JuMSIEdRjvXM6n4fguI3zCjZPpQB4zFdZOCcHpWgBIRkMefeumu/BMZmLpHtXPaph4djxzC35/wD1qAOUuZoLJRLDOrXewQeWB9zaeSaz7eArNPG7AOMFc9GOcioCRJdquBvZ9ztnjJ5qeeSNlwrZJXaxI44OR/n2p2bE2D7XWNCpMo4bPY56VeZbeOxhiEIWZSS75zuz/KoIofJXzGBDsOPahju7/nVrQkXPPtUkLlWxnrVfPNOXOR/jSY0XySQKYTmokf3p+7I4qSh2MUjEUhPPAppPPsfakAppvbtSnHb+VGRSAToOlbvhW8aDUzBnCzLj8R0/z9Kw+AMetTWVz9mvoJ8fckDdfepmrpouDs7nZXDrBr1rNnBZtrH9Ki16MG/3dSy5xR4jRYxBexnHOQe/qKvamq3ekxXSgbtocHvjvXAdpzEg65z61FuGevAqQnd1BqBgQeOgq0SOYg/41E6EDrUhPHT8qjfHBwaYhgJ3DBpw6H1po7Y6U8dPU/WmIFIXFOY5YHHFMOeetOzx0pAJjJGO1IVwxHrTu4zxTXb5uORTAcOKd5hUNt4yMZpDjKj86a5AX3znigQ1gCM4+lNPWjfkYFNJB70AN4J4p5YE4qM8U4lYk81uFTk07CK2pSHCwr1PzN/So4k8uMDHJ61FGxnmMrktznmrDEehrZaKxlu7iZNIRxQeab/OkA49Timn60ueeaQ0AIR1ppFO4pp59aYDTTTTieKacU0IjNMNPNNNUJjTz0NJS0UyRuKQ07ijHFMBopcUuKMUAIBUscYJFNAqxCm5lGDknHFJgdTomnxNcRPsBdOSa7SKLC5NYuhWwt7cE4yeM1uBuODXJJ3ZqlZDsEdKGcIMsQB71UvrpraBnHJA6VnJZzX4xMWk4+cMSF/Ksp1FA2p0nU2LtzrdtCCiN5j9MJzWRdanPKrMT5UYBJI5bH17VeXRYPKLJFCVTqFFOGiQGISyRRojdOOv4VhKs30OqGGit2Z+nWvlobhl/fzDLEnJA7DNaccRDZNXG0/7OyeZIAjDIYDp+FSLZrICY5sr6lSK5JqcmdkXCKsiuAo4HWoL4FrRo1+9IQg/E4rSTTwlo07S55wBjrVJlEmo20fXbukP4DA/nRCD50mRUmuRtFpIgiqMdBgVZRKaq5arCLXqo8hhCgyd3QikwQalX5eQSDTWoJKEw3XCp2ZgP1rWGM+1ZoTdqMQ9Msc/Q1qBaAFPFJin4pvWgQ3FLtyOKcBTwtAEJTNOEee1Sjr0p4pgV2XaM0BgOamfBBB71Dj5TQAhZCQQRmn5BORVdwBUeWznn8KALTgjkVSnvp4nICqecKD0PGfwNPaV0xyxHuKiLZkWRogzDviqQMl/teEqV8qTlMkAZxxnHv2qo17bl8LIB6ZGAajl8mNQEiZNqkD3zWa1mJY/mkYovQDj3/pRYRrmaMEkMOOuO1Ne8hUkBwTWGURQ2HY7juOT/s5/pSCItOESTaS3QfTOadgubS3Ub9GGScfjSG8hWPc7YHqayfs2yZVMkh+fj0yRVpYEAjR1JKjjnp3/AJgUWC5ad49rNuGFOD7Go8KcAMvPTmq1u8DxuqbsMQ5BHQ9v5UieW6ySCU4PDEjpg0WC5YZDj7uaYYx3XFAUhH2yJvIxu3ck/wBKmfO3P8XtSsFyo1spByoP4VRm0SxnYtLaxsT3xVqS7liO5o/l2rwVIOTSreOwUtDnIz8vb86NR3Rjz+EtKmyRE8ZPdXNZtx4JjRS0Ny59mrsFZHQODkEZBNMYgjg/lTU5ILI83udBubUL5jKCeRnofxrLIwSD1716F4hgV9MEuOUYc4zx0rgrpdlzIMfxGt4SuiGrENFLx0xSYNWIQimkU80hFADMUUv60UgDFLRgUY4oGhQOaKMU4CgBOlLRilxSAB706k/zzSj+VAxR3pxpvNOzSAUUEAqaWlFAylCfJuNh+6ela8b8ZxWVdx8b14x6Vbtpg8S5/Gpkios0uCoI/Gng8D/GoosMvXoealVtuO/9ayZoAPAFL7g1GCS3HQ81MOeOPxpDHAYOPw4p2SPSm9QOM5NPxzxzSYyTAbAJAPTNIoOWDHk0zPp2qRdvlbSD/hSGNAwwA5NKFGecGmEFWyCc+vapSwORSGIU555BqQYKYHXvSIC6mhcgk9PagY5F/SpFGOaYOoApWYqhOeAKVrsL2IGJmvcdl4rUQYGMVn2C5kLkdTWl713wVlY4pu7DFL3pBQasgWg/UUdKDgDnigAz9KWm706ZH50oIxwfpQFh9KB+NNB5pfagB3504CminAfhTAUDj/69SKM9KaMfhUijvQBLGm9gq9TxXe6Zax2lpGm3DAZP1rmPD9qJ79WcfKnNdiTz7VLBCM43cjFBZAOKUEOpGKaTxjaKQxDsKn1qLqDgA+1SnG3OajUA4wcUAV2gfOSB9Kj+xJ/dFW5AR70zLUwPnQRtGxdxhmJAB6/Wp7aIIBI//AR/Wo4g0z75GZgO5PWrDSbuc1WxArMXPJ/WkIAAHNKp6elL16jmi47EfT60oxj+VKRg4PSm85PWkBMnHFSA4qJRz0+tPGfwpMY8nNGOcAfrQMY4wSKOBnnNIYHpjAxR05x+dGOneg9KAGnjrTSxzmlJzxTSO9Sxo7rzvt/hGGRGOY0AbPqvWrGi3Cz6O1s3LQ5Ax6Gs3wfcC4sbywlxjqvHODwal0pzZ6s9k3SR/LyPXtXDNWbR3Qd0mZTkZPX3HSoJCdwGP/r1o6laPZ6g6McqSSprNl/1jHPGc00JjSeMU09DnnikB/KlPJBHaqEOC01sHA7U8cg9eKYeDx2oEKPu5p5+b0prHKik3Y4JoAaxHJ/OmqSc5/WlOCTigccdqBArZbtzSyksD0yaYcLyegpu/JJB6UANB7Y560mP50b8jI7CgZJ9qYhcZIqDU5girAvJbDMc/pVgkIjO3RRk1kIGlnZ2Oc8mrgtbkTfQsQqFjAAIJpxNJ29qTNWyELntmgn3pO9JnnH8qQwz6Gl69aTtR9DTADSYGO1BFNPNAgb0z+tMbFKcdqaapCEPSmGnHOKb1poBPpSUUCmIOtFFH4UCDtSgc0UuKYDgMc1raHatPeeYRlY8Y/3u1ZK54x1PSu58P6f5SxR4+YfO/wBazqSsioq7Oks7UJCob0qzxGueMU5VKqBTWj38Hoa5TUyLtzc3SRdgd5H06frWjbMi2bx7tsh7mmR6aVmkfzhlsdV6D061Y/s9x1mH/fP/ANeuWqp890dtGUFCzIw6Q23lI25mOWIFPnkileLEmI16jBzR9hP/AD1Y/QUo0qZzxK4/75/wrPlqWNeen3Fe5Sef94G8tRhRikZkZSGkdv7oHAFSjRnxg3Mn14/wpw0M45u5/wAx/hRyTe4vaQFe6hNskA3MFA5HHNZ1mVkvLiUjhMRKf1P8x+VX/wCw1HW7uPzX/Cki0uO2i2KztySWY8kmtKcHzXkY1akeW0R0ZG4mp9wA6ioktVxzmpBCAcV1I42SrzjHWhlwcGnAbTkdR61JIRKwYLg96YirCub9m7Kn8z/9ar4Gagt0HmzN7gfkP/r1bAHekAwjimhc9qmxk0hGKBEez0p4HrS0oxQAmABRg9qXilpgMwe9RMpOQPSpzTCeTikBC1ucA7hSiPAzxTnLEcjFOWPjJY/SgZC2Ap6VXdWPbNX2jjK4x+VRyAcD0GKdxGBJdPs2vHgkfQA88VWiuEZYwwPzgZx0GRW9PGGiYEdqzUt034wOeadwsUI/KaFpY4RlVyAe/wAuf64qS3uVIwICCOOBxj1rSSMKx4HNTKiqQcCncVjLRo5ZWYR8g9cdeOtOj2tI2I2VgcEnPNa/ljqQM0oHHIFFwsYcMkKrIVj2BSc8ck0wS2axyKV2jBLKB7e1bjKjDDID68VC9rbP1iT0PFPmCxkNaQSk4mILDON3PTGfyqRbWQPu80MM56e2Kuvp1n12YJ9DVKRLWNHiSSYdeFOT+GadxEHk3HmtuLHJP0x2/wAKpyF1mkxE6svJZScY69P89KvxJKY8JevH3xJGCR/9arKwTKm2aWKTdxkjGaAKdtbFYVU5x9ac1mnPrVuGCaJWBiUDPZs5/OmsH67DioZSMfVbX/iV3I5IVCw715zfMHumYc5AP6V61IvmxSRMvDoRXk+owG3uthA4GD+ZH9K2pMUipR70HijNbEBSEfnSj880hzQAhGaSndR2ppoAX+lA5oFGaQxcfSnfjSDpTwKAG4pcf5xS45oxxQAgpQKfHHvPLqg9SaswWKTsVjvbYN2DsVz+YqSrFUUo5qS4tprSYxzptbr1yD7g9DUYoEPHajPpSfjS0DGyJuU1Wtn8mYxN0zxVz1qldJtcSDseaQGxA3B6c1KPXvVK3kLRoR6VdUblPr0rJmqZJtBH8qePTPakx6dKXqv41JQp644xTjkEE/rTP8mnnoOnNIaHA7sc8jtSr0IFMHbvSA5U0gJgPU8fypy8/KelR5DKO1ORsYxyM9qBlhRtxn+VI4yBt/HIoOGUYob7v161Iwzg89qiuSfLwMcnFSkqw5wRVdczXIx90dq1pRvIipKyL9omyBeeTVimoMKOKd2Fdpxi5pCdoyTignaCewqnO+5+TgVE58qNIQ5mOlumB2oPxzVGaWRzy7fh3p7sfWoypLZrlc5Pc6FBLYkUsFB6kVPGWLdSByajUDZ7Go76cWenyyYySOMmkm7jaVi1ZanDcyyRIxLR9a0a4nQWf7UJOdztyc9a7VM7ea7YnHLclHNKOKQUoyKoQ8DmpEHTFRqBxWlpNoby+jjUd8n6UgOh0a3eC0XAw78mtkA45poRYsBRjAwKk3Bl5FIYiJk8GkJy5XNSqxTIApDtBLYGfWkBDtZicDimMAO+DVpWZl46GqzJmTnpTAhVmDHncKfvPpUioqOT60/IpAfOAbgAdB70oOeCarJIcdaeG7VTFYtq/Azmnj6VWRsjB/nU6nHWkArdOtMB5x1pxPH/ANehRz2oAeM9af1H0pMDoe1OxxwOKAAnOADS5OOKTHvxmne9IYY5o7c0EcDpntSZ49qAGHg8mjHFO6jr3ozk4pDNXw1efYdcgfOFc7Gz0Oa2NaR4tSkYAoxAZWHqPSuTSRoZUkT7ykEceld1qji80e2vFUMxAyR78H9f5VzVlqmdNF6WDV9uoabDfxrk4y3PI9RXNyNu5rd0TbPBc2hJ3D519CO9YV5EYLuSI/wmsV2NX3ICR/D1pwGTjt9KYUIbJxUuPlwKsgUYCn2qI9MmnE/LjFRck0hkgYCoyT60p4X196NuByaYgHP0p2MYpwGRzxzTDlc85+tAEcuStQhvlb3qSbP51EBtX1J5piHVJGvJpq/NxgYqbCxo0jkBF5JzQIo6nLjZCjDnl/6VDEu1PeowxnnaQ9WOelTGt1orGLd2Hf3pKO1GKQw9qKOvpS4oAbS/rS8UUAMIpKefoKaaEIaeRTD3p54pmKoQw02nkc03+VMQ00HpzS80YpgJRS4oApiDGaOlLjvQ3ApAaOiWpuL0Pj5IvmOe57V6TolsRbmUjlj1PpXM6LprW1pGpX95JhmHfJ7V3ltZzQwIhAAUYxXNUldmsVZChBjmgx5Iqyts553AUfZiDksT+NZjKF1HKEzCcNx0GapMb1ZULGTYQcqDnnjHb61o3dybaXbhNuzJJGTnP+fWlN6guWi8sZ3hAQe5GT+VUkK7Kqz3kXlMV3Ip2uNnJz3/AAOP1p0d9dh1Dgbjt+UL6jnI/qKkl1O1jkMTg9SM5AHAGep96cuqWuBksox3HTr/AIGjl8g5n3IBrMx5CK/yksMY2emcE/rVibWVW6EMXluMqCxfgE5/oKc17CpAZXG5cqSv3hVVprNptzJiXghSvJ4IH9aOVdg5mPm1l4pRGY42+bbvDHbjGfeov7YeTcFiRSoz8zfe9MVZEFxcgYtZEjU4JddoHHXntUYmtYkEjk7SpYPjIIAzT5V2E5NldNXkeby1gBY7QRv5XIJOfpipDqzJOIfIBbLAkE44x7e9WYGtJJsRgh3Xecpgkev/AOulY2UjmN9j8lcFcjPcfWiyFccb9VtVmeJuSBtHPU4piavbB1VtylgcdMHGM9/epDJYvGqtJEUI3AHpj1pkllp+DkopGeVfae2en4UWQXLVld288RdJB8xLc8cZwD+lXkZWAKkEeoNY9vpUflqwlbmNAF4IGOahm0q7a5jZLhlG7cTGdoGAccZ55P6UcoXOjVaa4rL0yW/e+nN2roiIqLz8rnnLD9K18bgahqwyA4HUiopLu3iGXmRfqa8O8RarfTeINQRr24MazsqoJW2gA4wB0rGJLcliT7muyOEbV2zN1D36TxDo0TYk1K0U/wC1Mo/rSL4j0ST7urWJPTidf8a+f8gZGQMe/SrsWkanNCJ4tMvJISMh1t3ZSPXOKv6ou5PtPI+gYp4Z03wypIp7qwNNLYLV88QzywyeZBLJE46NGxUj8RW7Y+NNftAQt80yDnE6h/1PP61EsJJbMpVEe1OxwOalQ/LXk9v8TtSVh9psbWUf9MyUP65rWtvirZ8C50udB6xyB/54rJ4eouhXOj0PpTHVmGemK5W2+I/h2c/PLcW5/wCmsJP/AKDmtS38V6FdL+61e0+kj+WfybFZunJboaaLz8I30qiB+8q088MsJaKaKQY6o4b+VUTJ8+SamxRPgc81Jis+XULWDPnXMUYz/G4FNHiDRhjOqWg9f3y/40WYrmt2FO6Cs5dd0hwNuqWZ/wC26/41Mmqae4yt7bn6SrRZhctYA60bEI5AqAahYnH+lwY/66CnC5tZOY7iJvo4NOzGPaJD6iqklom4shwx7jjNWw4HG7I7HNLtFCEYgeKVf3m9kYfTPantLF5igSKNoG1XH3cHrWg+nQPkgMD7HpUc2mCVcCTBwRnHQfhV3RNhtu2ZZsOjBmz8p6cAf0p7RkZwMiki0pUuFkDlQCThe+aum3YY2uD9RUMpGWUDSDjHtXmXiu3+zantzxlgOO2c/wBa9amgbIJUZB6ivPfiFa7LiCXGMkg8dyP/AK1XTeopbHEcUlLjikrpICkBo7UY5oAKO2R0paTFACdKKMc0c9aQxwPFPHTHaoxTl/yKBEgpcUgpe9AxpHQ8U3FSUnapsUmAd8BCxKjoPSlzSUUCY4Gl/l9aTGfaloGO5HFRyJuQj1qTnnvQw9fxpAVrKUoxjY8itSBxuGR+dY048qZZADg8GtKBg6qQamaLizSH3uaXaN3Jznp71GjEp1qVhnkdO9ZGgFMk4HvTz93FIpzxmnZ+T1pAMUn3oJOT3poyTk96U9qBjgSMgCpkAAAPWmqPmBxinhctgdfSkxk6DnBPNI2MfTnFB4w2fpQPm96kZGXKZPpS2MfJYjrTJycrGOdxwRV+GLyU25yR3FdVGOlznqvWxKKOtFHWugwIrlsKB781Tm5ycgCtCWPzIflGWXn8KzZmz3wO9ctZPmOqk1y2Isg5IHNOHTBphODT1I2dM/WsTQlQ7jj8KxNfuftMy2kPIX7zVfnnaPAQAu3QUWOkPIVll+VTySepralDW5lUnpYTRbErtYrwvAPrXSgYFRxosahVXAHQelSCupaHMx3SnDpim4p6gnr+dAh6jjpXY+GLPybc3WMs5wPpXL2du9zcJGvc16JbxCG1iiRcKigUMZLJGrAHHNQFSj4zU7KynJ7dqYy5Gcc1IxuM8GmPg5AapAW9OKc0QHzEUARqSq4qE9Dg8ipyQVJHJpildpz1NAEHzFOtNyw71KYSSdp4o+zv60AeDaT4M1bVr42yNbw4Qt5ksny/TgE5/CodT0HUNGfbeRcAld6ZKn8a9a0220LTWTz71hL/AH0G/H5cVm/EGzi1XSY59N1IzRW3ztbMoBYHqQR1I44Pb9eeFe7sz08RgHBOVOLt5o8qX6U/PbtTRyBjvS8ZFdB5lh6n3qROce9RqueBUyjkHmmBIq0pBBNO7ZzSEgDFAgHU5/lR6/Wk460D26Uhi8g0zvRknNLkCkAcGm9B70pPWkJ60DEP0rs9Bc33hme0U/vImO0E9QefyzmuMOeuBW/4QufJ1d4WICzIVAx1I5FZVVeJpSdpE0E0lpeQzpwQwBHSr/iKzUSfalz05A7Cqt5AIrqdPRsgfWtlimpeHoyQCyr5b+2Olcj0dzr6WOTIGzdnk1HuIbrTsEBlPY4qPGDirMxxPzfjSNwacFzzTWOOn60xiHjjuKd1NGPWlXkn9KAHr/q+aiI9/wAalY/Jx/OoW9Mn8aBDerZqF8buKmA4Gcc1Hty1MQqAhOf1qpqExIWAH3YVdd1jjZ2OFA5rJjLTTF2xknJrSC6mc30JoU8uMeppTzTzTSMmrJE47UUoox6UgEGB+FH4mjrR29qQBR17Uc8Ud6YCdqTtS4xSH3poQw9KaeOtO60h6UxDDTcU802mIaaKXFGO1MQlLR70oFMBMZq5pVt9p1SCNgWQNubHoKqdK6bw5ZmEee4+eTp7Com7IaV2dfpVuJLxWP3U+Y10qBmOSeOwrO0O1xbtM3RjxWyF4rjZqC9Kd7UuMYoIoAjaNWOSASPaq39nWo3kQJl23Mcck+tXCKTFO4mjPfTbX5T5QXBONvHXr0qu1lYxTs0kgB6lWPAGMflj+ZrYKbu1U7jTUllLlnUnAO3A6VSl3E0Vzb2TMF3qWHyj5zkfTml+z2K7XLJydwcvzn65+tH9j4wRK52sWUMcgHtmm22lTW6rtmHmbArHbx1JJHp1qroWpJJBbXMqMZTIyfOAJCcgjGTzzTmsreeEIUUoFKAA9B0IqtDo01u0ssTKJQR5TH+6B91vYnNT2tnMmneXIqiSTczrnIBYkn69aVxEsFgkPC5z0yar/wBj4leSOZlYkkYA6+/rUEdjfrcMJHM8ahVBJ28DPT16jr6VHPHqNvHKyiUrsdljjbJUnGMdOmCaa9QY8eH3EKxm5b7gV/f6elQ/2LcBX3sNvYg88tn+QWllnmR3864diMBUEpjfoOi/xVpXsl1a6ZuJ8xjhVKr8zN/LtTbaFZED6PIltFHby7HjUjdjBJI9RTka7smd5tjR4AC7z17nOOKjW91AlyFcRhyuQuSMAcdD3zUsd/enAljSPC5YFC5B9wDxxRZjLWlXUl8k0jgbBKVTHoMfnzmtIYRSSeAMmorVjJAshVRuGflOQfeqviC6+w+H76fOCkDkH3xUWu7D6Hz3dzfaL+5nznzJnfOc9STULfdJ9qTgUqKZZFiXOXIUe+eK9laI5j3i8NpoXgFZ5bdJkt7ePbEy8M3GM/jXFeGvHer3/ie2tLtont7lynlrGF8vg4wevbvmvSfEtrph8KPa6tcG3tXVIjKvGxux/MVwui6X4R8I3J1WfxBDqFxGpESxbSVyOyqSd3UZJxzWMWmncpqxS+JejWsWqabcxIsct5J5UoUff5UAn35q58QNA0nTtAW8trGGC5MqoHiXZ1znIHB6VzPiTxO2v65b33lmO2tXBhhJ5wGBJPucfhXXaxrWg+L9Ejt31D7K4cSMkikFSARj0I57GqfMrXErM4Xwr4fTxFe3EDzPF5UYYFQDkk+9NvfDbW/iZdFjuVaR8BXdSBkjOD1rr/CEWjaJf3QTV4JpZkUcqUUAH1J5PNY+rXER+JsdwZkEKzRnzNwx90d/rS5ncdjPuPAviCCcRLZrPuGd8Ug2j6lsVRvvDWtaZCZrvTpkhAJLqQ4Ue+0nFemeMkhnsIPPk1JYtxJNgob6Fvas/TPEWnaRoDRsmsXcQz+8ngPf+HPQCkqjYNHl4B5IB45Jx0p4uJl6TyAezmu5+G+2bVdWeOJVRlQqn90FmwKZdRGf4qKmADvA/wDIVOTV7BqcQQykFgee5HWpYreedC8VvLIgOCyISAfwrs/iNam3bTwO+8n9K0fhhGZNO1AAZxOOv+6KV7K4eRxnh3Q317WRZljEqAvKcfMADjAB7/yrodV0rwjoF2tjdw391cFQx2McjPToVFW/DCmP4k6vGAOQ/wCGGH+P6VZ8YeJZdC1cRWVpAtxJGGkndckjoB+lJtt2GtjDudG8K3NuHtdQfT5iuVjuWxg46EN/Q1x3lkMygbipwSvIr1nw5qS+M9IubfUrSFjGwV8Dg5GQQOx/GszwZp403xfrGng70RQBnrgHj9DTi7J3EzzyK5uLU5hnliI7o5X+Valr4p120H7rVJz/ANdSJP8A0IGuh8QQRp8SLVXiUrJJHuUjIYH5eRVz4iaJY6dptrc2llBbu021mjQLnIJ7fSm+V2utw1Mq3+I+twLtkS1nHq8ZB/Qj+VaMXxSfA87SVJHUpPj9CtcLZwrdahbWzuVSaVI2YdQCQOPzrq/FngQeHNMjvo71pkMgQqyYIznvmplRpbNDUpG9afE2ymkVJdPnQsQPlZWA/PFdwsykAg8HmvnklVUnJ46V77ZOJLKFvVAentXLiKUYWcTSEm9y2+GBB6GuF+I9uTpkEvpIP612bScYFYfjG3W88Lz5XLx/ODjkY5/pWEfiRbPHTmk+tLSHvXWjMSk70vvmigA6UUUdqQBSU6jsKBjcU6k7UvbpQA8GnDpUYp4NIBcUdaKKAEFKBRRQMXmlHFFLyKQAKXoPT8aBS9v8KQyC4j3oRjrRYyEIUPY1OwyDmqRPkXAPO08UPUaNuA/IRVmI5HPFUbdsjIIxirqHvWLNUScDPvSchcfmaQdaXjOOakYgGVOaXGTQQSuB+FKDk0DHgYBqVTg985qFcZ5qRTngdKljRKW4HJxTzwoI71F3HamltqZ59eKLDbsMX97eDPO30rUHSqNjGfmdvWr9d0FZHFN3YfjS9ulJ0oqyRd2xWb0HrWOxJzz+Oa0rtytucfxHGayWY1zVtzopbC5p4b937Cq+40yWcn9yh+ZjWcYtsuUrItachnuzOei/dFboyc55OKp2NsIYVUDpV0V2RVkcsncUCnCk60oApiHDFPXpTB1x61YhiMkiIvJJwKAOn8I2G+ZrqRQFT7ua66VwzcY/CqOnWJstNhjAxxlvqaty4VAR940gQhztxnNNWbaCu3NNDlBlhyakDJg7uvakMjL7ieMYpd7lCtBQ8tSAEcmgBqjAJA5phbnlOKkHynnmh1LkHtQBEW4JHHrRvPqKmcRghTikxF6igDyR5CeKfbTtFJweD1BqDt1pUV2UuqsyqeWxwK8c/R3bZmJ4i0+KzvVlt1xDNzj0Pf8Az7Vjgc121/apfaNLwDIg3LXF46d69OlPmimfDY/D+wryj0FXgVYXnGBUC8kZqwAAOnP1rY4ReeD7cUh9+aDj/Gkzxk9aBC54GQc+1Nyc/wAVGfegN05/KkMXb0PApowBzz/Sl3A96CSOQaQCfhRgjHWkB9PxzSHtQAA89AaltJ2tr6CZSMpIGz+NRHIzSHr1pPVFJ2Z3WsndeRzBceamcjof8imaHcCG8ltWztlXge4ptpJ9u8NQSqcyQnaxJyeP/rEVS84213FcdSrCuFrodqd9SvqERg1GdD0zmqo5JPvWvrkI3pcg8Ocf1rHHI5poTHgU3b82T09Kdng/TrTSTxn1qhCsN2PWkwRjjBqTBDHtQxPpSAiJwcUxuSOwxintx/WmYBNMA7c81Hux9e1SblXr0qsomd2KwvgfrTRLIb+cMEhHrlv6CmRIFHHWmx2V15xeWMjknOQasmOXI+R+fatk0lYxabZGfoaQ96cyMMgqR+FMb8qADJz0oOBSZzRnJoAM80tJS96ACjH/ANfNGaM0AIaQ0pIppNMQ00hp34U0/pVIQ2kxT6Q9DTEN7UlO96Q4piDHHagLSn3pQTQBY0+ze/vo4EUtk5IHoOtdtHbslyBjHAUD3rjNMvXsNSt7hG27HGSP7vevVdI02bUtWi2AN1dcdxWNUuBt28Qt7aOIfwgCpxitQeGtRbkIv4sKX/hGdTz/AKtf++hXKWZXWgitb/hHdSX/AJYZ/wCBCl/sS+X71q/4DNAGUIyakEXtWl/Zd6P+XWX/AL5NH9n3S9beUf8AADTFcoeVjtSGPjpV42k46xOP+A0027jqjflQBS2e1OEYxVnyWz90/lSmEjsfyoAreVSiAHkirPlkdqXafwoAq/Zx24pxi9BVjbSYFAEIgUnJUE/SnSQhvLXHAyf6f1qYYzUhXc2QOij+dFwKQtxzxUUmnwSvveNS2MZI5x6VoiM5HFDIaE2KxTSBYYwiKFVRgADgCuS+Idz5Hha7XBG9QmfqQK7jZzUMsEcqFJUV0PUMMg1cJWkmxNXVj5o02awt7kyahZtdxbCAiylOeOcj8a0pLrw5HOk9rZ3cTJcRSKrHcAi43DJbkk89K9vuPC+hzsWk0qzYnqfJGT+lZ03gDwzMctpaD/cdlH6Gu763B9GZezZxXjj4h6b4l8PJp9lbXcT+ajsZlULgA+hPtXngbgDGa9vPw18MHA+wyDH/AE8Sf40q/DfwynP2KQn3nk/xqoYqlFWJcJM8THI6YFPU4DYI6V7pB4G8P24wmmwkjn94N/8APNWl8N6VEq+VYW6c9olH9Kp4yHYXspHgGc45H4UDGQD0r35/DelEHNjbkHr+6H+FVZfBmiyn5tOtuec+UKX1qHYfJI8dtNd1PTzss76dYgflRiGAH0PH5Vbn8Y69NA0L3gAYYJEShv5V6Jc/DzS3LNHDsYdNrkf/AFq5vUPhtPuL2lyQc/dkGR+dCrU2HKyr8Mxsv9RyMgxp/Nqo+KLuXTfHc19Ao3xsjAHkH5AD/WpYvDXiPSZDLbMUPTdFIVz/AI1k6lbazNetcXkE7zsAC+zOccDpVXTd7h0Oh1PxL4d8QWUQ1K3v45o+R5W07SeoBzyPqK3/AAFfWMtrd2+mWrQwQuPmlOXkJHU46dK81bT7qT/lzuY39PKbB/wrR0qbxLoySDToLmMSEFsW4YMfxBpOCtZMEzUj1mDw78RtUu7pXaJt6YjAJydp7kVY1jxZ4a166UahpNzJCgBjlVtsgPcHDDj8fwrl7yx1q+u5Lq5srp5pTl28kjPbsPaoP7G1T/oG3f8A35b/AAqlFb3Fc7SDxromhaa9toOmSq7c/vcAZ9Sckt9P1FZPhDXZYfFNzfXkdxcPPExcW8Rds5HOB2rAOlaigybG6Ax/zxb/AAqzpGoahoWoi6t4D520rtkiJ4Ptx6U+VW0C5r+JtQgu/G9hdwJMgV4dwmjKNkP6H8K9H8YNpCaCsmt2klxbK6nbF94N0B6j+deR63r97q9/Be3cUUckIAXYpUHByM5JrY1/4iDXtCfTn09YmYqfMWbd0OemKmUW7DTJ4YPh5PcRTRX19p7o4YLIGYZB4ySG/nXZ/EZBL4InZCGEbRuCO4yB/WvDtyMMFsZ4616pe+NtDv8AwVLp0k0v2prbYFaJvv445HHXHepnF3TWo0zy3k9R1r3DwtIbzw3YysxJ8oA/hxXh/evWvh3O83h8oGJ8mVlwffn+tRio3hcdN6nYCNcHiq15biS0kQrkEZxV1CcHcpHHWjhkP5VwG58+XcJt7yaEj7jlefrUNdH41s/sviSYhcLKocYHGeh/lmucrri7q5kxKOtKRikqhBR+FFApDFozxRRQAUYpR7UY5oAUdKWkxmnelIYd6WkpaBgKUdKAOaXvSAKXvSU6gBfzpRSUUhjvoarXURdCV6jkVZ6DpSN93vQBFp825MZwR1rbjOYx2/CubjP2a7Ix8rV0EDAqMnj2rOaNIsmYdDQDwTRkFSc/nSDkjPf0rMsUDIBPenKARg00c4ANOViT/jSGgiznrn2p5UFcggEVGMBs4Ap2SSuO9AydRvX61DKMYTOcmrUYC9PSq6DzLs91Bq6cbyIqOyL1uuyICpsjvjNNGAo6Ud67Ucg7P50dqbSjjigBZIBcxmMttOcqT61lT6bexMd1uxXswGQa1c1Ik8q8LIwH1qXBPcpSa2OdFhqEzACBlX+8wxWlZ6VHaHfIweXHboKvtJI/32J+tAoUUthOTe4oFOHBpuacKoQo/Cng8c00U4Dn1oAetdB4Xs/tOpJI4/dxnJJFYMYJPSvQfDdj9l0sFxh5vmOfShiN2TBxtPy+lMuIh5SsD8wNMEoztx0NSSfcO70qSiFgHjXIBphCkY7ipEibYCpxTBG7TEtTAcCABk1DIMSEq2V9KsPEQ2MZHrTG2qBtGTSAiHK4bimSNsG3nNLI7bemeaQNv5PGKAI8qOWzk0u+L2pZSrYIqP5fagDzKdLXSrIXmszGFXG6G2X/AF049QP4R/tH04zWxo8OuanpTzXtolnpN4hWygAIKkcqxyMnOPvHk/Q03wt4LT5PFPjm4wJGBihuc7mPYv8A0X/9VdTrPiMahcf2bbqIjA7NErD/AFpUAgj8D0681hGjFKx6tfMq1aopt2S2RxWmLELrZOcAgjB9a4rVbcWupzRrgoG3Lj0PP+fpXb6xAlvqchix5MmJI9vTawzXLeJ4wlzDKpGHU5/z+NZYZ2bizrzhKpGFaOzRiD5nA7VayQOlVoF3MSe1WCRn+tdh8+xPbNN5+lL1H9KQ/XimIQ5780npTuTSDAPGKQxOMAd8flSkUY9D+Jo9M8HvSAKCMDp+dHHrQPwoGNJ/MUjdKf16UmM/SkB0nhSbzUurFs7WXfj9DSTA7WVhkqeR+lZejXQs9Wglz8udrc44NdLqkAS8kbHyvz+PeuWqrSOqk7xF1CVbrw/HL/GCAx/SufIwRz78VuabCb3T7m0J5Q5GKxWUrIVY8qcVmjRiHpimnJHJpzcHB+tGTsqiRwII59OtJuJPr2poOB6UE4HXmgYxzhjSd8D/APXSu2CT361C8uxcjlugpoTI5GDyZGdq9/WhCRnPFCAAYp+0dzjNMQoyeQcZ5NOYkAfMaYExxmlPXGcigLC+a65Ibk+tIWLHLHJ+lAGeKcFGM4596AsQkZzkAZ68UBIzgbMfQmp0C7WDZ6cYHekWMgmncViL7PF3DAexpPs8BYfPIPwFTiNsZGM+9PEAwWJGewxS5mLlRD9ktscXLg9spULWcnVGV/ocfpVhl7gcCoznnHFNSYOCKJBQlWBB7g0ZzVzHmLtkGR645H41WmgaBlOcqehrWMrmTjYZ+lIfWlz74pMe9WQxO1H1pcEZFAFMBv5Uh/L2p2KKYhOlHv8ArSjB4zSjg9aBBgFTzXr/AMK7xpZ9PikAx86LjPQA/wCFeQ9q9J+GFyY76wJ5C3Xl49mx/jWVb4S4bn0AoxUgzRinVwjbE5pc0YpcVSEFLSYpa0QgozRiiqADg9hTTGh6op/CnUUxEZghPWJD/wABFIba3PWCP/vgVLRQMhNpbH/l3i/74FNNjaH/AJdov++RU9FSwuVf7LsSc/Zo/wAqqXGmosjNGoCnGAPpWoehpI/uVO7sO5gPaY4wfyqNrXj7tdNSYHoKfKHMcqbY+lRNat6Guu2KeqL+VJ5cZ6ov5UWDmOONoR2NMNoR0Brs/JiP/LJP++RR5EP/ADyT/vkUrDucUbZvQ0xrZh2rtjbQHjyk/Kmmztz1iWkFziTC3pSeUQACOhrtDp9rn/VD8zTG062LfcI+houFzjxET2pfKIGCK606VbHu4/Ef4VE+kRfwyEfVQaLgcoY8Z4pghx2rqG0aQ/dkj/EYqF9InXsjfQ07gc1JaI6MSuc1RFhDnHlrj6V1hs5UJUxkccEimjSbh8fJGB7mjmCxyR0e3ZiUQIf9mm/2W6Z2EEfSu0OhyEjJiFOGgjoZYx9BRzjsjhjbSRnBjI+gpEidjwv6V3g8PpkHz/yFO/4RyHtOR/wEUc4WRwxswVyQM9elEdlC2Q0St9RXbHwxGelyf++P/r1B/wAIvtlylwuPQijnYWRxzaNp+8SGwti4/i8oZqdLaFeEgRfouK6s+G5v4Zoj9c0w+Hrpe8bfQ0c77hZHJ3enWt1A0U9rFKjcFWQGuUl+HGgO5wtxHk5wspwK9TbQrwA/ugR7MDVf+xp4+fsznPXjNVGrKOzE4pnlz/C7SXbKXd2g9Mqf6VueHfDEPhyGaKG4mmWVgx8zHBxjjAFdbJprjkRun/Aai+zypwyGqlWnJWbEoJO6KSghsEcU4QjnirbWzEZA5pVt3J4WsyzyT4kWQEkF0F5V2jY/Xkf1rgD9a9k8dWJudMuwq5IjDgY5BXmvHcetdNJ3REtxmKb3qQ46imkZrUgbijvS4oxz0oGFLRQOKQCjpQelLQKACgD2pQKXjFIYnalFFKO9ABinYpBSj8KQwopcZpRmgYuP8ij60v40d6QBSj60AYFKM4oAqXsRMe8dV5q5p8/mwcjB6cUjLuUjiqNmfIvGiY4U9KmSuhpnRD7vQfhQq7enJpsRBXnrTsjIXmsTYcOMc0g+9mlPWkbHakAo5AI9alHv6cVEoz35qXHOMdaBkrPsQsegHrSWKfLvYcnmoJjnCe9aEK7Yx6100Y6XMKstbElLnPek5oz681uYi9O1KP0pPpSigBaUetIPal/GgBaX8KTilH60AL06Yp1IBTsUAKOaeBmmjjpUijGKANPSLNr2+iiAzzk/SvSI4ZAFjC4HY+lYHhCw8m1a7cfNIcL9K6sDfwDikCKLW5RwT2NTfLg7jmp5EUqUJ69DVZFzkHnb2pDBX+b2p7j+IflQYlkGVG00P+6UcH0pgEbOHK461AeZSh4Oal8zdyvBFROd0mcfMaQyKUFYzxg1TzhCGJzV9iX4P0rPurZ1l+9nPSgQKTsKjHPc0Yb2qJS0bdMin7vY0wILS/1TU5YbuWzF66L5iw27DaynKEoWIGOhyT3NXLiz0zw5pTXmpSQRyoqt++PEbgHhe5ODjjrgVyeu/F4nbY+F7Jnl4ijupY8u/b5E9zjGfyFcudKd7saj4ouHv78/dtTLu2f9dD9T90fj6VlKSirs6aNCpWly01c09QnhvtOs763JMTNJErFcbgrcH6da5jxBGWsopQCVDAE+nWtS6vWuplWR0jVcKigBVQegHYVW167hltY9PhAKoQzyDuR2rCkm5uR6uPcaeGjQbvJHOxLtQZFPx8oOe35U/ZjrSEfrXWeCMxnp0pMYJqX7vemsoI6UARn3pKXHOP0pMGgAwM4zSMfyoI9/ypCeelIYUpxjBppOBzTcnmkA4sBx3pwPGO1R5pd3r07UAOORyODXbSym90S2uV6jG78sGuJBycc+9dT4blM+nXVm2P7y/iP/AK1Y1VdXNqTs7C6bcNZ6mmThH+U/j/8AXqrqcflanMADtY5XjsadKjNHxkMD26itSeOO/wBLWfPzhec9j/n+dc50HP4zwe1AXIzRjHBp24BfwqhDQM8UhHHvTc+lOXn1oAY/AOf1qiWZycH5ewNT3cpHyryT61XHGB61SJZKnoOoqTvmmKpAp4FACqT060cc5/OhRnlqdnHtSATGB16mnBcHrTC46jt6mmNdQxj52BOKdguWPfvQDk4zxjpVM6pZrx5mfoKRdTtGP+ux9QRRysXMi+rDA4GakyMdP1qGKSORQyMGB44OamIOOoqWikxrIT9KiMIzyeanGSOacseT1ouOxWMA2kn6024iLWki4+4Nwq+kDyMVUZ7029t/J0yeQkcgL9OacXqRJaHPUenSgetHcV1I5mL1PajFKFLuEXOWOAasXQhWbbCpCgAHJzk+tAivjtSNT+lIRk9DVAMpQOMUv1NHIzQIUeuK7j4cu51BVU8rdRMP8/hXDgfWuv8AAFyLbVnY5+Vo3/Jqzq/CVHc+ndwPNIWAUkmncEZpsgyhrhGcdBpyar401aOa+vY1jghZEguWj25zk4B9h19q1F8JvGxMfiPXV9jcq4/8eQ1X075PiHfrj7+nxt+Tkf1roLZrlru4M8bJHkCL5gQQO/XOTn07CuyPwolmQ/h/WFA+z+Kr1cf89reGT/2UU1dI8Uoc/wDCUwOPR9MX+jitWPVYHllj2uDHIIzx3LFR+oqreauIb6FTMsVsXMbcDe0m4ADBP3eewJ+lXZdgKr2vjCLPlajpE/8A11tZE/k5pinxurfPFoDr7SzKT/46a0Rf3MmvG1iMZtox+9LrggkZAU7sk9zxjHfNQ2+r3Lafe3MnktJASvkojLscfwl8kN2yQB3o5V2EQi48XKfm03SXH+xduP5pTDqfipG58N28g9U1AD+a1dGqXKDyHjie5+0LBuGVTld2e56frVuy1GO5t0dyscpzmPdk8Ej+hp8kewGMuteJc4k8JSfVL+E/zIqQa3rQ+/4Vvf8AgNzAf/Z6sJrr/ZnlktlDeUssarKSGVmwMnaMH161JLrEsWnyTtbxefHKYmiMxwzdcIQpLE+mKXJEdyr/AG5qYGX8MakP92SA/wDs9RHxWY32zeH9dT3FnvH/AI4TW2t3++toZIikk0ZfGc7SMZH6/pTF1FG1VtP8mQSBPM35UqRwOxyOvcDoan2cQuY7+NdHhXNx9ttv+u9lKn81ot/HHhmZARrNoM/3nx/OukqrdXNpb7RcY+YE/cLcDHJwOByKXs43uFzOXxb4eYAjWrEg9P3y0p8WeHx11my/7/CtX7Nb/wDPCL/vgUG2g/54x/8AfAocEBlDxV4eJx/beng+9wo/rUqeItEkOE1iwY+guU/xq49hZyDD2kDD/ajBqrJ4c0SVsyaPp7n1a2Q/0pckQJl1PT3OEvrZvpMp/rU4mhYZWVCPUMK57VvD/hnTrB7qTw5YSKGUFY7ZATkgcce9YOo6P4Pgm8uXw2qZGQUBjJ9+COKFST6jueg8HvS4rgoPC3hFo1aG2uoizlcR3swOQMk4D+mPzpi6Pobq4tNZ1qARsVzHfyHOBk4zn0P5UvY+Yrnf4prH5hg159HptkZWVPGWvq6jJWS6X+qe9W7SwkuH8ux8WapM2MlmaNwP/HMZqXQ8xpnb4pCprmf7D8RDmPxVcH/ftoj/AEFRyad4nhUH/hJk54G+zTk/mKn2T7judUQcU3n1rlIYvE7ED/hIrEtk/I9jk8cHo9P3eJEKr/bujMW5UNasM/TElHsX3C5uajMILNmzjLoo/FgP60q5AHOa5fVbXxZd2Sx/bNGMfmJJuWORc4IOM7jwanNz4tghZ/7N0y6x0SK7ZGP/AH0mP1pexkPmR0Zc9Oc0g35zXOR6/rEUYa98LX6NjJEEkUv5YbJqRfGKjmTQtbjHvYuf5ZqfZT7D5kdGD60pkI6GudPjGwCFpbTUov8AfsZh/wCy1CfHXh5DiS8lQ9w1tKP/AGWl7OfYLo6VpGJ68UKwU9TXNf8ACeeGiP8AkJov+8jD+lS2/jPw7cuETVbcnGfvYwPqafs59gujofNIOBmlEh/Gs2PxBocn3NVs2PtMp/rVmPULCXmO7hb/AHXBpcsuwy3vbsaXc3rUKzwMcCZT9DTzJGOrj86VmIlD0jBGHzorD3GaryXkEY5lXI9xVc3fnAiNwR7GgC20Fk4+aKP8sVC+kWsvzR7kPsagBbby1NMs6E+XIQx7ZpphY5PxppsdhBJM0gKiFmOePXrXzZXu3xYvrmDRXSaf55QFA9ien868KZe9dVFaESEpp/CnHmkrYkTANJine3WjFAxuOaWlo/GkAlKKKKAFHWlpKUcUhgKWilH1oAXtSikGacKQxRRjPelApwFADcUuM9vyp3agjikMQdcClzx/9eigfWgB2B16Vn30ZQiVeq9a0AaZMgeNgehHSkMsWdz5sCH8DirQ+Zt3b1FYGnStDM0DZ5P61vRHgEDg1nJWZpF3Jc/pTeCvQe/vSggc9KTnFQUPXheAMVIpHXjrUav8uMEHvTi21CaVrjuEYEtz/sitIDFUrOPA3k9aujtXdBWRySd2Gc9aWm0oqyRfanZppPvSikA6loFFADu3TmlApBThTEKPT3pfY0fypR1oGOUHFXLG3a4uY40BJY4qqoJauv8ABunrJeG6f7qcL9aQHX2UcNraRwLxtGMVN93pTZ4T5n9RT0VwMYyPWkMQoxA6k1F5bLJnOM9ak3tECe+OKjySuT1oAmbMcQK81IwEtvtcYNRxuyJ+8x9Kesy4zSAq+W6ZxgilXbkfLg0rkAkknrSFlaRTjgUxjjEV5I4NRzIGG5RlqmuJ8oADTFbHHOaQjMaLDZbr6U3YlXLhfkJxmqm0ehpgebRLY6Mhj0pSZsYa8f75GOQn9xf1rOnl2ZLHLHrzyakllEXAw0np/jVA5ZiW5bPWuCMJTfNM+mrYqlho+xwy17/1uRshdtznJ7CpJLVXQMCOnYUbCTUioccniuhabHlzhz6y3M2SMo5B5qM5JwO1aVzGpGe5rPcAVomcM4crsM7eg7YFN2nNOPHApjHGB3pkDSMjrUZXjA70/p9KaeCcYxQA0j3zTM46n9Kc2Tmq8lwgbbuyfQUASZzSbqpy3hU/KRn1qE3bnufxpAaQ5zTu9ZQvJFI5/OrEF6JGCuAD60DLoJ4rU8PXHk61CGyBJ8jf0rKBp6MUkWRDhlOR7Gpkrqw4uzudheIEvHXsTmo7GRIpXtmzibGOe9WLh0urK2vUxl1G7vzj/wCtWbdZV0kBGR09q5DrTIr21a2nKE5yMg+tQ5GOKv6iXnjiuMDbjBI/Os1jge9NANJPNBYopLHpzQME96guG+QpnBbjrzTsIrjMsrOTxUoXmlVAo6mpFxjOcCmIQdQOuPWnYOacqjGR27UZyKQwx8oGTUE1wqKScVM5Own8qwNSlIIiBxnk81UY3ZMnZBcakzkhPzqi8hc5YkmmdqSulRSOZybFJppyaCcCkqrEksT3EDb4nZWHcV0+l6il6mGXEq/eHr71y6TMiFR3rQ0ME37EH+Hp+IrOpFNGlOTTOsQDuR+dSA4HAxUKIwPP5VKFwMnmuNnWhxOOpIp+ugQaLBECNzPk/h/+uprKATTgkfKgyRiszVsTXGxXykZK4PfnJNXTV5GdR2RigUo61KV600Dmuo5ixp9uZLlfmVSeAXYAZ9yeBVu80K6tYJLiS5sGCclY7yN2P0AYk1nkEDI7UwqCcnJpiG7j3oNKcDmkpgHel20gFHFAhQMVveFJNmquOMmPP5Ef41hVseFz/wATtF7MjL/X+lRP4WNbn1dayebZwSf3o1b8xUjDKmq+mqY9LtEb7ywoD+Qq12risUc1GPK+IMOc/vdOcf8AfLg/1rqK5i+nWHxroh/57RTw5x7Bv6V09dVP4US9zlpVMWqXyg4xIsnHs6N/7NWZq1zPZ+O9HjSeRYJ55kkjDHaxMalcjv3rT1HjWL0ZwDCTwf8AYU/+ymsfxUfK8TaDdE8f2hGM47PGy/8AstbR3EyHU9SurfVreUXDgmK0K5PYy7X/ADyAa6CREtdNtri3ihjkmyJ2WNcyHBJzxz0Ncx4lHlTLIuSUtXA+sdwrV0t4CdAhO7hZn/H79U1sFzI0i/mm1jXtMkWMW9reYiVIwhAMW4cjBJ4HPWq3hvWbibw/YahP5YuBE2Qq4HDSjp+FS6Rx488QRnA8yW3cfjCw/pWZ4ZiP/CMQR4GUedPyeT/4qqshHQR3OPC93crEhla4nhIO4jahfaACeBkA8Y5zU7XKqdPs1QiOWxkvi/mP5hkG3+Pdn+I9zxxVeAb/AA5eKFwBqE4x9d3+NNUmR9CccbtHlX/x2OpsM1724X+2NKV42Oy6eFCJWBA8vdzz83QdapwXEl1YPeRvJD9pzI8QKldwkVc527ug9ce1SX5zqemv/d1D+cB/xqnprH+wEPHyx3Hb+7NSsA60urpfDGnS/aZvM86VWYucth2xk/hXV3Njb3ZQzKxKjHyuVyODg4PI4HBrjYXJ8LRDbgR3dwAB2+dzXdDkZrOWgC0h5BHrS0hIAJJAHqakDnoNG1Cx3NBqTyMAwUy5bg9M5J6YGPx9aqalFqUFrbeZqpily+WLnDZORnCjoOOwrqjg9CDWLrUjDap08XUQwxJ6L1yf5cd800MwGvNSEpKarCyDOI2mG4HsPm9OCSRnFTW0l3dygXcMM2/cGciN0xjgdckdT/hVDyVeWRrnRZQkj4Xyt+5FPBJOOT0P86SxTTLTVEMFvdxTqrSqjkAbdu0g7ue2R9a0ESPJrqXSMuk2WWJKybRlCTjJwe+Afxq/pzpc+YZ7FYLkIJDmNhtc5BGfoR0Pc1Uu1t1SQOZ5JH+df3e4NuUDABP5fQ0Xd7pl0YppoL2Pav3xGMEDJyeucdf8aAJYka2DmGyjZpSIt2x1ypI3EgnI6nrjOKuaTiLVJEWxEJCspkUEKwBAXA6dKy7nTtLgs4ZhHeFbg5UockrnPTtwf19qteHreKK73QtckGIjE2BnDYzjseMfhUS2KR1ol4HFZetNNJDEIbVpir7/AJZNuCOnbmtMJlffFZV7puoy3Rmg1Dy0x8sYTgcd/XvWa3Gc/ZzTQTxz3GjXU0ibyrM2SpY89F9e9QGz0+6nmhms7i1clriTY45UjPpyOOnqa2p7TXbQQ/Z3WdBzIvDMxLdicdAePpzTVvNXjkc3mlK2BhDHknnHBxn/ACK0uTYzFOmT6ZLDDLc+Uj+YCw+5tUDb74p0SsWaW11zaQw3CVigGfx56Vdt7oTyDdpiW/nZEkZXLFQDgkY6cY/Go7R9Ikvlhk054J1Bc8YUY9cHn8RRcC1Y3V8bpVa5WdS5JaNkMYTHT+9nP4VYuJtVWRltmiaMEnJIyeOB+dZMMGhOZJormaPkDqc+wHBz0pTaaO8ixR3kwkKsd5HBOOckjr/L2oAvLea55GWtIyzAdwMHv36elW4Jr0yKJ1jAZCeE5UgjGTkis+bS4Lq3gxfMXiQQFlIIY+4pljAkUc1umps8pYqrEnI2knnnnpj6CgCzLrEkU64t28oswYiM5AHfHbv69qlTUTM7xzQAR+SXOBuz7fz4rJNvG6nbr4z3Yyd/f5qsNa3EcMbpq6MCejPgMOehz7nn6elMAS00W8tnuDoli2HKfvIo+ffIBFNGj+G5bXzf7Bsv9WXKpbrnj0IHOe1XI7d5tNMYuE85WPzB/MC5Odpz14wOappBrZAZLqELyMEA554/h4+lAGRLp3hB1BbR2QY3bVYqfXs3FWZvDvh62lAW1vFxtyUvJQF3HA/jq/NZ6jcSE3awvB1EaIrEH23D/OajvRqqtBJFaRSyRxAs7IpbcTggehwc/hRdiHWPh7w9emQCyMwXGTO7uDn03k5FUfB9haw6rrwsoxFAt4YlRR8oCgdPzNdFo0Zjsd8kCwSMcsoTZg1leAiX0q5um5NxeTy59cuQP5VnU+BlLc6PyMLyaqlSJSOvNaTHiq0ihdz9RjJrkRoeNfGu4JurC2BGAm447nn/AOtXkbCvQPitqkeo+KUWLIWKEKc+pJrgSMEjtXbTXumctyEj0pOO1S4phX0rQkbRSgYo5oGJSUvfmjqaQCUtJ3paAClpBTqQxe9LikGKdQAlOo96KQxw6U/6n/61MFOBoAeKXGe1IKcPpQAwj6UnUU8gYptIYY560vOKAOff6UnXvSAzbxDFKsy8Z61r20/mRIR6VUuYvNiZSBzUOmTFGaJuvXB9aUldFRepu9QDinAE9euMelMBO0DPUVJnLE4wKxNQHGD2oc7iEH8Rpe5z3pYl3XHTOKumryJm7IvxKEjA9BUgpAeO9GK7DlF570CjGaiecLnAzUyko7lKLexNSgYqk07uDg4+lIgbGSxwOtZuujRUWX8+9OHNVYySfvYHei1vorh5I0bLIcGqhUUiJQcS4OtOFNHrThz3rQgWngYptPUFutAE0Sl2Cr1NemaNarZabHDjDj5j9TXHeF7AXWpozDKRncc16E0YAO3igEBuXxyBUqO5jDdvSqiEA4bOauDAhwDzSGQO58zpml53A09k+Udu9MbGzg4NAyUFX+8OlLhAp5pkUeyPLN1oLcAAUhDWEb4yOaVokx3FLsJ6AVKYz5YJ/GmMpqnJyad5TkAjinOhB3DG30pwZjHkfjQBFMoCbMZz3qt5A9TWgqArz1NH2ZT6/nQB4NJ+7JXO5jyTUajNKqEnPerEcJJ9BWDZ6MKdtWNSMMKm8sBOAPrU0cRJwvQU94wposKVTWyKLqMHINZcygPwT9K1pl2kg1mXIIbIHH1qomNWz1KhPHSmH0704jJz/OmNxxmrOYjJz0PamE4GSeKcce1Vb5yludvBJwKBFO6vDIxVDhPX1qkX54pDn1zSYpiFzSjj2pKQ0AGcmkORz0oPWpYIGuJQoHHc+goGa9sxaBWPcVN/nmmqoVQAOBT8f59aljOl0B/tWlzWrcmM7lPpn/69RSsPJ+lUtBuzbarGu4COX5Wz+laN3EI5ZYxgKOR9K5Zq0jog7omjYy6Jt2DK9Pw5z+tY55I456Vr6QR9juiBuHYH6VjscNjJzUI0HgfnVJkk+1OZFwRwBnOBU85bZujzkHqD0qMKQeeT3NUiQIyeenrTsHpg08AHigISwzTGNBIUcH3p/QjNPCgducdqcIgQDnFIZCVzGVPIPSud1CNvtOTkcYNdTtC8Gqt3YpdLhhjHeqhKzInG6OWKYHTrUZBFakukSxt8uSPYZqpJZzA9AR6iulSTOZxaKh60n4Va+xzEgBD1q3DolxIfn+UY7U3JIXK2ZQBJwBya6bQ9OaJN7L87c/QVPZaLDAQzLub1NbaRhEwoArnqVb6I3p07asYqkdQBmlHPT8qeFwRVq3jzIu0dTiuc3NPSoY4YDNNgEjLA9MVyGoPFJfzTQx7I2OVXPStnVpIncW/mMMHLD07YrFugm8BScVvSjbU56krsqMMg+lR45qY9KZtweP0roMRNox700rUuCo4PNMI5xQBEecUbR/8ArpzDmkIpiG4+tOXIOR1BpAB6ZpwAPPNACEHnOK0/DzldctuepI/Q1mkc8Gr+j/u9YtGz/wAtB/hUy2Gtz60sH8zT7aTaV3RK2D2yKsVV007tLtD6wp/6CKtVxFHMeJQYtb8OXA4C3+wt7MjDFdTXL+Nvk0+xuNxXyb+B8gf7eP611FdFP4US9zndUX/ioYhjIkiAOfcOP8K5nxmx+xaPdgHMc9nJn/gRB/8AQq6zWBt1nTpOmTj/AMeX/GuW8cpt8HpL08lEOQf7sqf41vDdCexF4rUKm4/88r1Mdugb+ldG+ZvDoJP/AC1zn6n/AOvWP4oi8wxYUHMtwpHs1uT/AIVq2TiTwnuUcZiI+mE/xq3sIxbEhfiHqJxgvbWcgx9CM/rVDw4xTSrqL+KO+ulI/wC2nT9atRPs+IJ2/wDLTS7Zx74kAqroi7JtZRmPyatcKPbJjP8AjVdPuEbtk2dF1AdduoE/TIU/1qO2fdF4bIBw1hLGf++F/wAKTTWB07VVB3f6RC3r1SOorJiLPwmwxkNLGfb92w/pUDL9458yxk7/AG+A/nFioNMI/smaMDAD3o4PpKTRqB221iwOMXFm367aLIEWt/6rc3n6/NQBDbNjw0wPbULhfz8w13qnKg+1cFagN4eugP4dSl/kf8a7uEhoIyOhUH9KznuND6hu7Zbu1eBmK7sc4zyDkfyqaioGYFxpAtbRWe7LRROjkMmckYA6c9f8mqdlMJZ8RaiJfLXyypDD5jnAI/z0rbvPtUl0IRCj2jLhyRk5Of0GP19qxPss8NtM1lpsbzRurICjRDPJPBP6g8574ppgAknZLhZLuM3CSYKpKQqZGFzx/e/yahvZ1e8Tyb+1ZoxiWCQA5YccZIx/9ani0murOS9udKjS4jcShFGDJjntyT6fyqOS3jmvbR5tJVTcAu2AxKk/3sd/f69OtWmIha7u7qKAW+s2wn2YdFAOWz16HA7VFcT3Ink3a1bZQcw7Rxjg5JHT8qmubGW2nzb6QrCJt6GNtoY9f8/T3qrdifc0z+HN5bezKpzuHBJwO59MZpgXZrx2trMJqtvFIEzKSwwRjIwavaMrG6kczRykoN7Agljk88dBjt/k4kk9tbQpJc6AgkUuxAGQFTHzZx6nj2rc8MLbtaSS21uIUkkLbd2Tz68D/wDVjk1E9ho31X1pxGRigUGsShMU0inUlAGXqUklvEZIkDMD3BOBnngVmW/iOGRlSW1KNgE/MCVz2PT5vUVuzD5xThBG6DdGpx6qO/WqUgsYMk2gW3lNJaKPNjypFuW469QPeldtCkiEvkRlDjBEZU85/wAK3XtIJFAeFGABUAqOAeorL1WAxgLBpqzqygHacYAPQ+3PSqTuKxBFLpUMcTxPsieX5dwIG/bjv7Co7dNGlvUktJQJhltiMcNwRkj86pySyljBLozmNmJJDHkkYz7cHp2/CnWL21rcxommmCVTtG+U5O88kZHzdKoQz7J4djZwW2jG0oWfaCPb15q7/Y2lBckYVAGx5hIUY64/OqVzcQxO6SaJI6iRiXCk55+9nH0qvFfJAkyxabOUnQZyxyQTjGQOuDnrn3pgbUdvaTxyhbkPwoJiwNoB4/XNUptP0+VYoI77YEBVQjrnk5zSaVNDb3clsIJ42kzkORgYBPGOv8+lVZJdEC+atrMi8glX2kcdeuce/rSAuxaIY49iai+wNuA9zjg889P1px0W7SUvFqjq5AXLqWyM5/vDmqNnFYXL7LXzBHLujDSfOOBnCnPB75qtfx2E+oEm/ljnMh+QxkjOMbew6imB0chl03QLmS4m854opHLnuOSP0qn4Ji8nwpp4xgtEHP1bn+tQ+K5Vs/At8Af+XfYOMZLYHTt1rX0pUttOt4OV8uNVGfYVlW+D5jjuaRAYUy4Ajsbh8fdjY/pUZkGfvU3VJPL0G+kPQW7kn/gJrlRofLniac3XiC8kJJxJt/LisZhgVauXae5klOfnYn8zVc/54r0IqyMWRnmm47/zp5/zmk20wGbRSYqQj6UhAxQBFjmjHtTiKTpSGJ680nWnYJPNJQMAKdjmgUuKQAOtLjilUZ4oxQAUoOaMUUgF6jOKB35oA47UvOfegY8GnCowcd6kB4HpSGLTTxThQR/jQA3tSd/anUH6UgGnkc1mTgwXQkA4NanPBFVryLzIiAORyKYGlav5sQYHII7VbVccZ5rC0ycldgIyvQVtxEFc4+tYyVmaxehISFQkjpUtknylyKhuOdqdz39avRLsRVrajHS5nUetiTpx3oFH50Dp0rcyGO2eM8VVY5YjqM0rEgD16VCWBORiuKcm3qdUUkiRRztz0FTqPl479arpktyOtWM7SDnA9agtEd7cCwsJJSecYX1PasTw8ZDcmVyfm6e9T6iRqMu0yEQpwoUck1qaZYfZ1DEYY/w+grpoxsjnqSuzTXpTxTR6U8YNbmIoGaljFRqM5rU0axa/1GGFehb5j7UAdf4c0/7JYJK64aX5vwrfVc4APHrTTGECr0VRgCnxny84GQaBgVjXBU5Y0qJ3JwKZjPIGW9KXcwYbh+FIC03l5GW4pksKqMqahYhSMjk0997xYU5xQMEB5BbIx61IkZVSzHiq+0mPOStSjzNgXdkelAEiuHBwfpUqglcHJ9ahVWAwENMWeWIncOCehpAOaNlY+lADBSABk1JITKw2jAphD7gqgA0wGgkY3daduFNbcSFKZb1pPLb0pAeIpFz0qZY9zBRkVZWLGeO3pQw2HIHNYI9KrLTQfgRJtFVZHwM96e8uOuapSSEk1ZyoZK248/rWdcLkHj9KuSSAcCqcrAk57+tCCT0KTcde9MYYGcYqRwC2BTG4HHJqjAiIxUNxGJYiuKmPPTmkPpQIwZLd4yRtyPUVCQQcV0JRWBG3nP3u9QmzUnk4H0qrgYuO3WjYxz8prZFlH3zUscMcfCqM+vrRcRlw2Ekh+f5F9x1rSigSFNqipiM8ccGjAA7UhjQvWndqXb3HWg/hSGAYq6sp5Ugg1095IlxFBdIMK64Y+/8AnNcyADjtW3ph+06PPa5wyH5axqLqaU3Z2LWkSFor2FDn5Cw49qxMkZJq3oUxOrum7C7GyKo3bBZnhGGByMg1lbU2uQoXlcsfu54A9Kmx05xSxQnoeMDtVqO3Y+3rQ2CREFwuetSCNmxx0qwIgDyKdsVTkVLZSRGkYXk0gXkD/IqXaST6Gjyj1GKVyiPYMjnPpQQOeM8UrDByc4qQISoyeM0XEQeVkbcYNQPb4bBUbRVo7txJGRS8844NNNhZEEcajjaB+FWV54x0pojyeD9KnSI5xSbGkIqhffinZPTFSLESemOKcYyBnORUjGZ+XPer+msIw9xIv7tAce9RQWbXBLuSkCgsz9OBTdQnVIdkUqiKVAEx2Hf86qKuyJuyMu/ljuLxrhQVDHPWqDncxq1KFRQuSaqsDkcV1xRyNjfcU0g560/bz1pcH0qyRp9+tNGCf/rVI+7GAMnNNAKMMDn0IpiGFBnoTmk2A5wBUxHXOKYeRjBx3oAh8vI6/rShcAfrUrKAnP3s8+lMH5UANNWbA7L23cHpKv8AOoyM9h+VOVtrK3GVIP60nsB9a6TxpFmMYxCgx+Aq5VPSW36PZMepgQ/+OirlcJbOd8dIX8H37Ly0aCRR7qQf6V0FrKJ7SGYYw6K35iqHiGET+HNRjIB3W0nX/dNN8Ly+d4V0qU9WtIyf++RXRS2JZB4hUedYSH+GT+qn+lc546US+CbwKD8iT/pKD/Sut1qymvbaMQAGRH3cnHGD/XFYfinSLy58KX9tDC8szrcbUQZJ3biP1xW8XZoTKOsbTb2TkglrhQSO+63I/WrWgEnwUu/k+TCx/wC+EP8ASoL2zvjounbrWZpUltHkXYSRxtbOPTv6VP4bhux4UmiuLeWOUWwGx0KkkBh0P0H51TasIwp28nx3pzdRJpDL+KSqajsFC674lizwNREmfqgb+lSapaXg8TaFMlrM0ZtrqJyIz8nJIz6ZwKY2n3yeLvEbLbSrHI8Ekb7G2sfKcHBx2OKq6sI0tJURwavECSEW3f64H/2FNtGxp/h04P7vU5Y/p/rgP6VJplvcrc60rwyBTZoVypAJDS8D17VHbxyf2RYny3Hl64eCuODI36fNU3GWtTQ/2RCT1SS0J/CbFSWy86oOf+P+cfnFUOrl00uYsvCCIkH/AGbg1YtmP2vUlA5F+3Hpm3zSuMpWbEaHqAx93UCfzUf413Nod1nA3rGp/SuC00htG1Y8n/T1P5xJ/jXdae27TbU56xL/ACqJgSy3EcLIsjYLk4/AEk/pUMeoWkz7EmUtnGDxk+2evQ1JcW0V1F5cy7l9iR+orF1G1SwaOe3tHuHMgAHmtlTk4PU8c8/rWYzYS6glbbHIGO0Nx6Go5r21hO2W5ijOcYZwOaxQ62MnlrZsxLpEuCSNuQc89gWPT0qrfRJOxmlgOZHYFfNILdEIAx3ABp2A6Jbu3lUsk8bKBuLKwIA9f0NZGp3t358Y0+6sgpX5llcZPoR1rPGLdb5TZykpH5crPJhXDE4xxz154GKzrm0sJDZSpYXbwyoHZoZmZQAR19Rj0xxVpCbNIahrRkjDPYSI7KjFH+6D1bqM9OnvVl7jVxO7W8dtLCWBXa3Ozv369Mdutc7v0WOIyyaZdxhW7luO+T6fj61NY6jYNPI02baAlwi7f3mG4Jc9vpjj8qoDUXV9ajkdLjTYDsTeUSQF2BPTGT+ftWvouoJf27SrEsfzkYU5BPrnArlnsbGyeF7fVDE0gEmJdyF0I6FhyBx+GSa6rRlLWu5n3AuxX5y2BngZPNZT2GjWBzRSUuayKA0nFITSE8GgZBN94VOBwKqs2XAqznFAC9KQmgmmk00IiPLk4pSAeorktd8af8I9rE1vd2Ustt5HnRPDjPBw2dxHqOlaT61eW3hg6rcaezXKw+abSFske2cdh1/GtLMRtEDoelNKgDAFZGg61LrNs9w8VssYbCPb3Hmg+uflGD7Vm3fjNYUuLqLTbiTT7aXypbneo5BwSFzkgfhTs9hXOlMURl83y18wDG/HOPTNI8UU0ZSWJHU9VYAg1zXiTx1pvhp7ZbmGeY3Cl18kDgD6kVij4waCf+XTUB7hE/8AiqpQk+guZHcCwtoZd8NvEjYwCqgECmtpdjK26S2jL5LZxzknJP4kCuAuvjJpMe37Pp93IMZbzCqEfqaveHfibbeItag02HTponlDHezggAAntQ4TWtg5kbHjlTJo9nYxgbrq8ijAJwMA5P8AKtlEKqPmrnfE9yz+JvDtsoJVXlncZ9FwP1NdBHMrplawrbJFwHnqO5zWR401iHT/AAnq0UjFZGtGC8cHdwK1N/zCvO/i7dGHTljyczBU47AEn+lYwV2UzxluBzUZ9akOSMUw13mRGRxR608Ckx0oAZ70h708qRTaAI8c0YzTytJjFAxmOuKXpS4oxSAT3/SlH40YpfypDAUuD0/nR0ApQKADpQKMe1Lz70hh1NH6Uo9cUfh3oAPWnA03GTSjj+lIB6kev507IGOaZR1oGKfXNFGcdqPfpSAKRhzSkUdxQBlZ+yXwIztPNdHaSBo/y6GsW+h3R7gORzVjTLgPHjnI460pK5SdjZiUy3J9F4rQFVLOPbHk9+at9K3irIyk7sXnNCnBz/KkzzSjrVElW+wsgK5+bqKz/M+bIFXL198rDsvGKpfpXJP4jpjsWopASPpTbqRpJI7eNsFjz7VAHEYLHgCrGnxmeRrh+/AzTpwu9RTlZF61sILcAqNz/wB4irY6U1egqTrXUkc7FHNOApKUc0wJEFdr4RtTEjXRTlvlUn0rkrS3a4mSJclmIHHNem2lstvaRwrwFAFIC6ygqC3SpFQYGF4qvtY8ZOBSpI8TZJJHpSGSyHB4qLJDe3rVxURvmJ4x3qGSI9V5xQA3dGV+fORUkZAGcYFV2U/xDaKkLgJx82elAFgRptyDkVEwyxYGnIvy/e609YgBjrQAb2ABXNPChsFjk00Q/N1bHpSzWzRJweTzzQMkYDbUUhCAY5NQq5CgFunanmIsODz6UgFEm9hnAqQjn7wqKS2PlEc5x1qt9lf1P50AeX5xwKpzsAODT3kwp5FUJpup4rFHduNklySQeaqO5wcYFNll5461VlfnrxTRnKyJWkAPJGarSSZyaa7e9Q7uTzkVRjJjmIFREkr+FO3U1jj0zTIYh+nNMI9gKVseuaB65oEJR3FLj1FIMAYx+VAxQCOvWheDnH50DPpR19zQIP5UvXHSgdM5pe1AwAwMHBox9aOn0pcE5IHGM/SgBucZ/wAKu6XdG0vBk/K42mqa8g8HrUiJnGB09+tS1dDTsbdrbi11Oa73cP0UDp61mR6dNJdSTyrt3ncFzzipEvXhzDL+8XsQeajkngkOTPNGRwSelYuDNlNF4WuF34wKeY5EXOOtZYaIS4S/TJ7tUqq7H93dQlh6d/1qOVlKaLixTAZYY9s0oDKcMhqrsviufNTA+uDTQL/buEkXA754o5B85e/i4Ug46YNHJXGME1R36lkt5sBKjJ4PSkludQtk3vJAobjlaXIHOXgu3qOnehiScDpWfFf6jK4jjnsnbqFwd1TJeXSTFLhrRD0IVSCPzNHIxqaJyc8YpVIJxgUhvrTLAtHk0q3NiztmRAPqaVmPmRIoApyEg9TxUS3Fpn/Xx47YaoZb7ZkRNEV/3uSKOVsHNGlGWkOFUsfQVdjtUjHm3LgIOdvr9awLKbUJZGMagAc7g45rWE/2ZB9qYSytzsXp+Jo5GL2hPeTfa7fYf3VqD8+DjI/u/jWHfZuHR0G1AcBR0C0ahfz3kuwJtQcBV6UbtkKhhkjtW0I2MJyuV3GWOc+1R4Pv1p+4FjnjvSBhng81sjNkbK1A96eSMck/SkJA+tMQ0t6D6+9KrbjSbyTjBpUIwaYh4x9aXAxxnj1pgYY65pC2R7GgBdoIORTWUdBgn3pwOAPSgMM0CIRn9KRslT3NWD97/wCtUe0Hk/ypMZ9Z6QCujWQPUQID/wB8irvevGtJ+Lk0FjBbtpyt5SKhYv1wMZrbtvjBYNgXOnyp6lGzXHytFnoWoRvNpt1EgyzxMoHqSK5zw3rS6d4d0+xvrDU4Zra3SOQ/YZWXIGDghTnpUFt8UPDM2PMuZIDnB8xOn5ZrXtfGHh28x5Or2vP999n88VcZOPQTQ4+LtERislzLER/z1tZU/moqRfFegN/zF7QH/akC/wA60YbmC5QPBNHKvqjgj9KkKg9QDV+18hWM3/hJtB/6DWn/APgSn+NOXxFobfd1nTjj0uk/xq+Y0PVFP4Uw28LdYYz9VFHtF2CxUPiDRBjOr6f/AOBKf405de0d/u6tYt9LhD/WpnsbSQYe1gYe8YNV30TSpPv6baN9YVP9KXtUFiymo2Uv+rvLd/8AdlB/rUweN/usp+hrJbw1oJ66Lp3/AICp/hVd/CXh5v8AmDWS/wC5CF/lS9rEdjoCARg4I96aYo+fkXnrx17VzZ8GaEG3R200R9YrmVP5NSP4XhIPk6prEA7BL+Q/+hE0e1iFmbj2NmsEkYtoQjncyhAATjGTipLVFW3RVGFUYA9BXL3OiXtpaTSQ+ItWyiFgJHjfoM90qjoEfiS90O1u28SsHlUsQ9lGR1Ppijni+oWZ1mp6Y2oKoW8uLbBBPktgtjPBPXHPas2Pw5LDPLKdUupGaFok3sTszjkc9sD396g8vxRGONZsJf8ArpYkZ/KSo5J/Fq/dfRpPqsqf1NVzLuFiM+GtaEjEa85HAH3unGerH39+nNNk0LxDBeRPa6ussAzlJgeBkYHXnvz1qb+0PFSr82m6bL7R3jr/ADSom17xLGxDeGkdfWO/T+RUU+bzEVpdL8Yxqxj1KGTaMKoC5bkc8jjv3q7Fp3iKSyshNdQidJvMm+b7y/3cgAHuenYD3pqeJdWB/feGb5fdJoW/9mpx8WXQ4bw7qwPssR/9nquYLGfOvjOKacwraTKADGCRg8nI6A7unoMHuaa2pa5JbNDeaAs3LJIQMKw7YGSTnnnpVw+MdjEzaFrMak9RbB8f98Eml/4TfQlcLcXMts5HC3FvJH/6Eop8zEYs+qJPcTvq2gzwrhFV1L/w5IGcAdz0+nNdhoNxBPpMElurrEQQokxuGDjtVFPFOhzf6vVrIn089Qf51Zs721lj220sTqP+ebAj9KmWo0bQcUFx61Q88diPzo87jrWVii4XzxmkZ/lNUjP70j3AVaBkmf3wqzvyKyReBpsegq0JsqKALhamF6r+dxSNICKYjC1W30rVdatIb60MktuTNDJkgKRjr2PbjmrK6nbarbvbxSXEBMQk3qNjKCeME/SqS3xHiQWgjiKvGzM4UbhgDuDnqe4FQw6iLm/S32W4WRHEkQX54wvADc989MVohF7QtMstKs57m3kmka6PnSzTkF2474AHT0FZKafo1x4butNgvZjbyMZ5H/iG5y2Dx6gjGKvafqiTXE2lLZsgtwVkJxsC/wAIH1HaqaavYN8sdkS08ohLCP5XwxXrjnAH9O1UmSZni3xT4a0vUI7HV9K+2yxxhlYwRuFU9vmPtXPnxr4Ddf8AkW0/Gzh/xq/4g+IWmabrc9nLoy3LwYXzWZck+nINZtr8QtM1C/itofD0IeRgoO5Dj1P3ew5reKdtiG9R2o+IrKbRBJ4c0byEZzJMRGsWY0PPKn149eDU3w2u5NR8QvcC9mdBAzSW+G8uJiwAAJJzwDXJalcL4k1SS6sdqvAxISQDyljU/KABkkk+1d18L4jM2pajcRTx3krLHLvQIhA6bVAHY9acrKAlqzorvN14/VRkrbWB4/2mb/AVsISrccetYmlStN4u1+4UKRGYoB9QuT/MVrSXBXqo3exrzq796x0Q2LucmvKvjFc7r6xtQefL3kfoK9Kt7lTJh8gHpXjvxPuTd+J/N/hjjEQH0J/xpUl7wS2OH7U0g9MA0/I460DHNdpmREYPIFHbp29KeVGaUAZ6UAR7eelG0YxinkEngU0dcUANIPBxTdvapeSDSEZFAEOBz6Uu3rUpUenWkxz0pDIttIAalwKbt7/lQA3FGCaXbzilApDG4paX65o+tIYKPSlA560Y4xSjnJ/KgYY4pcc96MUoFIBOaX1oxzxSjHPSkAg9c0v1opaAG9RS4weKMdKX07UDIrpW8sSL24NQaVEzXcmPu8AfU1ewCrKwyCMVPpdt5RIznknJFXHUlmvGoRAvYVJyeehpBilrUzDjNKvUUnrS8UAUbu1mSR5FTdGxzkDpntWc3mDIWMk10ccrx8qxH0p5uZG5J/SodNN3L52YEGl3E7b5x5aD+91NbEMKRIFQYAFSZyck8+tAFUkkS3cUU8c02nDk1QhecVIo9M0xeamhXfIFx3pAdV4OsPOvGuGTckQ4+tdnO4IIUfMPSs3RYPsGmxRKp3Ebnx3NaoGQSFwaBlfdJg7c1LuLJlRkmnJLhORk9qej4XIFACBJNnzHmpMsI8EnjrTC7ORjIFIzKqk55pAMeVZFwAdw6ULujXnBNLC0cjk4wRQgkZ2XaD70APXeyHgg0izydTnI4xTyZFAIxxTMncSwGTQMkWZw+48083DM+CDjHHNRgjpzxUvXGVoAcgiJLbAWHrSPMFkBpI5VG4YINQkMZNxxigCzJIWTCH8arbX9T+dPjmXfjacCpfNX+7QB4mdM1NgQLckfUc1XfRdUYn/RZK6n/hEr9Bw8oA9GP+NN/wCEa1VeFuLkDHHzt/LNZ8pr7VnHPoupjP8Ao0n/AHzUB0W/Gc28gPf5a7NtC1lScXd0vv5jf40xtG11VyL24I92JosQ5NnEto98BkxP78GmHSrsgAQt9dprsWsNdi+YXUv1xUBTXwP+Ptzk8jaD/SgVzkv7Nu1AzE+c9cVH/Z913iPtxXYGbxAgGZy2PWNT/Sozea7GMkxsOvMQ/wAKAOR+wXAGCh/KkaynBOUNdb/aOtYBMNu2P+mFINT1RW+aztWGOhhP+NAjj/sswXJQ/lS/Z5cY2H8q68atfhQTp1k2ehMZ/wAacdXujw+lWfHpGR/WgDj/ACHxypJ9MUnlSDjYc1151Tcfm0a3b6E0h1S3J+bQo8jqfMI/pQByJikI+6RSlGHVTmupbUbTI/4kqgHssx/wpDqemDIfRH98TH/CmBywDHorenSkYPjGOK6j+1NHwT/ZMoPtIKT+0NFx82m3GT6MDSGcyvuKlj+6c10Iv9BYljY3i+2V/wAaPtWgbf8Aj3vR6ZC/40AYm1CuG6mq8lux+ULwa6QXWgdQl4M+qD/Gl+0+HW4IvB9Y80gOWey+VcAZ7kVGNPz1ABHc11pk8N4OJLjPvEQKaV8NleLmZfrA3+FAzlRYOMlWP4EinfZLoLxNJ7/vDXUeToB+7fv+ML/4UfZtDYknU8Z7eU/+FILnM7LsD/Xt+dPX7cQW85Dt5w4HP6V0n2TQyMf2oOexRv8ACk+waQRldWQj3BH86LBc5wNcq+8Jb7uxCYP86cWlYEyRxkn6j+tdF/Zmlvgf2vbKPdsUo0nTx93VrRvcuKXKPmOewjAZgXjsHp2yAjG1gfZga6BdDspOmq2QPvKB/WnHwzbEkDVbDP8A13FLkDnZzeyIdEYj3NSKIFH+pBb1JJrfPhdMnbqNo3/bUf40h8MsBkXluT/10Bo5UPnZi/aXAxnC4+6vAqsrT3EwJJ4P4CuhHheRiAJomI/2xUg8JX2Mq8OPZx/jVJE3MRSsQJ5z7VHJKTg1vHwhqHrH/wB9j/Goz4Q1L+6p/EUBc58tk03cc1vnwlqXOIRx6EUw+FNR3cwkHr1qiTCPHFNDHPWttvC+oj70LAHgUz/hGdQU58lqAMg545FMZz0rZbw5qBP+pbA9qYfDl+oyYHP0FO4GXvIFNLk961D4fv8AvbyYHoKT+wb3/n3k49qBGcGJpwcjtzV7+xb8ceRIOe4oGkXfUxP+VAFLeQO9KuSavjSrrIHlt+VTRaZOpAMR/Kk2AW1tIYAQOtTCylPG3mul0j7Mlv5U8ZBA4NbkEOnsuCqk+prJysNI8+/s+Yg/LzTX0iVlPy457c16UlvYY42D607ZZqcIifpS5x2PM4dNvUYGIzIRzlSRWraXviizA8jVdRAHQCdiB+ZruB5SuMIh/AVOhhBOI1+lLmv0A5a38Y+N7XCjUZpB/wBNIVf9StbEHxH8XxhfMs7SUDqWhYZ/JhWwbi3z9xPyFILi3ycKufpSt5AVovilrqkCbQoZPUo7L/PNWk+LEygef4enU99kuf5gU0ywA5wo47imM8BOcJge1TyjuXV+LVgADLpGpKO+I1OP1qwnxV0F1y0V5H/vQ/4E1jkWzDGE5pPKtckeXGT9BS5EFzoE+Jvhlxk3UigesD/4VOnxA8NykbdSjH++Cv8AMVyj21o5/wBVF+QqI6dZMPmgiI/3RRyILnZXXivRb2xuoLfUrZ5GidQFkGemKNGvbW10e1tzMgMcYBGa4eXS7JFZoreJZCCAwABohs4/JUMBnGDS5B8x6N/aVr/z2T86T+0Lcn/WL09a85NhDz8vNQvpcRbqwHsxo5QuenfbIT/EKabqI/xj868tbSgfuSygjuJD/jVd9Hc/MLu4B/3zRyBc9bFzH/fFIZo2H3xXjz6TcnpezcdMmmnStRAO2+kzjvT5BXPWXu4o3KmVAfQmozdRN/GhH1rx+TRrwH5ptx91qA6Ter91z+HFPk8wuevXC6fOD5sNvIfR0Bqomg6DOhL6ZYhj3ESg/mBXln2bVI+BNKMekjf401p9bQ8T3AH++afJLuF0ep/8Izo6D91A8f8A1yndP5NTzoVuoxHd6jGOwW9lOPzY15VHq/iCP7txPj3JqyviLxBEf9cxz6inyz7hdHpK6TMn3NZ1NfZpFb/0JTTLy2vobSV/7bvSqKWIKxc49wmRXng8Y+IE5IVseoqc+MdUubZ4Z7RdrjBKkjg/Wi0+oXR0XhqPUpNMhu4tScTOWMv2gGVWOTjuCPwOK3Rd+IIx8smmyD0Mbof5muE07xY+m2a262ErKuTuzxyc1cHjzg/6G4PuaXvBdHXpqmvxqTJp1lJz/wAs7tgf1SgeINSAPm6DMMDrHcRt/MiuN/4TluR5ajHck0f8JrdOcCKFh7Meafvdg0OvbxM0QUyaLqmSOSkSP/JjTJPFNv8AxWWpofeyk/oK5IeO7wHaLKI/8DIqUePrlV+bSieOz/8A1qrmfYVjoo/FFsrMWstTGe/2Nz/IVIPFmlj75uUA/vWkg/8AZa5xfH6D/WafKPowNTr8Q7Tn/Q7gfkf60+d9gsbLeKPDbks8is3ctavn/wBBpy+KPDynIY4HQi0k/wDiayl8f6cR+8guFPuo/wAalj8eaQTjMyfWI/0qvavsLlNT/hIbCUhNPikllP8ACYGjBH1YAfhU0ev3CZDaPdEeqvH/AFaqEXjPR5zgXSg9PnUr/MVaTWdOuAPLlhcnsHFQ6r7DUSt4ZaaAahcXkDQS3V28vlswJCnGOhPatOa7Qv1GKqPe2JOPNjB95BVdjBI2BMuD3DA1jL3ndlrRWL0dypdcEda8o8Wo11dXcv3sSFvwzXpywW8JaRpt6qCeOhrzHxHqCNZskAA8xsu3t6VrSVmKTOOGQelL29qVhnoOtNHWukzFUYpcZoJz1FJnHf60CDjJ6UBRnNIpHSlyuOelAw74pMj6UZHGM+9KP60AIR6HNJgU8MDSbSxwvpnFAxNoI6fjRtpwIApaQELL3ppHtUxXJz1puz3pDGCjFLgijp3pDEwB9aUcE9KB09aWgYDpxS/yoXrzTwKQDPwop5puKAEFApaTuaQC/nmlz1pKMeuKBju+Petaxj2Rg461lQp5kgHqa3o02qABWkERJjzxR759qD0ozWhAuO9A+tJxTZ5hbwGTaW5wBQBLS9eKwv7VunmCoqnn7uK20YlVJGDjpQA+lFIKcOBQADINO9aaKeP5UAOUZOK3vDdiLrU4yQCqfMaw41ya9B8M6d5GneaRiSTnPtQBuoqlz/Kpd4U7c89KYsTKyk8e1SAKsm9xikMFjdQW4INRhyk3972qU3BYFdp201GhByxwRQAjyyM+flUU/A2EkBvcVDcxCfhVJUc1JAohjCNkjvQAwHyxkAc09XbYF6E9xT3VVHy85PehiGA46UAQDechycD3q1AsYiz3FQTXMeArDn2FIiFsMjAe1Ay+m2Q4KYA702RBkFVaqhV0ILSE88DpUxu2TGRuPegAZMnOCDUeAQ2Tn61JJMz/AHQBUTR+YwyTx2oAWJolXbzn1qTMPrTHALKqgDim7T6CgDbFxo5P+s49aa0mjvj98B71w7O2M5NN8xj3NK47HaSLpTn5Z1x700waW2P9IUfjXFmVufmNMMr5xk0rhY7GSz092x56ED3qA6TYljtuIh+IrlDI2M7jUXmtnqcUrhY6uTRLZmJWeNh9RTD4fgZseZGwxnJxXL+dJ2cj8aDPNn/WEfjSDlOkHhyJ+gjPPfFMPhcNKQI4sfhXPC5nXI8xvzoF7cqeJW69jQFjfi8Jhp2Hkxkj2p7eElHW0Q8dBWCuqXiyZE7j6Gn/ANr346XMn/fVAWZpP4Uh5zaKoHpVT/hF4W/5dh9RVc6xfDkzufqaQa3fKMCQimFmTnwtb9Ps9NPhG1zn7OwP0qP+3r/PElP/AOEjvx1YHHtQKzGP4PscYa3bOO1R/wDCG2JwTbyAewqY+Ir3OWKn8KP+EivCP4cfSgLMqP4K07b9xt1Qv4Kszj5TitD/AISC5HUKfwoPiG5P3gv5UBYyz4ItOxf2xSDwVar3f8q1R4kkUf6lT708eKJuvlLRYLGP/wAIRbEdWz9KT/hBrcdxn6Vtp4pdR80Kk07/AISosuGtlxRYNTn28FoG+99OKY3gpAM7+fpXRjxNGRzbAYpf+EljPS2H40WA5dvBajq36VH/AMIWjZw4/KuqPiFM8xDHtxUieILYfetx09aLAcifA/PBXPqaQeBznqtdgfENnxmE/hUq+IrDaQIDTsI4o+B3APC/hSDwK+7Py/Su4TxBY7ifL4p0fiDTt3zRk+1FgOGPgh8dBxTf+EHkPRR9cV6CNd0wkfuiKl/t7S84Kn8RTsB5s/gWU4woH6VGfA0w6jJ6V6l/bWkkZ2Y470o1nScZ2j8qLAeXjwRcDopxTW8FXi4O1sGvVxqukbj8nvTxqWkcHgUWEeSjwdeADasg/GnDwherzunyf9o166NQ0hh1X8qeL3SyPlcU7AePP4S1BsDfcgAcYc0q+GdTU8XN5n08xsfzr2NLrSWzucZHpUiz6QQTuHFFhHjI8N6oo+W4uxn/AKat/jThoOrJjFxeA/8AXRq9n36TnIcUbtIY/M9FgueMto+qg4+03mfXeab/AGXq38Vzcj6sa9o26QQf3o47UGPSQR+8HNFgPGDZawCCLmcj1PNKLTV+rTy491FezGDSsY8wfpR9j0vHMyCjlC545Fban0aWTPXlB/hVlE1AH5mZvqg/wr1safpbf8tUOab/AGbpYf8A1kfPtS5QueXp5y43Rgn120/zTnBiP4LXp7aRpjD/AFifpTf7G00cCWP8hS9mh3PNAyMM4we+aNyLwQK9M/sTTXH34vwApjeHtO4y0H4gUezQXPNvMTsKRrgDICjFeknw3YNzmH8v/r0z/hGLBs/6ijkQXZ50ZMjGwfnS5zzsH516H/wi1ljgw9aP+EWtD08r8DT5EK55yzZH3SfoaQEKoypY/wC9Xop8I2rcgR/gajPhC3AJGzH1o5EFzz7cuThDz/tUB8twp/Ou8Pg5Of3akf71M/4QtB0Qf99CjkQXOIBzyMg0/c2OrfjXZHwZ/dQf99Uh8H4H3T/31S5EFzjt/bLfnTg3Ocke1dU/hBwM7G/A5ph8JOV+4/0BpezHc5rJx1IqMsyrycn6V1B8Jvk53j8ajbwpKV/5aflS9mFzmDOOAWIoLhhkPW+3hOYnpJx7VH/wiUwPHmD8KPZhcwtwzy/44p3B/wCWn6Vrt4XuAxGX/KlHhmcDAdiQPSj2aC5jbwOPMH1Ipu//AGx+VbH/AAjdx0yc+mKj/wCEduezfgRR7MLmTtU5+Zc+tKIVI5K4rR/sC67MB9RQNFux/EvHtR7MLmeI1BAwv4U37Mh7Kee9aR0a76rtNN/su87BfzpezC5QNomPuR/pULWe7ggEGtY6ZdgdEP40xtPux/yzU/jRyBczRZoq4CD9Ka1pGRjywSPatL7Dd5/1Y/CkNhc45i/Wj2YXMl7CMpkxDB9qifS43QhIwjDoyjkVtNY3B/5YmojY3I/5Yt+dHsx3Oc/4R3ezG5mmfd/CDtH6VZXS4owFQOoAwPmNbLWdwf8Alk1MFrMRna+DRyBczDaAcYP401rOI43RKR/u1pm0nxyj8UptZiMYel7MLmMbGE/8shTTp9vx+7Ga1zZzg8bx9BTWtZRnIf8A75p+zYXMoWEAyQi/lT0gjQY2Cr/2aXPVh/wGjyGHX+VL2bC5QMMTYzGDioJLZFfeibT9K1/Kwen6U14+OF/Sp5B3OeupIrIGJEmBcZOzODWFfySTvtCEJ2GK7aWDcPuAn3FUpbSU/dgi/FauMbCbOHMTZwVphiI7V2TW04/5dYG5/umont5BjNjCR7E1Qjkdrf3TTWBxjH511pix/wAw5M+m6o2jjBw2mqPX5zz+lFgOU2nP3T+VL1Heum2RbuNNz6jf/wDWpwS2zzprZ/3/AP61Azl8cdKQ54610pitP+fCTGexBxTDBYk82dyPpj/GgDm+e4xTs8+tdAbfTj962uh7bR/jTVtdOP8Ayyuef9kf40AYOe3NO6EZ7+tb62mmtwUuMDuU/wAKkNnoyjD+eB/uHP8AKgDnMZOaD09a3nttGbPlzyr6Ao3H6VCbTTzwLnH/AAA/4Uh3MRqTGa2XsrTGBcrn3GKh+xQDpdQn8aQ7mbjFGK0DYxckTxH/AIHSGyQf8toyen3xQO5RGQeKkUelWfsa9nQn2NSR2gLAblP40BcqYxSbTjgE1pHT89wapXtuYGXDuBjsxFIa1ISp9DTMen1qJy+eJJfpvNHnygBQIzgdSpz/ADpDsSdWxTXlSMgE5PoKiIkf78jfRRgU1UBZQF6nBNCG0a2nRmQ+YVx+Na4qtZx7IgMY/CrI/Wt1sYsU5ooI5FA5piD+dPUjoVDZ4IYZpoHNKODQAKkSk+XCiE9cCnDmjHFKOlACigGgYApR1oAXvmnDmmipEXJ6UAX9KtGu7tIsHBPP0r0y3fZGsScKowMdq5nwfZoiTXTryRtTP611UT7Gyig0gHlg2FJOe5oKkt976ZpxBY5xweaaG3DGOfegY5Y5McYNBtWZWbjimo5Q43VIZWeM45oAZHKyfKe1K2+b7jBe9RJMVOCoI96n2DAdcAntQAnlM2AjgsPWnRrMjN5gBA6YpoPlgtHgk0CeSUsGwMCgCsw8wF9uefWrAIjUbQBjrUWOcDJ+lAjdSSSCD2oAkZxIeOlPWMEYx2pkQPJKjFPzjAz+GaBiBgi5bnHHFRGTHJBx61ZjUbSExmjcoLAqMmgRB5+eFHNHmt71MqFQGwMHuKfsT2pDOZKkjjFNIYVJjB6Uh9ak0IihBOO9RnO/pU5x3qNuvtSAicN/+o1Hg/3TUzcUw8c5pDGfhTecZwak6UHjigCP04pMZHQ1JiigLEXR/rUg4px/Ckz60AIVDDGKiaMj6VODTHb2phYh4odeMipMDuOaCAaLhYrN0605VyvSpCqntRgAcUXCxBgg4PWjv1qRl6mmBRnmgLDMDpRgYqQhe3WkKA85NAWIiPmPFA6mpCgpFTHPc0wsM25HvQR8tSBAM0hXIIBoCxH2oIz3p2zFKF96LisR4zRipNnPWjYQadxWI+aUDHNO2HHYUbPegLDcmgZzShSOtHNMVhckdKchbP8ASmj6UAnscUxWJSzhs8jNIXYD2puSevNNLDnrQKxMJH9akEzDmq45pcnFAiUXDAn5jz71KJyP4z9M1VyB9abvyQaYFv7RKP8Alo2Cf71OS4kZv9aw59apls/KT0pVJDZzzQBeknlByJW5460LcynG5yQPeqMkpbjPI5p0chAB/SgRoNdTdA5x9aGu5z0k6+9Z7Odwyxp/mnZjI4waAsaH2+6C/wCsP58Un2643/fJ/HvVJZBySRikeQKRhh1pgX21O4XH7w5qJ9VuhkiRjx61VZxxllINNZ1IwAKQi8ur3O3h2H40v9sTkHMj/nWdvwMAdeDSEggc0BY0jrM+f9bJ+dO/ty6ROJXP41lcEE0wHI5NMdjW/t+9yf3jY+tOTXrzcCZW/OsnGPenJjmgVjZTXbzkeY/r1pV1++5IkbP1rJB6kHtSwgE88igDXXxBfNj52/Onrr98D80jYHvWUzEMuwfKP0psrbWPP4UAbH/CS3Y/5aNx6nrSP4pvAwIkcD+VYrHIHXmmdfyoA3h4wvEGBI5/GkHiy7+8XY1z5wM89RTWCqwHXI7UAdKPF10BwzfnSr4vuyfvnjtXKkgNSBqBnVf8Jhd9d3XORTx4vuODuNcl0PelGeBSEde3i+Zs56+460qeLJiPujHriuUUjnmhiNuM96AOuPi6QHGB+VKvjAg4Kqfwri2b0NNXOetAHcHxeBzsXPTpSf8ACWL90RIM+1cQTzgtS56c8UAdqfE6E/cWk/4SO3J5iUevFcbu560A5yc0AdoPEdp/zyT8qb/bto3/ACyX8q408036Z4oA7RdatCcGMZoGsWZOCgz9a4sk5JyaTJx940Adp/a1kOSMUn9pWhPBH51xu446nNMMjBuW5HSgDtm1G0yPm5pRe2ZXqMd+K4ncxwdxp3mSdd5xQI7X7VYk8YFOWayduSvHtXDtNIBw5pq3Ei7sOSfrQB3Ylsc43dqC9mf40xXC+fIAfnPvzQ1zKMYcgY9aAO8AsiOHX8qPJsjzvT8q4ZLubacOefenfbJd2C5+maAO2+y2Td1NBsrI/wByuLW+lBPzv+dIL+cjJkPtQB2v9mWR5BTp0FNOkWZONyH8q47+0Lhf+WrU5NSuu0jZosFzrf7Hs89ENO/sGzZfuJ+Vcn/alzg/PzT11e5K43GiwHUHw5Z44WM+1I3hiy/55LXODVrkYyxpG164DBQxGaLAb58K2Z/gU59KY3hO1xkRr171k/23cq3LZpw8QXSnhj/31RYDR/4RG03Z8tRQfB1t0EK/hVIeIrkjqfxNOTxJcAjJP4UWC5YPg+A8FKafBlvnAQYHrTR4kl25Lce9KvihwOW5+lFguRnwdCDwMfSoj4MjJ+6T74q4PFEmRwpH0qRPFMoAK4/KiwXM0+B42GRH/wCO1F/wgsQIyn04rb/4SyUH5sfhS/8ACV787lWjlC5zzeCYTkiJjj/ZqF/BMbkYjwfda6dfFCKCCo6+tKfFMZ46e1FguckPAqk8IOPakPgLOf3effFdzH4lj2jKZPc1L/wkkJx+6WjlHc88PgFx0jHtgVWk8BOXy0K5PUYr08+IrdzgqOKYdZtDyU3c0coXPLz4BkxgR8elRHwHKvBhJr1tdcsGwGiH5Yp39sWH9zjtxRyhzHjzeBXx/wAe7flWB4g8NSaRbx3PlsqFthz056V9Bf2tYMMeVx9KxvFUumXGhvCttG7mRSNwzipcEUpu586E+3NTWqb5hxwO9dXraWmnx+Z9kj+cnAViOlYlmEml3iNUHXaO1SoamjndGhGNqgdKfSUdetaGQ4f55qrcajbWrbWbc/dU5IrYsre2nidJILiWTt5JHA78YNSSaRYou63iu0ZuM7x+XAoA5WTxA2T5cCgdizc01dcmJ+eOPHtmvQJvC2hWllC1/aaxG0seUlMqbSMdRlOR+NYd/wCDNNmtWn0rVEZ1GfLnj8s49mBIJ/KofMUnEz4LwSxq+AAR61aU5HFclfXUthaPYujCU8BgeOfet3Rmf7BDG5JZF2nNOLfUHboaVLSDrSjgVRIuetW7OIyzJGOrHFVk5P8A9aun8L6eJrv7QwJSP+dAHYWVglpZRxCRcqOcfrV23kVOAQarxBN/zdDVhlRfuYGaQwaTDHD/AIU1xv5DYNDRBiNp2+ppkgZSFGCtADGBT+LcTT4yqhi+RxSlVdQO9Lt3HkdO1ADVnjZCR1HtTDdYGT09qnVFGQI1BqrcphcBQMmgB4ljdCFbmpbXADiTjjrmoIbOFow24hs81Kkaksu8DHc0ASZ2thTn0FOdgh5HT0NRIiLu3Pl+3NChAp3vk56UAR/a3VvlAwe9KzsVzjmpJoYUCsGHJ6CmLAHcN5hwO1AE0EbHGeMDJNOKCXI34pxIVccYqCMRq5Pf0zQMsgYRUDHI70mU/wCetDPiLJXg1U49KQGX9BTCM088dKZ2qDUacEVGT+VSHpUTGgBj5pmeKe360wfnSAUGjOaOg4puaQxfaijrxSGgBc4FJnkZ/Sk/KlHSmAo+tIy96MHrxQT2oHYaaTPvSnikNACZ7U3mndaTOKAG859qbgE06o896YCmkFLzSUgEIOacDgUZFIOtMQmTS9RkUH9aPbigY3AycUA0uaTOBQIXFJnkUoopiE5wabznpTz15o6mmA0KSeaVlGcYpT1pvXvTJGsuOgoZTin4+Wk43YJ5oENweOKDnFOIpAORkZpiGryehGKcoJySehpQQM8AfSncbT3oENwM885pTGp6daUY9qQsQOABQAhX5c8YPHWmqJBz6VJyUNJt69vagQzBIyetIXC9M4PFDlge4/Gmqp/iJ44pgLliAecUrOepFLt2gcUp2lvmyKAHcnFROCQPapkRdvU5pjNyBjpQBHtX3pytgDmjI55ORSDBboeetAA2S2eOacD07Uu1cHHWlVAwOcj+tAEZcYxmk3YPWpJFjAwq9PWmYDDj60CGhs9+lPVzjtUSqy5JpwbGPSgCYnI5pyswHFRNIQvTIpfOJIwOBQA8ybeCwzULSMxyScUuM5zzTAp5oAl35ApecDnrUWT789KcxweKAH7uMVFIW39sUBsdaQkscigA56n86QcDJ5p2TjkdKaQcDFABv9etIHO4ntSnOKaO/FAhxk/CjfnGO9NIB45oA5wKABicYxSKxzTjxikGKADPOKcvSmg46ZoBx60AKaFfim54pR0oAduJB45oUgU0dKM96AFJBpCcdKbnmgHnpQA/PqaY3J60uRjpSbs/1oAUEfj9KQuB0ozwaTHGcUCBmyvBHNAxjtSMoIIoVfemA4tx2pu4FKa2ScelNBIoAmi+VeW4pQcfxAn1qLJPFBwCfSgB6t6gDnHFKzdKiPTvTTnPekBYY4C9Dk+tSJ14qiwIfOTmp0OSTzTETGRVYKxOTxUuME1QMeWPX86TDbupx7UAaJ+6TUWTuyO1VAxAwW6U/wA0FcjmgZbc4fkUnvVbzT6k0b2J6n6UCLLdMmmA5Y5GAPfrTAWZNu48VHllONxOKALGe2KaeuKarN3yfeovMlDkcn8KYFknBpVOCeaiBkJAPr0p7Pt7UgJM5pM4GelRrLzgilL5HYUwHOilh1FJ5YWRT270m457UFzkUAXI22jrUhbgHdiqXm/IRTjLwBt/EUwLDOR0J/KgyPt6/jUG7JBwelSeYMKccD3oAnBkC5LZpolc9GPWmfaCwwBim8cUCLaM5H3j6VHqM7C2CnJJPrRFJtx1IrE8SXzR3UVvExV/L3DPGSf/ANVJlRON8SXrXGoiHIIU7TjtT7JNse7B55rIUvcak7Pk/N69TW9GCqAVJY80qn5vSm9KpXN55QO3qO9Ajd8KeLjomvm3ltUkLkx4eTau1uMk4PHfpXQMZLe83TXMLqTnNuPl/AmuN8MeGbvxBqS3JUnP3QOp+teknQdI0tlTUr0zTAf6m2YHb7Htn2pAaNzNpmo+FAj6yGuIDtWCXBBHsMZH19q8e1eaXT5WthE+CTtbkgj617Fb65pNirxwaHFJG3eR+f5HFWrnUfCGsWf2a80p4CR95UBAP1ByfypiPAUge8ZGdAWU8AD7tbttCsMYQdq1Nd0OHQ9QKWcgls5vmicenpz6Vnqc80DH9aUHmminjnAoAlhQs4Ar0rRLQ2elRoY8F/mJridBszd6hGpUlV+Zq9FZwu2M5AxwPSkwLEkQZVMXX1qFI5ACWQkg/nUiO8alVYbRzyOlRLK8zfKcAenekMlgmMmVMZqX5vNwIuvqaqySS5AQlRnrS75cAt8xpgTXMywOC2DgYwKZBcRtEX8tt1MkXzo/u7cHmq63PkARqM80AaBZGOdp3d6qXccpAKd+1Tlnk+diORwBULlmYnNADog8foWP6UwA+acrj3ojypbr+FSPI20ARHp1NADFiiXLtIAc9KnVIx83r681AUilb94DgDtxT1McCEruPoCaAJmhilALE4HvUf7sHAJx2pVVZIwWJB68VG7KYiqjnsaBk0jIDhcEAc96RFXqoPPWqcWU5JNSrctGwdck+ntQBPhdm1g2McE1B5bf5FTHU/MB8yLp0A5qL7Up58oUAZJPvSdqQt9abu5xWRqKTUbDPelJpjNkcdaAEYelMA45NBbjPem5x/hSGO78U09cUhbnrzRuHPNK4xQeKCeD7U0HmnZHtigAFAFGc9aOOadwDJHrQxyOlJu4oJGKBiZ9qGoBppPvn3oAQnj3pN3OMUNjrTScHimAuaaTyaQtx1pA2aBC0vam5FFAB26YpaaTSZ4oAeaT8aTNA4oAU0lGcmjvTEOoxnvQMY5pAeDTEBU9qT0+tITSA98UxDmHHWk7cde1OJ44pnUZpiFGenFO2qwJPWm/T0zTMkE4NAiTaOlJuII9jTAzZ68U4N07UxBnJbPGaXBHQ9aD34yD6UjnC0CHcbTSegPem7iUwOeOeKYG780ATqcg44Io578VEHyB2o3Nknk896BCsCT1yacq469aaZMJnGPwpA+8YyM+9MAY/MOv0o4wR1ppB3bepHrSMSGOBmgCQOVO08fSgt82eT3qLktnj86dGQXwaAHkhxgcU7HGBxTTtxjj8qGIxycCgQMfl4oVwDznntSqAQSKYPvCgYNzmiPjr1+tNLDOOop7MAR/jQApYZxgke4qLr2xTwRng8dxQ7BB1oEJtHqeBQoz+FG4EZzxQDwaBhnAooHNL24zQIaevvQSc/pS49aQ9eOmaAEIPek5FPDY59abndyRzmgBpJBHNAJPTmlzk9KAvNACHnjtQAaU0dR0oAQDn3pc/SkPNHbOKABuab06d6cWGfrSAjPpQIaxOKAcr7UrEe/SkFABiilwDSd6ADPA4pDnjFKT70n/AOqgAPvRkZ4pDjrmg47HpQAHrSgHNIM/hQOtAC9+tB/yKBTc5zxigBxo96ZnB4zS7m9TigQNzn0po5PTg1IDkHp+VNZR6UANHAzzxTWboQM0uBSbQPzoEKACMkUfxZpSBgg9KaEyPvYoAcyZ7/nRyDwaCvvSBTu4Pt1pgLnnBo9xx9aTaQAc/rQF5xnFADgme4xjpSBQM56D9aUDbnnijKjPHNACcZ6dqfGVGSw6U3HrTui460AKMYNNbnBzTyRUbckKBnPemABwvcinhzwQM1XcHj0qRRgAdutAEpYljwcUhHPemLkc8inZx60gE564yaQP0496dk5xik2nPHApgPU57YqQAHB7Go1POMYIqQHIzigBSAOMU9VDD6UzBJ4NSKPmDEZFACA7cjrSg8HJppHzEgdTSYHpmmA8EjHIp4lBwCPxFMzgDipR5ajPGT0FAiRCCB61y2vXcUmsTwsT8u0ByOmAMiurhYGRQBxn0ry3X9RRry5WEZkmkYsSO2egqZFwepFYr513JKuNu4n861ugqhpcOy3DHOWq/wB6RRFO21CB34rNkQSkKTwTg1qSIHGKqmBg+QPxoA7XStVltNOaytd8cbD960Y+Zv8AZz6VaiZCowCCR0IrF0K6jZPJkwsrHPzd63QKQmPU5pwAALHAHcmkQcdaq3moW9rGQzbn/ug0xFHX2xbxx55L7gPwrETj2qS4uJLmYySHOeg7AelNoGLmnxjcwpgwTV7TrRrq6SJRnccUAd34T02KHSmuZSPNkPyfQVsCMHljluxzTLOKKKBIwpVVXFS+Y27hBx0FIYqqSpOST6U+LAYhB1qISMM4UD60nmyLMFjjHTJINICZwWfB+X601uwDULOspy+Fx3JqQBCpIwR1oArGWWOXywCAe9PkVnG4Ku0d8VDNOPNK7eQKVJHW2IC5zTARpn7Dj1qQr8gL4Gaes8kSIvlhhj06VVkkkeQMylVz0xQBIQFGFcls1Ogfygztk+/aq0gyeVPHNSwgLuY7ip7UAMlJJIU/iKIVJXcznNN3wySFYyRz0qzgHjICjvQAJJlCXyAOnHWmR5LcMNucmkM8e3Yqlj70+JkIPBHr70DHTSJyVz6DioFidnBG0D3q3JLFsYKhz9KpAEuAxIGaBA3y4HGfbpUohyPvr+dTm1h8s/Pknof/AK1Riz4+/wDrQMwN2RimhgwypFOKqo61FtUHK4BPasjUViT2ppJ7UjEDqaAQO9IYjdOlR7sHp1p5OTkGmnGTjGaQxg5PPSkIbd147GnEYb1qRVBHTAoAiIxkkihMAZzkVJIi/WmBRt7+tIA3d8/WgsB9D70uMdQeajZAeARimMcTxwaAevtTCAKTcwPFADy+0c1GXJGQeKUkHrUbDOFGRQMfnPXB96Y7gdTSAEU11z70xCs4wKQNzTMHHXigk8cZ/GgCXpTWJqNs4GOop3OMnn8aADLGlBODimZbPNG72oESAsaXOT1pikg8kUoPtTAf6mjNMzzSM3HGaYiUk5pAeeBTN2BzQDjmgQpalBpuQeetBPHNMB2444o3gLgc/hTNwxxRnA4pkj9xMeRjpTAxx05oQ44ppf06imIcfWkboKZvJFKegIODQIdvIoaUEd/ypAMKM+lAxuAx1HFAgWYdMHk0/cvGAKjZcDORkU0g7sn60XAkDD0zj0NIJdwGMioVch/SneYRnOBmncB8jZA7jNGcAdqaZQAQKcPmGQaLiFUnzAR+FKxweTj0phbbj2pGlDAY/lQAAD1J+tPGPxphA29aQDHc0APyOlKX4+YCoD8z4NPyDx1x60wHrJ0p6MSTg1CpVeB60/JUnpSAHXDcGkY570M3GT2ppI3cDtQA7jOfzpWG/wDwpjMFAyad0PpnvQAKTjkdKdn5sd6jLkdKaWwc9KAJQTuPIp24hee1QDIOSevvRuoAm3nNKWJJ6HNV9+CTTweMg0APzmlXjnr+NREkDjrTRJxjmgCcgZyTQSBjnNRGT5ehzTS57CgCbcCKbu+aoDI27/61PZsEUCJN2eKUdKi3Y7c0rH9aYChhmnCoicUb+RmgCTgmjvzTQ/Wk35oAkOMikPB96ZuIpFbmgB/Sg9OtMLUu8gdKQDtuaZjBo8zuOKRmGeozTEOGMZpCO9IG5oLHPQYoATOafnOOajByeRxTiRjmgBF5Jpw4PpTRgA4FIzqGHr9aBEoJxwaTB6mmbwAKQyjBHtQA/AAJpmCF4z1oDgqMnkU8gEcY9aAGAlsD3oORgde2Kf04GPelAycntxTENI49M0AY6Zp7DnGabweAaQDGRgAAaeF5yemKTt9DSEEjrQAcc8+3NNAwexo7c0qqQvvimAgDbhzwO1PLc4GaFBIPOAeKcg68/SgBuc5BznpSpwelKvGcdaJODxQAxiWkBK8GndaQZHJx9KUH6YxQAYo75OaPmJ9qDgrz/KgBRgdDT1bGM96iP0peDjNAEysCxxSbgvfAqMuigk0qkOMg9fegCwpxyKeCcDPaooc8g9qkBJJU9aYA5GO340zzOf61IVDqRgVB0JBXBoAkDg8FuvtTeOue9NKrjOOaAuenagCyZkt7eaduBFEzfkK8gJN1fvKR8zNj869G8R3H2Tw1ePnBcCMfif8ADNcFpkJMgc9uTnsaTLijZjUIigDjFSZpq8ilzSGL9KBnNGKBxQIUcHcOvbFW01K7RQouGIHrzVTvSjHTmgC0+oXcow0z49BxUGcnrScDpS545oAVemacD603NOHFADhnIrsfCVogMl1KCNo2p9a5S3jaWQIOWJ4FenaXp4trCCMIdyrn8aQF+IQrGPmJb/apTNGHIAwfamsAwyVOVqKUEDco5pDLChdpDYA60W/lKXLHBPemZAjBYZGKgA4G05JNMCZ4UdyQMDPenbVXvj6UOskf3l49RTZWG1R3JpAEvkiTJUtxzikDKq/KrD2NAiJOQR7nFBODzj60wHmUfLwc09RFKSC3Sq7O+AVI69CKaJTHgSAbj6UACRESMS3GfWpI2JcmMg+uaaEXzQM8HnA5ojaEs4HBHagCOS1HnjYwDE80mwyXBRGJVTyQeKbNtEZaN/mHapbeP/RVlEg5GSCOlAEioBuBUk+opY4S/KHGO5NPQqEJZs56YqBDwAykDPY0DJV+0AkOqnJ9aguIrgqfL6dwtW1kXacKckYHeonMlucFhyPWgCC0MgcPKcmtMPx0FZqoA4Jbg8jmpPl/vH86APCl1a/HK3s2P+uhp/8AbeqA8X03/fVZwyQDSZweAOPSpsVzM1B4k1df+X2Q44PT/CnDxPq4P/H0ePVF/wAKycgkcc9qaOPQUWDmZup4p1Vek6YHfYKUeLdXU8vE3uY6ws85puex/WiyHzs6NfGeorgskBOf7p/xqU+N9R7wwfkf8a5cHHekY54zwKVkHOzql8cXYOTaxH0AY1IvjqXvZqR/v/8A1q48E9/WjkdaLIOdnajx2M/NYsfpIMUDxzExAa0kx7MDXGZ4yTzSe+TRyj52dsPGVmR80FwD6YBpy+MLEEYjnP8AwEf41wx6Z4x70Dk+lLlD2h6APFOnPHvPmqM90zSp4k0+c/u5Hx7oRXDMzbVj/MVPbr+lTLREzq8qudr/AG9YjOZTn02mnf27p5/5eFHsQa45u9VpTjPTFZc7OT67K+x3P9t6celzGPqaU6xpxIUXkGT23156z8e1Ps4vOn3Y+VKHOyuzrw9SVaSikeipqFpt/wCPiP8ABhTlv7ckgzRn0+cVyAXBwaUcZrP6w+x7SwEe52AuoWBYMu0dTngULcRuMxnd3yOlc5pwWZpLdicSr09//wBVHhOAQW2oWDuWeCY5TH8JGB+oNXGrdHHWoezlY6UTJk/MPfml8xex4xXGXMZidk5yGI/KmIzBcAtkd6r2hhyncbhgHBx9Kf8AKwxXCo8i4w7c+9PMkm7HmPzj+Kn7QOQ7fCbCC2CKE2sDyOK4sTSs4XzX4/2j1p63U65AmkA9nNHtUHIdjtGTilKAAelcmb27KBluJQc9nNO+3XRj/wCPmQ+vzU/aoXIdKu0ZGRSkbVOSMVzDalcrGFEzknnrQdSuwRmZiPoKPaoXszqRsZQQRz700Q4Y88HpXMpqd2BgTcfQVINUvACDMP8Avkf4U/bIPZs6T7Ng9sUND79ugrmxq18ckyg4/wBkUo1a8wfnX/vgUe2iL2bOiKHHUfQ03aWKjgehrB/tS4IO7Yf+A0Lq9wBwIv8Avk/40/bRF7Nm80bbTzjFOaM/ePXHGO9YR1i5wSUiIx6H/Gov7duTGFMcQx2AYf1o9rEPZs3ihHJIxW74Y0O11SS6lu1Z0jj+VQ5XBz+tcEdbmH/LGLn3b/GtaPx1q8dilrGYliHAAQA/n1pqrETps6GfR7K01hFmkeSx5JAOHHBwMj3xVGXT5ow7KNyA5BB7Vzdx4luZGYSorlupLGoJPFM4Tb5GQB/z0NWpJk8rOiKnB4qModv1rm/+ErlHLWwP0kx/SkPjE9GsWI9RN/8AY0XFynUYIAPP1pscbEnc3ftXKt4zyMGxbj0m/wDrUyPxosbEi0l56gyg/wBKdwsdeYWYmmGJg3PFcyvj2FetlL+Eg/wpJPiBaEfNaXAOPVaLisdLGreYVNSMrscAA9uKz7bVYZ7eO42yx7xkggHA96mS/SbaUDc9OP8A69ZutBOzYWuWMMowQQaAp4z+tAvoV+V2IIOOUNZmreKtM0t0WYTbm6BEB4/OnGrCTsmPlaNSRVwG5zn1pHbjjjtXNf8ACe6M5wftCjHeL/69Sr420JnA86QEkZJiNWKxvdSpA7U48jBHFYp8ZaCpybwgjsYX/wAKuHW9NNiL17lEgYAhirD9MUOSW4JMvgHpUe0gnI96IL62uIUniZXRhlTgjIpzXKdfk5ouFhAD15o45Ug0faItuCVH4037TESeVHvuouFmI3ytjmjjFMkurdcF541A6lnApPtVsw+WWNgfRwaBWJDgrxR0H1pfNhUBmdFH+8KHeIj5ZFJPPDZpgIpI6Ggtxz+lAKnvxinkLwBgigBmTuGKR2OM5/CpNnOcHFIEBUryaBEbNkgYpGOOSamKKOMY4ppRGXPWgBiEEcEGlJP+NCxKHwP509U655oAZmgN+VPMZ7dKbsIXkUANLcZ/SjAbGe1SxhMfMRmmyDbnBoENwN3tTCq5yevSn7M4IP6010I70AAG3BFBOeadsNBjZR3oAbu9OTTST3NKwJwQOTQ8ZI6ZoAbvO3INJ3zQ0TheO1NAbcevFAhwfmgkcDjrxTDkcd6QqxIwCaYDyO1G7ANPVTkDH1pdpJK4wPWgBqS4XJNKJgeM5IpWhGz1JPeq53K5A/GkBM0hPQ0gY7efyqBWOCSDSq4Pfr6UxFjzOxP1oDHdgGoVOW4HA9aD/rSQSCB270ATEkHFNDkHr9aYG+bGTRnL8YoAmEg4GcUgudpwQDUL5V+m7GenpTtuMZHbvzQBJ5/TFSNOG4FUyrKd2PlPWp0VT949fWgB5lG3gZz3pomPAoMe0YI/OkKOOSB7UDJRIMdMmnF1C96gWNx8wpSCDzwfegQ8tu4I4pwZSVA6VEyMRgDk+tIQ+ADQBI4G7jnHftTlOB05FRbWxjPNLGMgqTzQBZEoLD1FKHwdwJBqDY21iBxmomZlcdqLgXhMc8mnD52PHOKohixqVZmQZzg07gSvnoOPehckAZqISbue9P3COJpZSEjQZZieBQBgeOJ1/s60s943ySGQjPRQMf1rBsI9se71qPU7p9U1qWY5C8JGPRRV+FNqgCkWtESjr2o7UH8aPfNAwpaMZpcUCClFJx+FLQMXtSim04UCHD6U5eTTB7dalhXccAUAdH4XsDNfCZlBSIbvqa70GZnDA4J6CsLQ9Pay0uNipDyDcc1vJeAIoZeRxkUhkqwOeZG47gUwtGEP7vAx1FTGZT8i4y1QHADgmkBHGSyEAkg+vanRlUPzJyKahAcY6e1SP+8DYIBPTFMBstwGhKbCT6k1E4jSNS7kmmHcrYbtVgPmH5lU98UATx3MK22PLwxHWkhkhlB25BHU4qk0qKu7b+Ap6YQ42ttb07UAWJCobKjjrxUPmQO+XUbu2aYyHrltvoTUflZkDBSSB0JoAsCMBzKvynOPrT2KFTtAyOp6VX81wCCG2jtSI6tw3IoAXECqXJC5Pc9aaGV0KheB044pJWgwAysRn0qUSvJEQsarGF60ASbY3twyygEcfjUDOYI87d+OuBUtohkB+TK+woMreU25MHsKBkltOJAPMj2gfd96bOizT5P3QOtRRXIdBGCN59ulPEbIjfvCT70CFLQ7+DhBx0o82H+//wCO1XQ71YMw9sipNo/vD/vmgZ4I3C4qLoewpxPJPemtjqSPpSAQ4J7H60cE89aM9OeSfWmnOTmgYYxkcACg/wCfShmOCSKTOTwKBBx+dI2ccig9eetHy85FIBO5OaF+pAo9P6UcE8fyoADwOfx4pDQR+NBye1AC/wA6khXdKfQc1FkAfSrUSbIN3GX9PShgKFxyRk9quRxbUxjmobZPNmBxwvarrcd1HtXPVl0OLFTfwogcY4I5qnISW96tTM4PI49qpyuBms0c9NNlaZ8DjrWvp0Bitxn7zcmsm2X7TfIhPy/eNdMqhVAC1nWlZWPpsnw2rqMiI7UmM5qVsEdKjPBrBM+gaGxz/ZZkl/uMCfp3qzeOum+K7a9jfbFOAj+jKeM/qPyrKunaRgq96t68plsLJwD/AKsLn3AreCaR5uNSeqNPV4d14xUY3KCPesse1bM8n2vTLe5QZBHPtnr+tZLKVc9BVHmsMD9ODUkK5O44K1F35PFSglQMd+tMQkaYZj37UNyOgFOHTJpD65pAOXPl4PrkYpY2+Yr6ikRvmGeBTQfmJyfagAAG8nFPcdu1OReOetNc5xj60AIABwM05vbvSY5pW+5+NAxueCKBgCm5xSEn9aAH5I5HekHWnbSeegppX2oEOZzioP4elSgZGKYQck00IjNOQ847CmjpnFGcKx6cVSJZHI3zk1UkIIPpU8hyMfpVVzntWyMmROagY1M/SoH6VQiFuvFQseKlY9TURqiRhNSWNqby/ih25UsCw9hUL8V0nhezAhe8cYLHav0FZ1Z8sWwNieBk0+WCLhhGVX64qfRWu5bT7RNDtftGoztHQUrZZwu7k8CtSOK6ECm22DP9415bloOC1uMeWSNz80hBXpImMH2ryzxDe/btXmdTlEOxT9K9F1/ULmz0ud5FAkAwqggjJ4H+Nef2u9bWW4uGjYHO1TgktxXVhVa8hzfQxc8UZrbgtyllJdXNvGY8Hb8vVqgEKSK5+zRqFIDEZGCfxrt50ZlG0tmvLyG3Tq7ha6rxO2FsNIizliuQB+AqHwdZJLqs9wR+7hXC+5NT6Wo1vxu0pOY4MsAB6cD9awcuetboi1sdnb2629rFCo+VFAGaHwilmIAHUmrcoCRs5BIUZOBWVqs0bWCESxxiUgjzgQCK6BDft1o5IW5jP/AhTiO/6iqcU32l0jMNnKp4zHIDgfQitCTbGBu4HQUAY3k2kkrPdlTLn7sh6D2FEKWwu9tpt24/eBPu+1Xrw2KkJd+WS3RSMn8qkijhWIeQqbCONopXAzNQiacrGFjIQbmDjiqwN1GgCwErjrG+cfga0Lmwklld4rl4y64K4BFRpFexMivJFJGOp2kHFAxcMsZLEkgc571w0Mj3Grs5PDMWwDxXa6tP9l0m4mGAwXA+p4rjtIClpHc9BQ3oIlZ3l1uGJZXADDgEjpzRcXdw+pTMlzKqK2MLIRmm6SA2pTzjnYhYCqcKyM0jhGOScEDOKlPUTLi6jeozgXdxjgjMrdvxqwur6ggKi8uAR3EprMljcxqxVxg8nBotw8shUE4APOadwNddW1FpYz9tucbgCPNNEPiDVFFwDfTHyjx83vVCFkYxEFshlyD9aejBri8i+XhSR70riNqPxPcOoP26XJ9WHH51N/wkF+y/LqL49Cin+lccWPdFP4YzR5kYPMbD/dbFOz7gddH4h1MhwtyHIOMmMenHal/4STV1Rt0ke4KSP3YrC09o33bWYEjHPtV1YmBO+Qtz3ArNyaYFmfxlqtvMoBhIZQQTGDirEPjHUmeJWS2Dt97KnA9xzXNagoWO1fj5SV/I0ku2XbycqMsR3JrRNtBY6tvGd+lwkZS2f1KqePTvT/8AhMdQPJtbcjvw1cj9nIgUxDDjJOeuP8inpPJKSdwJP8JI4+lDbCx10fjG6dctaQ8ejGp4vFczBx9jTeBkDeea5RHMZCN/EewqyD5E8cjADJ2k+3/66h1JBY0z8QyrkNpnTqPO/wDrUf8ACwY9246a4z6TD/4muS1eAwag+Oj/ADCqJNbp3VxWPRl8aW726TGylAYkcODjH4VLH4xtGUt9nuFA78H+tcAHA09FJ6sTVyNlSzZiMZ7d6lyaCx20fjSxaUKLe6LYzjav+NPPjTToX3TQ3ShuPuA8/ga5SJI1gWYgZMfWq0ZMvJGVY9Kj2rDlO0/4TPS7iVFiaQE8AGM80S+KLBG3SSsFxz+7J/lXHS20BgfEagqc5A5rPSSSKVtp8xR2JqlO4cp6IPE2ltHvWY8jjKMP6UQ+K9IGAbmPP+63+FeYxh3dghxgE9e1IpDEVpcOU9WXXdPlnKrLGW9A1SrqVkeGkiBB4+YV5hJlHJBw4PBFbFjeJdIEl4nHQ9mpXDlR363VkRvDRkHvkGnfaLQkESR8j1FcSk0kbAL0zyKvOVkA2n/61Fx8p1BuYPPQiRCMYOCKcbiEuAhHArj5BtGMVG4IQ7SVPqKOYOQ7OV4yCQwODTWaIKhaQD8DXCT2yT5Jykn95f6iqRjubf7zPj1DHBpOQKB6eJoXwwkBGM0NIjNwwAI615zFNLgfvH59zUouZ16TSD/gZpe1RXsn3PQlC87nUCho42QfOM/XrXALd3WcC5m/77NP+3XYPNzJx/tUvaoPYs7oTJlUHIHcmpGmjAJyvXBrg11C8H/Ld/zqVdRuwc+cx/AH+lHtUHsWdq/ltyGHHTmo0CFh8/OOoPFcgNQuiQfNH/fIp39o3Q6sDn2FHtoh7GR2yPEygLID7ZolhUgMxAIri4tTuUJI2euStWP7dvANv7th3+U/40/bRD2MjpEQNKoVsqT1qxLATGcc8VyX9t3GfuR8HIxn/GnTa7fyxbFmEQ77B/Wj2sQ9hI6GeeGxTNxIF4ztHU/QVkXmovqMEkaDZGASqHnP1NYrSFpA8jFueTnJNWZpFtrOQg8gYU/WiNTmG6fKZthHl9zc4rU3VWtY9kK8deasE/WrIHg9atWenyXTqSwjjJ5Zv6CqYIADMRtBGc9K6+TSYYNKsryO8WWOcMGAH3GB6UxNlG48LvKwGm6jasdvCXBKFjnoCAR+eKojwlqi3gS8v4I1BGVhZXJ/EcV2GiaDHqRkiLTbzGxjKDPzD2rj9Tmm0i/ZS+QCeWOOnagVyzqGl21nbl97KVH3iev4ViQzRzAlGzg4NQaxrT3h2lwxHCqtVtMjkVmZj8zdfSgZq96M80d6O1ACn9PetjQbIXl/GpHyg5asZG3dua77wrppW188j53OFHtSGdNEVlQKSVAGKrTHqFJYDge9TyJJ5u0DaF5PFLlSdwXkUASRyKIEDna4HSojNG8pAYj1p8SoZQZh8p4zUhhhiOUCKD1JoAePJS3Yg5ftmqyykKRgFvaiYTK/AXaR2qMqwGBgN6igBWimfB4znkGpEO0EMv5VTa3lLhjKQx96s4KocsWIoAHiRIw3OB2phuCyfd2qO+akcZjAP6042yFAcDA7UAMUgAtvDE9s9KdD5cj8ryPeq8keyQFX/CpIpdkw9uvFAF+O2hKkvwM9M9aaIfLDMqKU7c1BLOJl2qxoAKQqgYcdOaAFK7YssgJBz0qKW6jltvKTILde1RyLdBxwWz1ApBHHGSvy7jQBZtMhNg3AHpUEyXgn+QByemB0qRbvycK5x6YpY7lmuS5YnAwDnigCokMpk3Sbg3fFX4FdLctgkH15IqB23tuSUnHoM1ZhaSO3Axww70DIGdoypLABui0u8f3qbHcM2/zBuKHuOlP89f8AnmaQHz4ARkDH4UdDzig9Rigkk80AJ0PIH1NBB65HHvSYx06Uo+b160AJj1xxSkfkaQZH3hSEnGSDQAc5x7U0jK+/SlOPcCj8e/egBMf5zQAMdOtBxjFJ7gZ70ABGSfQUEnpR9Bg0hIxk5pACRtIwUdKu7d3rgcAU2yQYZ2Uk4wKshQBwKmTJlKyuRruRcA45qJ1wPrUznA69O9QNyT6VzvVnFJ8zuRea6fdbFQTTbo89COCKlfjn+VV7eH7Tc7f4Byaem7OijS5mki5pUTxb5ivzNwM+laRmnGMSEUqjaoHYU1ulcspczufUUKfsoKKFW6kHD/OPpzSzTqI96nIx+VREDH6VQlcljEvQ9acYXZu6jSH287PcGQ/dXoK3I5ftuiyowG+J84x2PT9axo41RQFAA9q0dIf/AE/ySflnQoc+vb9RXS4+6Y1YOUGXdBfzrO6szncvzKM+v/1x+tNkXIGB0qDTy9hrabyQGJjfJ9T/AIgVp30YS6IAIB+YZ9/8msjy2iise4ntgUNw2B0FWFKxgj9Kr4PPvzQSGcY+lN/OjgZFKvQ/XikMcFJFLjAI/rQOBj1p3K5pgKDgHPXGM0uwbRQfuYP1NOHagBn8ZpTggihupJNNxz7UAMI70g5P0p5OcCmH73BoAm5ZR701lyTj1xUgy0Qz270xOhJpCIyCO3SmMQM1LJyD6VVcEn+dUhCk8ZpkrYAH405QSp9qryN8xq4rUiTGO24VA2akY9qjfpWpmQv3we1QNnGO9Tv0NQOf8aYiF84qFjUrE1DIaokYqNNMkaglnIA/Gu9itja28MCKdir+dcz4asmuNQ+0H7sOCD/tdq7K4k2KW6lRnHr6VxYqevKIgtR5k7MfuxjGffvW7De2sqxsJFVgOFzg9KzreN4LUN5LSnGGAGeepqe5vIRZM7RmMqMsHXG0AZNcdr6GsdEcx40upZbcCLorb39h0FcV9rKoqFACBy3rmugvro6rbJEJS8s8gKKB90e/0rJX7OqvbzQiWeN9qEDBIr0aK5YWZnJ3ZcEkdtoayglkdwFBz171RWdlsWLHbvYyY9T0FaHiILE2n2TfLEse5tg71kmIXV5BaRZOSEGf1rSNrXJOq05l0bwVNckBZrjJBxzk8AVe+H1iU0+e9ccyvtU+w/8Ar1meMHP+gaTAM4wSqjHsP616LpenLYabb2qLhY0A+p71GGV0592W+wvlgjFY2rO+GCyrCqOE3Moxk/XtXQuuxGbBOBnA71y9zezmTy4NOnzIcslyyhGz6ZNdJIun2mb6Rmmhn2KAHSMAgn3FT3lv5sirFN5ckfz5K5GPetK0gSK3UCBISRlkXBwfw61kXhnOpTxW1/arJKuBFIvI49QaVhjYrCK0jkunbz7husjfyHoKcsC21pvkIVVBLHsKVhflI7Wa1hCkgF0l9PYipNTmWCBY2kWLzTtDsOBQBkJekMRBHPdQ/wB8JjH54zVmGX7VuCxyoV6iRdtRw3c0Mr29rIl8AAwcuq7c9jjrWhbrOUJnKbyc4ToB6e9IDl/GG6HS0QnAkcfpXP2SeVpU0yruJB6Ef/rrW8azF76C3HRUz+JqhqI+y6RHD90thcf5FTN7ICKwc22h3k3A3naCfy/rVKG9kjiCgLtHtV+8XyPDdnEchpW3EH/PvVcRl/LiRCCx4A70o9WDG/bZhztH1x1qWFjM8Z6E1WvpF88rEoCoNhx3NR287x4PI4IGKq2hJZRSbqXavy+YOT9alVs3N0mBhFfBA5NQWbLLclx1VlCipg8f+lzKxORhvbJpAZ0dzNGAFkIA7Zq8jzSYAByRjLDI5+opdljHApDEEnG4oDzViIo0TbJ42UfxshGKGwEgheK4jBEZy2CUXA5FXnWQDJUFcZyDVRp8XRO+N0cqR5ZzgitGRtqkdSAeKxlcZi6qhEHK/dmI/PmstSVIPoa19RczxMsSMzGQMMKemKySkv8Azyf/AL5Nbw2EzTimEqS7TkBAM+57Ut5bP5zrCu9UUA885FUbeSWM+WFXlgxz7etaVncG5uphKyoGwwzgDI4pS01AqTrM8Il2suCeq8ir8M32q2UlVLgdCOAe1SFoV+USpux/ex/hUUcyrcbCwIccYOefz9KzbugG61H59hBc8Eg7T/n61hV0jqbjT7uFAMrhgB+dc3itaT0sBKrAwMrZyPu+3rWsqn+z1bO4uOpFZCOFhdSCSSOfStmIE6ZbZIHI4J680qmwEtxlbOJMYyoXb7022UgAAdCf61YudonhRhkgk5/lUcSnZn/bOPfrWIxkpJguwTgc7ayIy4SVj1AGPzrTuZGRpkPRkJFUokZ1lIUFsYxmtYaIRRRmVyR94giheBnNWLuzks2Rs5yMk46VV7VqncC6zEk5z2oUkEFTgjmlJ3bSF52jNIQQSCMfWkM3LO/F1GIpOJR/49VtWeI5+77VzQJDBg2COQRWzY3ou8QTN+97N/eoGasUi3Gc8EdqbInPt3qtkwnA6dzU/mNsyQM+nrQMawGRmqN7IyDy+drHmr7kKm4Ec1WLCT5cAn3qWUiBeMYp3WkYYI9KB1zWTNBQdr8/lT8ZPSmFeaep496TAcRhM+9KDwSBzR1HWkAqSiRM5yakzmox0xnipPakUhyDP0pv60YwM0p69KBidDnFAOBS+lI3T3oADyOKSZjK8UPUDk0AYH0oth5k7ykewrWluZVXoXQMAAD6UueM0GobiXYuB9410nMR38sQspYmYguMDHXPY/pWp4RubmLTmt5FzDI27OzJBHAweuPasG2tDf6jHG33c5PvXrlncaTplikNlYLcXAADTTghVOOcAHn/AD1oEyTwuuqx30U1pbyMN/yl/lU1d8V/Di78TCeTZJb3xbzAyOvlknt/k1mPfXkn3rmQD+6h2j8hUkGralbDbDqF0i5ztEpx+VNCPMLvwzfeH9QNnfW5jm6lz3HtViKMIBiu+8R6hLrOlS/b8SzRrujlIAYY7cVwanP0oGOz0pOvGKX8qAMn1oAvadam5uo4gM7iAK9Ythb20EUMZC7FCg4xmuI8J2arK15IuQgwufWuwWY3QAKBcUhlh8l2bflTUWwmMkAYHTmnBSB16dhQzoV8tIzk9TQAweYQN4wvtUixAZL1Wa68u4EQGeO9W/8AWLtbCnrx3oAZMsigMrjBoAbYXOCKc6HbwOKrgz7SNnBoAkWYOTmLHPFDuMgIDk+tOt2VOHK5IxyaGjRwfm57YoAgePe45ORzxUismAHJyTSxxOiMfMwegBFBRn4Z+PQDFACXCqI1UYz1601YkZQfm3jt61LJHCu08sw/WlWbzPkjUjHbpQBGgADHAXFRMjSOCHIIParPlBzy2PalaA4+XGM0AMZnRwA+eM4qvOjGQSBlGaV4ghLLlj6E01J4zhXjKuOvNACHbkqy7mPOTVi1tIpXGTtz2zSr9nd9oYEDuelK8CghkY57cdKAHy24hwVOMdhUUaytN8zsFxxUq7iu5mJK9qIZpG+faCucZFIZJ5D4YDGMd+9U/NccbTxV5pDtZcED1FUzOAcYNMDwE8Zxnp1pOc4yKcMj/CgqCDg85pAIenQEUmOe3+NByf8A69BBIzQA0j25I7U08c8+vFPOMjp+FM4zkUABxnp+IoJGcgGkORknntxRmgAak4HUfpTQ3PSnZGBQAZHtQFMj4HJPpTT3OatWqAKZCOTwKQizGiqoVe3X61I3FNQEAnihshawm9bHLWnrYjk68ZNV3Pr0+tSyEDr2qjLMxfavQdTUpGcI3YyeTGQDWhZxi3hUuMO3X61Ss4ftFyCeVTnkdauCVTNI7Y2xkrUz7HtYKny++y/kU1jj0rPe/mJEigCIHv1NXS24ZzxisHBo9iM1LYZI21Tz2qtCm5t/r0p0rFyFFPVdoA6cVvSiUtWOJweelKkjRusiHDKcg1WnlIZY0HzHrnsKkDEgZJzWz2K5k9Dc1dC0cN7GQDMgbI7NjmtZ/wDiY6ZFqCD5lA3jp3wf1rJsZV1LSJLEY+0QZkjx/Ever3hWcSRXWnykHcDjJ6AjH6H+dczVjy6sbSsVGOZCQMDPSmHknipXQpkEYYZB49Ki6Dp1pGIH5uMULjcFzxS44xSKBvBPrQA5lGcUsY4PegHJJxxSLw3tQArdcDvUirj3PemfxZx9Kcp45PXmgBr5BxQB1NKc0hPFADcc54pmOvPGakOSKTGFwaAHIwEe09DxScAAd6aRkilbI4HP40xDHPy9KgbOPSpnOBmojyp9apCZHkhTzVXlj1qxLwnv0zVfoPatImchrGomwalaomGasgicDHaoGqdz2qB/rTEQNwOartk/Wp5c4qfSLF7/AFFUC7kT53+gobsrknU6FaGz0yMMuJH+ZgRjFaQTzLtYxyR8zf0rEvtdfT763iktmMTLkuTjr7V1OjxRzwm/kbEMvzbh0x0FeZVUk+aXUaV2WhGEXbHeIu0YZcA81h+IbhV06cXQEgKFSF4B/wAmugj0yyJM9vqHmMgztJVs/pmub8SX1hHbXNsZ4mnWMgpkE5/xqKeskXLY5Dw1ZTNO1wyFAoOCafBYPc6+0kkiufOYll5G1R1z+lbTXcdlotoIWSSaVkQqCD1HP86y7m5htZHtNPUvPLCURV7Fic/jiu9OTbZiY+pSm91lZpP9Wx+X/dH/AOqtfwTYLfa5LeSLlIFJ9snOP61h36tZstuwxKqAMSOnHIrtNHRdB8Az35+Wa4BwehyeB+lLET5aXKt3oVFa3Kmiouv/ABDe4CkwQMX55GFGB+tenTssMLynAVFJNcZ8MNOMel3OoSL8077VOOoX/wCuTXbyLuBUjIPb1rqhHlikgOU83VPsTq2nGQS5JkhuArYP1HFVo4LJ54lutL1DeWADTEuoP13V1aeW0rwIV3R4yo7elI0kfnGEOpcDdtB5AqrAVZsQ27MMKFXjPQVzEguXt1jWzhd94YywTDfnuRkda6i/me2iUxQGd2P+rDBTj15rMbUELf6RpV2nv5QYfoaBFfS7eFppJGhvBMv8V0c9fTtT7555pmt7XyN6AFvN56+wq/ZZaFnaN40LEorjBx9O1Z09taXQW4ltY5HlfaCOuPrSAziILtONILzNwzBQq5/3q1oohFEkf90AdarNpUNncW628k8aFvuLK23j2NaMihUZzwFBNAzzXXmN14pkRdzAMEwBnoOeKra0ftN1BAgXjj5c9SfQ9KktMX2sXFy+0jezbmYgcnjkdKfZj7b4nAwWjQ5IZt3T371lJ2d+wEXiDc15DaoMCCIAjtVS2lFss0jPmVVCxjPc0ajOX1e4mADBiVGfToP5U64tEtVDXEbOT/EjYx+FVHSKQnuUwwVyGfK4Oaazk4XsvSrC29vKDtaYY6jg0NaIybY7hQAfmLKR9Ku6EO0wgXJYj5UBdvwFNY40qR+8s2M+o61LBby2scyqYWkkAAIccevWi7jnmghjWBzsyWYAHk/Sp6gUVuXWIR4XaOhIqMzSOMFyR6Zq1vMfyy2iHH95CKQy2zYzagc8lXPSqASxk2XAUDO7C8/WumuCPs0iknDBskVgWyQNdw+Qkq/ON25sjA/Cta7lRF7jPAyMdTWNTVgUbiY21sXWaYkSbRlyO1UG1G7JyJ5P++qtXdyEhh2qjbmZyrDI9BVf7bAxHmWMJ9dhK/1rSK0AjGoXOQfOc/jVmC9lnuo4xK6BmABJziot+nOeYJo/92QH+YpwgsSytHeSRkHI8yP/AANN2A1WtLwgqZ8gjBLJ/wDWNRyJeW/EnlMn94ICR+Yq2t8rvzLAf+BgfzFPuHeSBwqZBUj5SDn8jXPd9RlbTRm7kBOUlXBONuccfyNYN3Cbe7liYY2sQK6nT2jkmVmYE5A2nsSOaw/EK7dZlAXAwD+laU5e9YRm5x9K20GdPtIiQDww5/GsI1uOQthbXORtXaSO4GMVdToBPJKst35qnIGD+lOhfMQJByWJzWdbMotZWLAb9wUE1cVxFaxbs8nGT6nNZNWGV9SlKTkr82V2/SoINz28oHDZ65qW+DNIGyMdMHv15otiRFjcNpHIx7VS0QFyWdctC4Ux+Tk5rCkjC5KHcmeGxWpNNsnLEBiYhx61DahJoZYyu0HoD2OKqOgHXeBYbOeSUywh5FiXaSucetddq3h7T9V05k+zxxzKDtkRdpBry/Sbm609Vu7WdkYEr7e4IrcuPGmry2jW4aGMMMF0QhvzzVgcvJGYpXjJBKMVyO+KTowIyCOlKwJOT39aMc9KBmtYXyS4inIDAYUnv7GrbKzPgcjuK57HcVrWGoBwIZmxJ0VyeD9fegZYuSAgCk4qBcbSR196lmULxnGeSD2qBXyxHpUSZcR5OaUD6U0np704HmsmWLt4p6jA/GkI4z+FO/GkMPxpeMg+tJggUo//AFUhjx+FOXlvwoIwp60gB4pFD+1B+uMUtHfp2oKADNNfqR+VOQcbqGyTnqKQiGT5Ys/hVu2j2QjgZ61VIMlwkeOnNXxwAK6qUbK5zVXdh9KinhLjIqUn1pAa2MiHT3Ntfo7cDpn0rv4mRokZCGUjgjvXCkg/hVyz1O5svljYbM/cbkUCOzDZpCcVzZ8R3GOIYs/jVWfVbu5BDSkKey8CgRq6zqSGA2sDZLcSEdAPSsIDApoOe9KD9KBju1WbSJpJ1UAkk4AquuWOK6/wLFYx+KdP+3OoDSgRKf4n/h/XFAG/o0i2VqbV4jHLG3zbxjmtiMwvISZEy3pS+L7GSDxEk6oPs8ybjj+8ODVaK0hKbywGecA0hk8bpvYINx9RSOxdj5aY9zRBFtRnQ89KH38FB9eaAIlgQMWcLuPc1LGEyS3PoaV03IM9aaE2qdxz6UAWMNgFecdqikaRCMADHNUWuJhMEdiADwB0qyu/OdxbPTJoARoWkJkYrz2xVgRhIlII681UkklhuAMZzyc9KtRqrDcxOfSgBWkSOHcXG7PTFV/Md2wozz1qV/s0zbcHP5VCXMDFVTK9+aAHkOXyQTgdqjYMCNikMTTtyOCw3AY5GcUQgtHtxhQeuaAEwyyBSMdyafcrLIi7ZNgz271MkwJIKdPXvUMsjO+Wjwi+nNADoiEYFyN2euaimLSyt5cQI7moZYiyGSMseeOOlEU8m3njb196AJFhKx/dA5p4cYw6kYpv2zdEw27ewzSEKwUnG3HfvQBYjuYZGKqDgdTjio41jaXKOxHoOOarIjJnbjr2qXIi2psyevFAy4hkQkbiwPQHjFI0sAY7hHnPPAqMnKMNowRyc9Ki8sDjyv1pAeBnI7n60gXjHY0vvxR29DQApHXAzxmmn7oA4FLntR6c4oAjJPXPWk6ZJ5HvTvxpPQ54xkigQw5U8H600+5zmnsOB0NMIyM0DClJA4GOKTt1xSHjpmgBVQyyBR3rRC/NtGMDioLRCkZfjJ4AFXoo8LuPU9qicrIzqS5VcAoUAAYqNzgd6lJx0qBzk1zbnn3uytK4/DvWQ83JH3mY8Crl/Ns+VTkntjtUOmWwnuS7D5Y+c+prRaK7O/D0nJpGpCEsrEFzh2/Hmsx33XBfh9xzgf4VYv5fNudhPyR9Vzj8amsYCdzuvJ4BOM4rPRas9mMb2hHoV4Q87bBygbJJ7D0rRdtoyc8VII1TJAAPWq07EttBqL8zOuEOVDY/mO49alJwDTVGBjFRXUoigY55PA966Yxsa35VdleS4VLpmJ4xx3pn2iRju+6o6DvVYseG4ye4H9KMlm/H8qpnE6rbNvQ55Brdu6A4B+bH908Gt24jOi+Ko3iP7p8cH/a/+vzUXhzThFCJnX5255rQ8UwsY7KfcCcFePwrhlVUp2RM1fUsa9D5N67AACYCRce/X9QayiCpwc8Cty6ma+0i0umH+y2Pfn+lZDjk4BpoxZCenSnY/OlKjNA6cUxAcLz+FNyTTu3JpWXoR260AIO1OxQqgnB6inAEDNAhrEngetEgOMUqAEkninNz70ARdiB1pG5z7U7GAQaaep96AFVSXApzr8xzTo+MnpTjgKTntTEUpPc4pmeOadJj9aaBx71SEyCb7wzUH5VLOcsTUNaoxYh5qM1Ieh44qNhxj+dUIhfk1Ceameq75zTEV5jjNdf4UWLTdEm1CSAPNczLFGXOAoHVj7Zz+VchsaaVIl6uwUfjxXrjaHB/YaaZMn7sRBDjg8d6wxFXkSEzyjVNQvNa8QPH5vmmWURRhBhQM4GB+Ne06fZT22mR29m8P7tAgEg6gDA6Vx2leBLbTdaju453kWLlEkUfePA5/Wu6TT7yOV3huRGeAo2BhgCuPEVo1LKOyLgihfO+maVI91FDGYkLb0P3gBnv7141HrNq7TSXth588rMWlEhVjn17V6F8QtRuYtINmx8y4uGEXyDqBycD8q8k2spKlSCOox0rowlNOLbJqbm19o0J4tuy+t2Jz8u1sH6nmljtbJJDcW2syIw4LtCQRn3BrGWKSUhY0Lk9lpZLeeJcyRSIvqykCuvkXRmZcuLFjfwQx3aXTzsBuXOckgc5rtPiFOtno+n6TC2R1ZR1wowKw/AOnm+8SJM3Mdqu859e39a079T4h+JsNmPmhilCkHphBlun0Ncs/fxMYfyq5otI3PSvD+mjTPD1lad44huz696fqEWoYDWMlsoVSWEyk5P1FaZ4AAHAqG6KLZSl5PLUqRv9K7yTj71PENwqT2cNqxb5Xlt5uWX2DDGfxq/omnrBA8rWssE7na7TOHd8dyRWbFfR2cIt7XxG6qnyqtzaZGfTOBXXRxuLZDKytIFBZgOCccmgDAvbS7uNTJt7oQeUgA+QOGJ9fTtTGj1yLAVrKYDuVZCf1xUFzex6jczQ6Zbwls4e6nO1QfYdTV2w0l7aNTLqM9xJu3Mxf5T7AdhSES3DiG3aSRd3HRe59K5htPhlcpHpUkF2jblCzlQB67hXT38MN0FtJgSrfMQCR06cisuPSImZpLW6vITkrnzc5x9c0AVtKt5d7PcPP5sZKGOSTeAfUHrzT/EU/wBj8PXcoxkptHPUmrumQstrvkmeZnbO9wAf0rm/iJcGLSra2UnMsmTg9gKQzmdCfZY3EisVPqHAPT0PBFJ4cYoL+9Iz5acEDvyfwpEVoPCZdd4Df7KuvJ9eq1JGv2HwNI7H5rqXAHt/kVzSd7+bsMzdNMU11hgpx85Y9sUSzPeXF0rjiVSYz2+Xp+maqRzQoqhFIkZNrNnpz1/Kn20/2e7QEgop43cf54rexBBCXC71bDe9LFuII5IOCR2pLk/6S6JwobC1es7Xyi1w+3yEG4nOckdvzpt6AWbgNLPb2pUK+fNk/wBken5f0rHnnZ7mSSMlVLHAHHFac7iCC4uxKXkuvkRjxhe5rPhsp54w8QRhnGN4B/KlFANS+ukGBO+Pc5/nU39oOUG+ON2zyWQcikbTrlIyWt5M+wyMfhVd4pUHzROnuykVWgGtaL50Bm8qNSXCgJuX+tWHtUlYAtKCTgfPnJx70sSiGOGIkblj3kA45b/61JczCFZJenlJgA/3m/8ArVhdt6AZc0Vs8gxdjgY2shGPxFRf2dKzERSRS/7rj+tVffNFdCQE72N2nW3kx6gZqJI2adYyCGLAc8UqTzR/6uV1PsxFXba8vJFcFmlAHCsu7Jo1AikXzZzICm0noHGcVbicQDzGibAGc7Af1FQCaOQ/vLOEN1O1ilKkRkdCkbLC56sQ39PaoYGvpr+ZKsgUjDAHIA/z1qr4pQC+hk7tHjp6GrFqscUS7sqC2TjjPOaTxYnFpL2IIrGH8RDOftlD3KKRkHqPXiuhiijm0MBxkKhbj2zXPW7Ksys+dvPT6VvWLrLo7KG7FevQ4rWoJDLG1jfTYnYcjc2fxqS9jU2Jb/ptge3NS6ep/s2Ne4DA/wDfVLeKFsH3Dj7TgE+uayv7wzLuIzIEBfjJ4qeGJWto3wQenHfiql0wa3BU/MH7H2q5ZtusVHO4OM5+lW9gK13EdomLY2ooFOtJR9mYkAlt3an3yM1iXxwAueKW3Rdtom3GVLOR0xTT0GLZkGz2L90uWH8qVl7VY2xrGBGAFViMCmsuRVRdwKrR81GVwasleM4qNlxVARdaa4O3g4OKkxximsODSGSW+oSyoIpSCU4Vu+Ktoaxkylzjsa1YycCpkVEsA8+tOPT9aYvWnj64rI0Jl4WnDkCmjoKeowu41LGgIPpQAc8Cl2/NTkH60FJDuOtIvLDr1peAeBSg8nj8qRQpGAeeabk8cU5gefpSgDB9aBgvC+gpOtO46D8qZMSsZI/i4oWrE9EFmu93lPToKtM3NVmnjs7dQ7AHGcCqbXFxcEqgKD6c4/pXbHRHFLVl950T77BfrUDX0ZOFy30FJDppLbpWJJ9etXY7aGMcLmqEUhcyvwsLE9geKeJLk8/Zz1x1rQDbeiLj6VItw6nPH0xQBSVLtj/x7NiniK8zgWr1fW/nQ4Gwf8Bp41W6B4ZB/wABpiKS2uoHAFq+MVZi0rVJSAtm+frVhdbvl5DJn/dFSR+KNTikBWVeD/cFAFu08Ia/csPLsce7NgV1nhr4V6wfEVlqut3EEUFmQ8UMTlmLgg5PGO2PxrlE8Z+IEI8u/Kf7qDitK28feJnVYvt5bn720EmkB614llilMMCgPIuS2OwNcvPARIoGdvfA6VVtftMUEc8szyyMAXJOSTV3DFS28jNIZKgVEwpOOwqM5jbLB1B9KQzKihWPXqaUu8owoXbQBLGEU5bLe9OlWNMFAeahRdo5ByT1NDSGOUq4GD0oAaUWQhmXOD1xQ4Y/MiL8p4xTd6SZdXY47dqeZGIAGMdOKAHTqku1nXa6jrmoBdhJPIVSWboaklGASGJzShTuVmCAheo60AIPLhjLXEgDZ4AFOEsbDCSc9eRiq8y73xtDAdBikdpElD+WDxz7CgC00IzlJAR6mjywmfn4xkinLJBIq7ePWoJIAJS/VTxg0AEUckhMhmXavRfWpUwR87hfY96hxhCMYz0HpThCjRDLncO2KAHLcwhGjbpnCg9/eo/LjZtqyAdzio9sSjDL3x70GIbyFYkY5oAFLS27MqKW3cAnAxTmmfyVUbVZeDxkUkUQdMq4Cg96txLCoaM/Pn7xxxQMrREFy+Rx3xTHRrgozOQ3t6VNPaRIqmJue4Y9ac0IdGCyduq0AHkqJRgMUABYlutWfNg/55GsuW1nRM+bvB6hTQtvlQfNA46UgPCOBx6cUue4o6n8aUphehoEJ0APpSdQeOfelPTPp+NBHzdR6dKAGYGcUMeOnOM0/qKae/WgBjA8gYpuPenE4Jyev6U3O3PagYjDIxSrGXZVXnnH0pM4JzxVi2Xq2Dk8CkItRRbiEUcCrTYxx0ogTZHk9TzzQ/AziuapK7OGvUu7Iglbt371TlnReCwH171JeSeXEzE4btWNIT5XPJJ4yelOMbhSp31I7h/NnyPmJOBWmr/ZLMRxAbmHXPf1rPtI9z+YcYHA+tWJpt5KA/Kh7inLsexQjyq4gUyyiKRmVm65Ga2oYvJhVBnAHeqenom/JUlyM7icjFaJ4/wrnqS1senh4WXMQyEKp9qqqCx3H1qSdtzbR3pBhVJ4960pR6m4hwo7Vm3sgkfaCTjqKnklMgbcflxxnpVAdCSep5FdCOatUurIliXksCCMYq3p9qbu+SMDKjljVcKqR8Z55NdT4ZsSsJmYDc/IrDEVOSDZlGJ0dnAI4goGMUurW5udKYKuWiO8fSrMa4WpYgrOYmPyyDafxrx4TtO5cloY+hTm40u609/vRnfH9P8A9efzqlcDngEE0tux0zWwjN1YxOfUH/6+DU99D5Ny4A4616SZzsp45z3oA447UuR16YpMnNBInTHfNObp9aQjP/16XvTEOhHLe4pT06j0NLGRu9+lNwceuetAADgetKRkU2gHj2oAHwOO9Rjink7j3qPPNAD87se9PdSI+tN9M/hSO3y4zmgCuw5pucfgKcTwcVGxwhJ61pEiRVk+9xTMU5/v0zt2rUyEOMDNMbnvTz1qNqYiKTkcGq0h+U5FWGxVWYgjFAjT8K2JvvEFuxQtFC4duOM9v8+1eq3Dl+Bzk4/CuU8B2H2bTJbt1w9w3ykj+EdMfrXUMpPK4JHFeVjJ807dhdSzp0Xm3KsQcDL8/pWq+6BZZWfKAZC46VkfZ7qS2zbgHcSD+8KHjgYNVpri5tbN5L/zBt+Y7nBBVRnjFcyRqtEebeOtbY62trEqFrbB8w9Qx5P8x+VYiR3lraCVQPNuGKkHGTnofxzVe9F3cahe3ksb+ashdyRwuTxXQWmiWr6HDqF5cXCtCglCDGOucfyr2VanBIwbux50+3lkt43t0VI2DMV+8wIyQfpVa/FudHvJ4mKoxOxQSowWwOO9N+1m3n/tZ2ZopYCSOoVzwFx+Fc695I9gLUszZkzg/TA/rTjFt3Eeh+A4E0vwpe6rKuDJuYH/AGVHH65qP4X2jX2tajrEn8I2jn+JiSf0/nU/iQf2F8PLfTxuSSRUjOMfVq6H4daX/Z/hKB2QB7ljMfXB6fpWWD9+U6vd/kaS2SOivb2DT7V7q6fZCnLNjOPwrObXtJvZIPI1a12q2WVmxnj3q7qd/pljbMNSmiSNxgo/O76DvWBppstUvWt49GefTuSlxcQgKv0J5au8gntHu7gi0a3gaIS7/tKTBgwDZyB1zWzfTG3tiykBmIRc9MmoLTQtM066NzaWiQyldhKcDH0pdVtDewpC1vFcQ7tzpIcfTHvQAixiS68ho43RYwxOOc/5FRQ2kS6jOyRIoVQAVGOoyaz7bQNIWZhALiznPJRZmUn6DOD+FbNjYixtzF50spLFi8rbmP40gM/UdEF9Ok63lzbuq7QYXAzznnIrLn0rUtNtf9H1NnjHGJYgx5PqMVqMmu5Z7a6sZo2bKq8ZGB6ZB5pg/tqaeCC8tbURF9zyRSk8D2IoGLBD5cKJ/dAFeafEO4kn16G0QkiFAAB/eP8AkV7F9nVgeK8Pv5YtQ8Y3DSyYj+0EAld3ToOPpSk7K4DddCQabBCPKMhwG+Qxv07joaseJE+zaRpGnHA+UMSO3+c1JfodS16xsvNR0VgcLJvHrkH8Kh8Zh59dCKVIjjAGW4z1PXv0rki7yivVjew2awhMWIp40IXG5o8449axriOJrGGRUAkzsYjOH96jkS4hGH+VeBkEH9RUt2RHp9nDghyGkP0J4/lXQlYgieKSeWEYJaTCgY/r9K0b238toNMtxy7b2yf8+mah08I81vAjHJYMeOh7/p/Kp7aQtd3mqOSUhUhMnueAPyobAo6tMJb3yoh+7gHlqB7df1zWfnHqKkEsiS+arsHzndnmrg1O8K4ecMpHdVP8xVrRAUkkkA+V2XHocVesWuby5jgaaTyyfmyxxgc0LqMh+X7Nasf+uIyfyrTsD54knWCKN9u0BBgZaonKyAR7COe5W7kkdSx3cHjA7dPSqOqyn7PEhGDIxlPr6D9K2blTHasAMs2EHHcnArC1C42aox2K6xgIFcZAAFRTbbAzfpRnNXRd2zf6ywjP+4zLRnTnJ+S4jz0wwOP0re4FM1eVAmnJnKtI5O4DsKQW1jIcLelSezxf4VKunGRQVvLZ1HAAfn8jik2BS3srBt5Y/XpW0qYRASBsUA59T/k1nC1kjuE82MxLkYZORWjuA4bJyevfPT/Gs5sCy5RocOwAwDn07/4VL4pXfpUD9xIP1FVZNvkEBV+YcZ9+f5AVa8T/AC6RbDJwzf0rFfHEZyXatzRhm0Yccy/4Vh9K0NKnZbmKIkBTKrdOT04rpqK8RG5ZKFilX+67rj8RTNTyNLm29Vm3frV5kVY0IUAsrE47ncOTVLVAXsHiT70kpAz9a5Yu8hmNNGHtYypwW+Y/XGav2Cg2inac7hyapXqlLOBgeRhcj/dFa1p8+nW2AMbR298VrPYCFkP2GTADDy+n4VlwNicYkyD8nT8q3VQPC0eduUAyOoPNYWnwCS6JLnKqXGPUGlB6MZqr8kbDGMvnH4UZ7io5JA9t5ikcuM4+lMil7EmtIbATEZqMr9alJzwKay9/6VYFdkGc1GwqwwphUc0AZ0vyzA9K1ITmMHPOKzrtSMNVy1YGMc+1TLYqO5cBJNSgVCvTrUy88ZrE1RMnanj7uKYue1O7d6llDgMgdDTh06+1KoxS4GeaRSA4BpFP8VLzQB19xSGLyD6U4cikx0pRjJzQMcFLMFAyTwKbqUJtJ1WQ/dTcc1Nagfao1Y4BcDP411Wt+G7jXbBZLJC1zDjKqud69x9fStaS6mNWT2PPYY5Lu43sSfStyC0Ea46Guh0f4f66Ygx010J/56sq4/XNWda8G6xpEKTywCWNjgmElyp9xj9a6kcxy9MLqpwTzXS6X4ZmltLq7v4ZIo44yUDAqTxnNcW/QtntUzlylQjzFvz4s/fUH60pfjK4NY7N6HrTRK8Z3K2DUqpcpwNM36I+yX5f9rtVwEc4rl55mncADk/pXQWoK26gkkgc1qZk/U0o4HFIRS/zoEOUc963tAsjc3O4nCopJJrEiTc4HpXp/hfSo4NE82SMCSU5yfQUMZLZ/afsqCNFIUYyTU0zXXlq5hXnjg1bjiJbYoCqOeKkcTYCiMFRSApRRO53OBkdFzU/zom7yyATjC96ZcQiJhKGIY/pVtSxhXcQfpQBWM0yjcLdyB2qGae5njLSWpX0NX+U+5yO9QtPMXGyLOehIoGU4Ll1dkaJmA64HSnpL5mWw6qT0x0q4sRaRiwG49aj2HcyIhGOc0ARXU7/ACIkLhQfvFaekDSLuIIxzVkytKoWROn60rTtGgwBj3oAoNcxBip3BwcZxxUYDKS7M5U+o4rQFrkGRQpHp60yVcuokQjP8I6GgRV88Mhbnj/Zp6M3lB924E96fMiPINoIVeoBp/yOioEI28cUDK7XUbSKu4A9+Kf5rKWK84HpV64hj3JhBtA7AVCVlRjt6HnFAFONo5V+YEtnnjgVMs8KzcuFB49qnJeQeWFx2Ap8Nswc5QL2JoAx5ZbVi2JwEB6HPNWI5hHEGDKUHIyatXNtCZz90nsOOaiFvGq+W6YHpikAQy/akkk8xNucAd6jQ+WcMQO3XgVYRI4lKxooHfAqRI4kGXUNu5IPagCDbGLRjJJhfaqe20z/AK5z/n6Vq7YpMhVHljsBxSbYcf6pf++BQM+eMndznnvil+hpW4YY9KQd6CRO+M9vWgkj8aXoxA6U1uOntSATJP8ADSE9sc0MozjHHX9aQgc/X/CmMQ9euabgjtj+lSyqqvtA4wePwqIEmQDtn/CgQiIZJAo7961YIR5oAHyIKpWgBlkYjkdP1raiRVQkAA1nUdkZ1ZNRbQEdRmoZflWrPqPcCq90P3TN3CnH5VynmdTAvJd9yR/CvAqgzO8owcE8AVYPzKSeTxzUdqM3WPTOPyrfZHp0YptI0La1kdAijCkctWgNNhaNRINxAwW7mrluipEAoAAXNPPL4rinUdz6Wjh4qOpAIggAUYwBjjpUMr4Gewq0w61QuCemf4qmOrN2rIhT53LGmXL7UC45apIvun2ANV5xmQZ9MV3wMpfCVJwzDYPurzj1psQHmEsowD+VW41AYcDrTjGnXaORk1bORx1uNtrf7XdpCP4uteh2FuIYVRQAAMVyfhdFNxI5HzcDNdtEMCvKx03dRKSJKYx28g80/wDiqKYfJXBHcGZ/iSFZRBchR+8Tt/eFOmcXmmw3S/eC7X479/1pb/5tHO7nbLx7U3SedDuwckByR7cCvUh8KOaW5m44wc/Wm1YYDceO1Qkdaskdjgmm+pzindM0H7p+lABGw3HoaG+9gUidTS45/OmIj35kZcdOtPJqv0umNTnoPrQA1unpTcHtSueR9P6Uh6A0gH96jflTxTzxxQ/3D9aYFc4xnrTJOBg9OtSED9ail6flWkNzOehUf731OKbyTxUjD94PpUTdDWpkNI79qYae3XFNbqTQBA5+tVdrSzJGq5Z2CgetW5OM+wP8qdooDa7Z55/eCh7XEem6eiQ2MMYTasa4/ADFW4txfaD2z+J6U2MAWnH92pLXmSYnruX+RrxJtuTbFHcsmTULaXCWjvAufusDkewNct431B4fD7LIXEkxEQXuOMt/LFdlo88k9uDKxYjjJry74lXM0Wo6eUkK7Hdl9ju/+sK0w8eaqkaS0ic7qMkuowWToCsl65WQIfvYOBn/AD3rS1+6XTtDXTvMLyyFev3goOc/oB+NYHh12n8Q2QlYsAxIB7HBP86t+Jxv1+9VuQhULnsNimvUcVzJPpqYFCW7hh064tI5POLzK4k24GAK0ND0v7T4q0+wY/cIeTHYgbiDVSa0gjXTmWPBlf5+Tz8wrr/AqK3ifU5GALqSAx7DNLEz5KUpLt/wCoq7sN+Icr32s6bpEP3ycbQedzEAV6paW6WdlBbRriOJAqg9gBXlcYFx8YIxL84WTjPbEZIr1nvRg48tCKXYcnqyhe6Hp+oXSXNzBunQYVwSCB7U4WBjXEN3cIB23bv51e7U31rqJK1rFNFHtnnMz5J3FQvFYGv3t3aXmI9UeFGA229vbiWT3Pt/9aulPeqGnIv2ZpsAySOdzHqcEigDn7G007W5gZtS1Ga4iO4wzMYmQ+u0AV0txPDY2TSzlhCowxwWOOn1NQXkUY1KxlCASbmTcBzjaTj9BUetXEtvFbeU+3fOitwDkHqKQGI/ie0090sdNmt3WXJiMrbFh9Qc9vT/ACa09HtEkuTqE2p/b7nbsJRh5aA44UDp061pm3hkUh4kb/eUGo7G3htopPIiSPc5LbFxk0wE1q+/s3RLy7HJjiZgB644rxLwxbyXmsNOJZkMQLmWMBiCfUHqOteq+PiV8GXpBxnaD/30K8/8C28UttqTug3oF2sOCOvQjmsa8uWm2NbljQYftvjueR2jkECFt6x7ATwOnryaI2t7jV9TlcF3W4KrlRtwP/1VP4BUHVtZkOS6rwxOT95qyfDrsdUu0Jyp3uQefm55rkX8SXkkOWxS8SW5k1S3W3i4dFGEXHzZrK1GTzLxs7tygK24Y5Ht2rq9bYqtqy8Euckd/nFYerQxprg2qPmdS3uTjNddOV1YgNDglnluXVS0iRFYwOu5uOP1pLpJLTw/BBtO+4dpGwM8DgZq0srxWmpyRsUdZkAZeCOWq8n/AC4t3+yKP1zUylZ3A5WOxuZgDHHuzzgEZ/KnSadexAl7WYD12Gux1KGIXyv5a7mzk49hTfLVo26rjJGxivr6Ue2fYDio96yqNpznoVrpLQ/ZtMV2zzuk5HpwAaikuJVlMfmMV25+bn9TTtSZk0yPaSMxR5wfaiUuayGPWRz5Rk5C7pCAOMKOP1NcvJIZJGdvvMST+NbqSOLKZwxDC3PP1YVkRHMuCFORjkA1dJWEV80EiukttOtJrUvJCCwHUEj+VY93BFEw2Ljk9z6mtk7gU+9Lk/hQegpO1AFrTwWu1OCQgLH8BWtHBuI3c9ufXp/PNZmlj967d8f1FbI+8B23D+ZrGpuBT1VyixpHkAqSce/T9BWp4n/5AtofRh/KsxUVxfSMMvHGuw+mRitDxHzoNifcf+g1H2ojOVFT2QP2+Db1DjpUJHOPrVjTzjUYP98V0PYR18ZMlpAzYOYzk9uoqK+j3xQsuMicj+f+FJYkm2IP93/CluCfscX/AF3f+TVwLRjOYnd2tFDgj94f5Ct6wH/EstRn+Edv9usnUwBHGB0DH+QrZ07nTbT/AHR/6FXRU+ECW2jJGD12L/WsPT45Ir+QsuAu5CfeuigGVUn+4v8AM1lIS13dZOf3p/kazg9xkUyhLaVV5Xzc/pVdTg5qxc/cl/3x/Kqg71vDYC5G+eKlyPbFVEOOe9Wzx09KsBrgYxUXtmpX7/So/X2oAqXi5TrRYHKkEmpLgAowPr/WoLD77ik9iluaakY56VaQZHQ4qmv3CfSriAAce9YM1Q5Op796eR6/rTYhluf7tP8ASpKHIeMZp/U55qNOVJPJqUDgfWkUhMY57+9PK8U3sfrTz/n86QxAOMDmmCZHmeIH51AOKkT7wHbOKyLElr93PLHdz+NFgZp3L7YsAck4Fe4/C8PceE7aWYkyyEnJ6kAkD9BXhN5/rR7DP8q92+FrE+EtMyekVb0znqPU9DitVABIpt7AgtHfaDsBarY+6KbMoaCRWAIKkEH6V0oxPLPFPiOxSxnia4idtpURRsCxPvXh8zZHHatSQbRJjjrWPOcMPpmsqz1RpTIZGCKS2fTFV41e5lWMYANLJzPGD0q7pnM7Ejt/j/hRCPUJvWxYtdOjgwx+d/WtADA4pFJK0q9/w/nWhmLzjilHPTv6Ui/dP0py9aYjW0OxN5qEUeOC3PHavW7ZVjhCog2KNqg9hXDeA0VprtioLLGMH0zXa25PmPzSY0T7cncFCgd6a5JUsjZJ9KBzE+arqSIjg4oGOaAyAMzZp625jQ/P16cUif6kH61IWJhGTSAigQknLfKP1qWMr5pBcLxwaROUbNRlFcEMMigCYqyMzgj/ABqOObznLA8r6jrUR/1ePaggBgAOKAJhcgEIUU56EnpT/MC4JwQT0xmoEVTnIB60p4cAdM0AWHDB/lx9KjuGdUV3AKintzsJ67aQM2wc0BYrtnKuI8KeeaVGVpQ/bPSr0nIwcEYqndgKilRjgdKAHrLguFKtntnpTPMkDKeCM4wOlU1+ZWB6VNHxIv4UAWXSRXG3aSTyPShnYpksaZ0lbFKDknP96gdgiBjxIqk5HGBQ9yyoyFGJPVgOlTZPmE5PA4qIEmJietAhsQWQ5BBUdqjbM+7axA9cUiABDjjioo2KhgDgHFAFwMiKuAc96fvX0qKP/j33dy3Wmljk80DP/9k="
}
\ No newline at end of file
label_names:
- _background_
- shelf
- highland_6539_self_stick_notes
- mead_index_cards
- kong_air_dog_squeakair_tennis_ball
_background_
shelf
highland_6539_self_stick_notes
mead_index_cards
kong_air_dog_squeakair_tennis_ball
#!/usr/bin/env python
from __future__ import print_function
import os.path as osp
import numpy as np
import PIL.Image
here = osp.dirname(osp.abspath(__file__))
def main():
label_png = osp.join(here, 'apc2016_obj3_json/label.png')
print('Loading:', label_png)
print()
lbl = np.asarray(PIL.Image.open(label_png))
labels = np.unique(lbl)
label_names_txt = osp.join(here, 'apc2016_obj3_json/label_names.txt')
label_names = [name.strip() for name in open(label_names_txt)]
print('# of labels:', len(labels))
print('# of label_names:', len(label_names))
if len(labels) != len(label_names):
print('Number of unique labels and label_names must be same.')
quit(1)
print()
print('label: label_name')
for label, label_name in zip(labels, label_names):
print('%d: %s' % (label, label_name))
if __name__ == '__main__':
main()
# Video Annotation Example
## Annotation
```bash
labelme data_annotated --labels labels.txt --nodata --keep-prev
```
<img src=".readme/00000100.jpg" width="49%" /> <img src=".readme/00000101.jpg" width="49%" />
*Fig 1. Video annotation example. A frame (left), The next frame (right).*
<img src=".readme/data_annotated.gif" width="98%" />
*Fig 2. Visualization of video semantic segmentation.*
## How to Convert a Video File to Images for Annotation?
```bash
# Download and install software for converting a video file (MP4) to images
wget https://raw.githubusercontent.com/wkentaro/dotfiles/f3c5ad1f47834818d4f123c36ed59a5943709518/local/bin/video_to_images
pip install imageio imageio-ffmpeg tqdm
python video_to_images your_video.mp4 # this creates your_video/ directory
ls your_video/
labelme your_video/
```
{
"flags": {},
"shapes": [
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
634,
204
],
[
604,
275
],
[
603,
340
],
[
622,
363
],
[
639,
363
],
[
649,
354
],
[
682,
383
],
[
733,
390
],
[
748,
364
],
[
827,
359
],
[
829,
250
],
[
800,
194
],
[
775,
185
],
[
740,
199
]
]
},
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
860,
190
],
[
997,
186
],
[
998,
305
],
[
924,
320
],
[
905,
352
],
[
877,
353
],
[
869,
245
],
[
879,
222
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
924,
321
],
[
905,
352
],
[
909,
388
],
[
936,
404
],
[
959,
411
],
[
966,
431
],
[
1000.0,
432.0
],
[
1000.0,
306.0
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "00000100.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
614.0,
204.0
],
[
584.0,
275.0
],
[
583.0,
340.0
],
[
602.0,
363.0
],
[
619.0,
363.0
],
[
629.0,
354.0
],
[
662.0,
383.0
],
[
713.0,
390.0
],
[
728.0,
364.0
],
[
827.0,
358.0
],
[
825.0,
249.0
],
[
801.0,
200.0
],
[
757.0,
194.0
],
[
720.0,
199.0
]
]
},
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
860.0,
190.0
],
[
997.0,
186.0
],
[
998.0,
305.0
],
[
924.0,
320.0
],
[
905.0,
352.0
],
[
877.0,
353.0
],
[
869.0,
245.0
],
[
879.0,
222.0
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
924.0,
321.0
],
[
905.0,
352.0
],
[
909.0,
388.0
],
[
936.0,
404.0
],
[
959.0,
411.0
],
[
966.0,
431.0
],
[
1000.0,
432.0
],
[
1000.0,
306.0
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "00000101.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
593.0,
204.0
],
[
563.0,
275.0
],
[
562.0,
340.0
],
[
581.0,
363.0
],
[
598.0,
363.0
],
[
608.0,
354.0
],
[
641.0,
383.0
],
[
692.0,
390.0
],
[
707.0,
364.0
],
[
827.0,
358.0
],
[
823.0,
243.0
],
[
802.0,
199.0
],
[
736.0,
194.0
],
[
699.0,
199.0
]
]
},
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
860.0,
190.0
],
[
997.0,
186.0
],
[
998.0,
305.0
],
[
924.0,
320.0
],
[
905.0,
352.0
],
[
877.0,
353.0
],
[
869.0,
245.0
],
[
879.0,
222.0
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
924.0,
321.0
],
[
905.0,
352.0
],
[
909.0,
388.0
],
[
936.0,
404.0
],
[
959.0,
411.0
],
[
966.0,
431.0
],
[
1000.0,
432.0
],
[
1000.0,
306.0
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "00000102.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
573.0,
207.0
],
[
543.0,
278.0
],
[
542.0,
343.0
],
[
561.0,
366.0
],
[
578.0,
366.0
],
[
588.0,
357.0
],
[
621.0,
386.0
],
[
672.0,
393.0
],
[
687.0,
367.0
],
[
829.0,
354.0
],
[
821.0,
236.0
],
[
801.0,
199.0
],
[
716.0,
197.0
],
[
679.0,
202.0
]
]
},
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
860.0,
190.0
],
[
997.0,
186.0
],
[
998.0,
305.0
],
[
924.0,
320.0
],
[
905.0,
352.0
],
[
877.0,
353.0
],
[
869.0,
245.0
],
[
879.0,
222.0
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
924.0,
321.0
],
[
905.0,
352.0
],
[
909.0,
388.0
],
[
936.0,
404.0
],
[
959.0,
411.0
],
[
966.0,
431.0
],
[
1000.0,
432.0
],
[
1000.0,
306.0
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "00000103.jpg",
"imageData": null
}
\ No newline at end of file
{
"flags": {},
"shapes": [
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
556.0,
201.0
],
[
528.0,
277.0
],
[
524.0,
342.0
],
[
528.0,
361.0
],
[
563.0,
365.0
],
[
573.0,
356.0
],
[
606.0,
385.0
],
[
657.0,
392.0
],
[
672.0,
366.0
],
[
825.0,
354.0
],
[
826.0,
238.0
],
[
801.0,
202.0
],
[
701.0,
196.0
],
[
664.0,
201.0
]
]
},
{
"label": "track",
"line_color": null,
"fill_color": null,
"points": [
[
860.0,
190.0
],
[
997.0,
186.0
],
[
998.0,
305.0
],
[
924.0,
320.0
],
[
905.0,
352.0
],
[
874.0,
354.0
],
[
869.0,
245.0
],
[
879.0,
222.0
]
]
},
{
"label": "car",
"line_color": null,
"fill_color": null,
"points": [
[
924.0,
321.0
],
[
905.0,
352.0
],
[
909.0,
388.0
],
[
936.0,
404.0
],
[
959.0,
411.0
],
[
966.0,
431.0
],
[
1000.0,
432.0
],
[
1000.0,
306.0
]
]
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "00000104.jpg",
"imageData": null
}
\ No newline at end of file
../semantic_segmentation/labelme2voc.py
\ No newline at end of file
sudo: false
cache:
- pip
dist: trusty
language: python
python:
- '3.6'
- '2.7'
branches:
only:
- master
notifications:
email: false
install:
- true # drop pip install -r requirements.txt
script:
- pip install flake8
- flake8 .
<h1 align="center">
github2pypi
</h1>
<h4 align="center">
Utils to release Python repository on GitHub to PyPi
</h4>
<div align="center">
<a href="https://travis-ci.com/wkentaro/github2pypi"><img src="https://travis-ci.com/wkentaro/github2pypi.svg?branch=master"></a>
</div>
## Usage
### 1. Add `github2pypi` as submodule.
See [imgviz](https://github.com/wkentaro/imgviz) as an example.
```bash
git clone https://github.com/wkentaro/imgviz
cd imgviz
git submodule add https://github.com/wkentaro/github2pypi.git
```
### 2. Edit `setup.py`.
```python
import github2pypi
...
with open('README.md') as f:
# e.g., ![](examples/image.jpg) ->
# ![](https://github.com/wkentaro/imgviz/blob/master/examples/image.jpg)
long_description = github2pypi.replace_url(
slug='wkentaro/imgviz', content=f.read()
)
setup(
...
long_description=long_description,
long_description_content_type='text/markdown',
)
```
# flake8: noqa
from .replace_url import replace_url
import re
def replace_url(slug, content, branch='master'):
def repl(match):
if not match:
return
url = match.group(1)
if url.startswith('http'):
return match.group(0)
url_new = (
'https://github.com/{slug}/blob/{branch}/{url}'
.format(slug=slug, branch=branch, url=url)
)
if re.match(r'.*[\.jpg|\.png]$', url_new):
url_new += '?raw=true'
start0, end0 = match.regs[0]
start, end = match.regs[1]
start -= start0
end -= start0
res = match.group(0)
res = res[:start] + url_new + res[end:]
return res
lines = []
for line in content.splitlines():
patterns = [
r'!\[.*?\]\((.*?)\)',
r'<img.*?src="(.*?)".*?>',
r'\[.*?\]\((.*?)\)',
r'<a.*?href="(.*?)".*?>',
]
for pattern in patterns:
line = re.sub(pattern, repl, line)
lines.append(line)
return '\n'.join(lines)
# -*- mode: python -*-
# vim: ft=python
block_cipher = None
a = Analysis(
['labelme/main.py'],
pathex=['labelme'],
binaries=[],
datas=[
('labelme/config/default_config.yaml', 'labelme/config'),
('labelme/icons/*', 'labelme/icons'),
],
hiddenimports=[],
hookspath=[],
runtime_hooks=[],
excludes=['matplotlib'],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
name='labelme',
debug=False,
strip=False,
upx=True,
runtime_tmpdir=None,
console=False,
icon='labelme/icons/icon.ico',
)
app = BUNDLE(
exe,
name='labelme.app',
icon='labelme/icons/icon.icns',
bundle_identifier=None,
info_plist={'NSHighResolutionCapable': 'True'},
)
# flake8: noqa
import logging
import sys
from qtpy import QT_VERSION
__appname__ = 'labelme'
QT4 = QT_VERSION[0] == '4'
QT5 = QT_VERSION[0] == '5'
del QT_VERSION
PY2 = sys.version[0] == '2'
PY3 = sys.version[0] == '3'
del sys
from labelme._version import __version__
from labelme import testing
from labelme import utils
# Semantic Versioning 2.0.0: https://semver.org/
# 1. MAJOR version when you make incompatible API changes;
# 2. MINOR version when you add functionality in a backwards-compatible manner;
# 3. PATCH version when you make backwards-compatible bug fixes.
__version__ = '3.16.3'
import functools
import os
import os.path as osp
import re
import webbrowser
from qtpy import QtCore
from qtpy.QtCore import Qt
from qtpy import QtGui
from qtpy import QtWidgets
from labelme import __appname__
from labelme import PY2
from labelme import QT5
from . import utils
from labelme.config import get_config
from labelme.label_file import LabelFile
from labelme.label_file import LabelFileError
from labelme.logger import logger
from labelme.shape import DEFAULT_FILL_COLOR
from labelme.shape import DEFAULT_LINE_COLOR
from labelme.shape import Shape
from labelme.widgets import Canvas
from labelme.widgets import ColorDialog
from labelme.widgets import EscapableQListWidget
from labelme.widgets import LabelDialog
from labelme.widgets import LabelQListWidget
from labelme.widgets import ToolBar
from labelme.widgets import ZoomWidget
# FIXME
# - [medium] Set max zoom value to something big enough for FitWidth/Window
# TODO(unknown):
# - [high] Add polygon movement with arrow keys
# - [high] Deselect shape when clicking and already selected(?)
# - [low,maybe] Open images with drag & drop.
# - [low,maybe] Preview images on file dialogs.
# - Zoom is too "steppy".
class MainWindow(QtWidgets.QMainWindow):
FIT_WINDOW, FIT_WIDTH, MANUAL_ZOOM = 0, 1, 2
def __init__(
self,
config=None,
filename=None,
output=None,
output_file=None,
output_dir=None,
):
if output is not None:
logger.warning(
'argument output is deprecated, use output_file instead'
)
if output_file is None:
output_file = output
# see labelme/config/default_config.yaml for valid configuration
if config is None:
config = get_config()
self._config = config
super(MainWindow, self).__init__()
self.setWindowTitle(__appname__)
# Whether we need to save or not.
self.dirty = False
self._noSelectionSlot = False
# Main widgets and related state.
self.labelDialog = LabelDialog(
parent=self,
labels=self._config['labels'],
sort_labels=self._config['sort_labels'],
show_text_field=self._config['show_label_text_field'],
completion=self._config['label_completion'],
fit_to_content=self._config['fit_to_content'],
flags=self._config['label_flags']
)
self.labelList = LabelQListWidget()
self.lastOpenDir = None
self.flag_dock = self.flag_widget = None
self.flag_dock = QtWidgets.QDockWidget('Flags', self)
self.flag_dock.setObjectName('Flags')
self.flag_widget = QtWidgets.QListWidget()
if config['flags']:
self.loadFlags({k: False for k in config['flags']})
self.flag_dock.setWidget(self.flag_widget)
self.flag_widget.itemChanged.connect(self.setDirty)
self.labelList.itemActivated.connect(self.labelSelectionChanged)
self.labelList.itemSelectionChanged.connect(self.labelSelectionChanged)
self.labelList.itemDoubleClicked.connect(self.editLabel)
# Connect to itemChanged to detect checkbox changes.
self.labelList.itemChanged.connect(self.labelItemChanged)
self.labelList.setDragDropMode(
QtWidgets.QAbstractItemView.InternalMove)
self.labelList.setParent(self)
self.shape_dock = QtWidgets.QDockWidget('Polygon Labels', self)
self.shape_dock.setObjectName('Labels')
self.shape_dock.setWidget(self.labelList)
self.uniqLabelList = EscapableQListWidget()
self.uniqLabelList.setToolTip(
"Select label to start annotating for it. "
"Press 'Esc' to deselect.")
if self._config['labels']:
self.uniqLabelList.addItems(self._config['labels'])
self.uniqLabelList.sortItems()
self.label_dock = QtWidgets.QDockWidget(u'Label List', self)
self.label_dock.setObjectName(u'Label List')
self.label_dock.setWidget(self.uniqLabelList)
self.fileSearch = QtWidgets.QLineEdit()
self.fileSearch.setPlaceholderText('Search Filename')
self.fileSearch.textChanged.connect(self.fileSearchChanged)
self.fileListWidget = QtWidgets.QListWidget()
self.fileListWidget.itemSelectionChanged.connect(
self.fileSelectionChanged
)
fileListLayout = QtWidgets.QVBoxLayout()
fileListLayout.setContentsMargins(0, 0, 0, 0)
fileListLayout.setSpacing(0)
fileListLayout.addWidget(self.fileSearch)
fileListLayout.addWidget(self.fileListWidget)
self.file_dock = QtWidgets.QDockWidget(u'File List', self)
self.file_dock.setObjectName(u'Files')
fileListWidget = QtWidgets.QWidget()
fileListWidget.setLayout(fileListLayout)
self.file_dock.setWidget(fileListWidget)
self.zoomWidget = ZoomWidget()
self.colorDialog = ColorDialog(parent=self)
self.canvas = self.labelList.canvas = Canvas(
epsilon=self._config['epsilon'],
)
self.canvas.zoomRequest.connect(self.zoomRequest)
scrollArea = QtWidgets.QScrollArea()
scrollArea.setWidget(self.canvas)
scrollArea.setWidgetResizable(True)
self.scrollBars = {
Qt.Vertical: scrollArea.verticalScrollBar(),
Qt.Horizontal: scrollArea.horizontalScrollBar(),
}
self.canvas.scrollRequest.connect(self.scrollRequest)
self.canvas.newShape.connect(self.newShape)
self.canvas.shapeMoved.connect(self.setDirty)
self.canvas.selectionChanged.connect(self.shapeSelectionChanged)
self.canvas.drawingPolygon.connect(self.toggleDrawingSensitive)
self.setCentralWidget(scrollArea)
features = QtWidgets.QDockWidget.DockWidgetFeatures()
for dock in ['flag_dock', 'label_dock', 'shape_dock', 'file_dock']:
if self._config[dock]['closable']:
features = features | QtWidgets.QDockWidget.DockWidgetClosable
if self._config[dock]['floatable']:
features = features | QtWidgets.QDockWidget.DockWidgetFloatable
if self._config[dock]['movable']:
features = features | QtWidgets.QDockWidget.DockWidgetMovable
getattr(self, dock).setFeatures(features)
if self._config[dock]['show'] is False:
getattr(self, dock).setVisible(False)
self.addDockWidget(Qt.RightDockWidgetArea, self.flag_dock)
self.addDockWidget(Qt.RightDockWidgetArea, self.label_dock)
self.addDockWidget(Qt.RightDockWidgetArea, self.shape_dock)
self.addDockWidget(Qt.RightDockWidgetArea, self.file_dock)
# Actions
action = functools.partial(utils.newAction, self)
shortcuts = self._config['shortcuts']
quit = action('&Quit', self.close, shortcuts['quit'], 'quit',
'Quit application')
open_ = action('&Open', self.openFile, shortcuts['open'], 'open',
'Open image or label file')
opendir = action('&Open Dir', self.openDirDialog,
shortcuts['open_dir'], 'open', u'Open Dir')
openNextImg = action(
'&Next Image',
self.openNextImg,
shortcuts['open_next'],
'next',
u'Open next (hold Ctl+Shift to copy labels)',
enabled=False,
)
openPrevImg = action(
'&Prev Image',
self.openPrevImg,
shortcuts['open_prev'],
'prev',
u'Open prev (hold Ctl+Shift to copy labels)',
enabled=False,
)
save = action('&Save', self.saveFile, shortcuts['save'], 'save',
'Save labels to file', enabled=False)
saveAs = action('&Save As', self.saveFileAs, shortcuts['save_as'],
'save-as', 'Save labels to a different file',
enabled=False)
deleteFile = action(
'&Delete File',
self.deleteFile,
shortcuts['delete_file'],
'delete',
'Delete current label file',
enabled=False)
changeOutputDir = action(
'&Change Output Dir',
slot=self.changeOutputDirDialog,
shortcut=shortcuts['save_to'],
icon='open',
tip=u'Change where annotations are loaded/saved'
)
saveAuto = action(
text='Save &Automatically',
slot=lambda x: self.actions.saveAuto.setChecked(x),
icon='save',
tip='Save automatically',
checkable=True,
enabled=True,
)
saveAuto.setChecked(self._config['auto_save'])
close = action('&Close', self.closeFile, shortcuts['close'], 'close',
'Close current file')
color1 = action('Polygon &Line Color', self.chooseColor1,
shortcuts['edit_line_color'], 'color_line',
'Choose polygon line color')
color2 = action('Polygon &Fill Color', self.chooseColor2,
shortcuts['edit_fill_color'], 'color',
'Choose polygon fill color')
toggle_keep_prev_mode = action(
'Keep Previous Annotation',
self.toggleKeepPrevMode,
shortcuts['toggle_keep_prev_mode'], None,
'Toggle "keep pevious annotation" mode',
checkable=True)
toggle_keep_prev_mode.setChecked(self._config['keep_prev'])
createMode = action(
'Create Polygons',
lambda: self.toggleDrawMode(False, createMode='polygon'),
shortcuts['create_polygon'],
'objects',
'Start drawing polygons',
enabled=False,
)
createRectangleMode = action(
'Create Rectangle',
lambda: self.toggleDrawMode(False, createMode='rectangle'),
shortcuts['create_rectangle'],
'objects',
'Start drawing rectangles',
enabled=False,
)
createCircleMode = action(
'Create Circle',
lambda: self.toggleDrawMode(False, createMode='circle'),
shortcuts['create_circle'],
'objects',
'Start drawing circles',
enabled=False,
)
createLineMode = action(
'Create Line',
lambda: self.toggleDrawMode(False, createMode='line'),
shortcuts['create_line'],
'objects',
'Start drawing lines',
enabled=False,
)
createPointMode = action(
'Create Point',
lambda: self.toggleDrawMode(False, createMode='point'),
shortcuts['create_point'],
'objects',
'Start drawing points',
enabled=False,
)
createLineStripMode = action(
'Create LineStrip',
lambda: self.toggleDrawMode(False, createMode='linestrip'),
shortcuts['create_linestrip'],
'objects',
'Start drawing linestrip. Ctrl+LeftClick ends creation.',
enabled=False,
)
editMode = action('Edit Polygons', self.setEditMode,
shortcuts['edit_polygon'], 'edit',
'Move and edit the selected polygons', enabled=False)
delete = action('Delete Polygons', self.deleteSelectedShape,
shortcuts['delete_polygon'], 'cancel',
'Delete the selected polygons', enabled=False)
copy = action('Duplicate Polygons', self.copySelectedShape,
shortcuts['duplicate_polygon'], 'copy',
'Create a duplicate of the selected polygons',
enabled=False)
undoLastPoint = action('Undo last point', self.canvas.undoLastPoint,
shortcuts['undo_last_point'], 'undo',
'Undo last drawn point', enabled=False)
addPointToEdge = action(
'Add Point to Edge',
self.canvas.addPointToEdge,
shortcuts['add_point_to_edge'],
'edit',
'Add point to the nearest edge',
enabled=False,
)
undo = action('Undo', self.undoShapeEdit, shortcuts['undo'], 'undo',
'Undo last add and edit of shape', enabled=False)
hideAll = action('&Hide\nPolygons',
functools.partial(self.togglePolygons, False),
icon='eye', tip='Hide all polygons', enabled=False)
showAll = action('&Show\nPolygons',
functools.partial(self.togglePolygons, True),
icon='eye', tip='Show all polygons', enabled=False)
help = action('&Tutorial', self.tutorial, icon='help',
tip='Show tutorial page')
zoom = QtWidgets.QWidgetAction(self)
zoom.setDefaultWidget(self.zoomWidget)
self.zoomWidget.setWhatsThis(
'Zoom in or out of the image. Also accessible with '
'{} and {} from the canvas.'
.format(
utils.fmtShortcut(
'{},{}'.format(
shortcuts['zoom_in'], shortcuts['zoom_out']
)
),
utils.fmtShortcut("Ctrl+Wheel"),
)
)
self.zoomWidget.setEnabled(False)
zoomIn = action('Zoom &In', functools.partial(self.addZoom, 1.1),
shortcuts['zoom_in'], 'zoom-in',
'Increase zoom level', enabled=False)
zoomOut = action('&Zoom Out', functools.partial(self.addZoom, 0.9),
shortcuts['zoom_out'], 'zoom-out',
'Decrease zoom level', enabled=False)
zoomOrg = action('&Original size',
functools.partial(self.setZoom, 100),
shortcuts['zoom_to_original'], 'zoom',
'Zoom to original size', enabled=False)
fitWindow = action('&Fit Window', self.setFitWindow,
shortcuts['fit_window'], 'fit-window',
'Zoom follows window size', checkable=True,
enabled=False)
fitWidth = action('Fit &Width', self.setFitWidth,
shortcuts['fit_width'], 'fit-width',
'Zoom follows window width',
checkable=True, enabled=False)
# Group zoom controls into a list for easier toggling.
zoomActions = (self.zoomWidget, zoomIn, zoomOut, zoomOrg,
fitWindow, fitWidth)
self.zoomMode = self.FIT_WINDOW
fitWindow.setChecked(Qt.Checked)
self.scalers = {
self.FIT_WINDOW: self.scaleFitWindow,
self.FIT_WIDTH: self.scaleFitWidth,
# Set to one to scale to 100% when loading files.
self.MANUAL_ZOOM: lambda: 1,
}
edit = action('&Edit Label', self.editLabel, shortcuts['edit_label'],
'edit', 'Modify the label of the selected polygon',
enabled=False)
shapeLineColor = action(
'Shape &Line Color', self.chshapeLineColor, icon='color-line',
tip='Change the line color for this specific shape', enabled=False)
shapeFillColor = action(
'Shape &Fill Color', self.chshapeFillColor, icon='color',
tip='Change the fill color for this specific shape', enabled=False)
fill_drawing = action(
'Fill Drawing Polygon',
lambda x: self.canvas.setFillDrawing(x),
None,
'color',
'Fill polygon while drawing',
checkable=True,
enabled=True,
)
fill_drawing.setChecked(True)
# Lavel list context menu.
labelMenu = QtWidgets.QMenu()
utils.addActions(labelMenu, (edit, delete))
self.labelList.setContextMenuPolicy(Qt.CustomContextMenu)
self.labelList.customContextMenuRequested.connect(
self.popLabelListMenu)
# Store actions for further handling.
self.actions = utils.struct(
saveAuto=saveAuto,
changeOutputDir=changeOutputDir,
save=save, saveAs=saveAs, open=open_, close=close,
deleteFile=deleteFile,
lineColor=color1, fillColor=color2,
toggleKeepPrevMode=toggle_keep_prev_mode,
delete=delete, edit=edit, copy=copy,
undoLastPoint=undoLastPoint, undo=undo,
addPointToEdge=addPointToEdge,
createMode=createMode, editMode=editMode,
createRectangleMode=createRectangleMode,
createCircleMode=createCircleMode,
createLineMode=createLineMode,
createPointMode=createPointMode,
createLineStripMode=createLineStripMode,
shapeLineColor=shapeLineColor, shapeFillColor=shapeFillColor,
zoom=zoom, zoomIn=zoomIn, zoomOut=zoomOut, zoomOrg=zoomOrg,
fitWindow=fitWindow, fitWidth=fitWidth,
zoomActions=zoomActions,
openNextImg=openNextImg, openPrevImg=openPrevImg,
fileMenuActions=(open_, opendir, save, saveAs, close, quit),
tool=(),
# XXX: need to add some actions here to activate the shortcut
editMenu=(
edit,
copy,
delete,
None,
undo,
undoLastPoint,
None,
addPointToEdge,
None,
color1,
color2,
None,
toggle_keep_prev_mode,
),
# menu shown at right click
menu=(
createMode,
createRectangleMode,
createCircleMode,
createLineMode,
createPointMode,
createLineStripMode,
editMode,
edit,
copy,
delete,
shapeLineColor,
shapeFillColor,
undo,
undoLastPoint,
addPointToEdge,
),
onLoadActive=(
close,
createMode,
createRectangleMode,
createCircleMode,
createLineMode,
createPointMode,
createLineStripMode,
editMode,
),
onShapesPresent=(saveAs, hideAll, showAll),
)
self.canvas.edgeSelected.connect(
self.actions.addPointToEdge.setEnabled
)
self.menus = utils.struct(
file=self.menu('&File'),
edit=self.menu('&Edit'),
view=self.menu('&View'),
help=self.menu('&Help'),
recentFiles=QtWidgets.QMenu('Open &Recent'),
labelList=labelMenu,
)
utils.addActions(
self.menus.file,
(
open_,
openNextImg,
openPrevImg,
opendir,
self.menus.recentFiles,
save,
saveAs,
saveAuto,
changeOutputDir,
close,
deleteFile,
None,
quit,
),
)
utils.addActions(self.menus.help, (help,))
utils.addActions(
self.menus.view,
(
self.flag_dock.toggleViewAction(),
self.label_dock.toggleViewAction(),
self.shape_dock.toggleViewAction(),
self.file_dock.toggleViewAction(),
None,
fill_drawing,
None,
hideAll,
showAll,
None,
zoomIn,
zoomOut,
zoomOrg,
None,
fitWindow,
fitWidth,
None,
),
)
self.menus.file.aboutToShow.connect(self.updateFileMenu)
# Custom context menu for the canvas widget:
utils.addActions(self.canvas.menus[0], self.actions.menu)
utils.addActions(
self.canvas.menus[1],
(
action('&Copy here', self.copyShape),
action('&Move here', self.moveShape),
),
)
self.tools = self.toolbar('Tools')
# Menu buttons on Left
self.actions.tool = (
open_,
opendir,
openNextImg,
openPrevImg,
save,
deleteFile,
None,
createMode,
editMode,
copy,
delete,
undo,
None,
zoomIn,
zoom,
zoomOut,
fitWindow,
fitWidth,
)
self.statusBar().showMessage('%s started.' % __appname__)
self.statusBar().show()
if output_file is not None and self._config['auto_save']:
logger.warn(
'If `auto_save` argument is True, `output_file` argument '
'is ignored and output filename is automatically '
'set as IMAGE_BASENAME.json.'
)
self.output_file = output_file
self.output_dir = output_dir
# Application state.
self.image = QtGui.QImage()
self.imagePath = None
self.recentFiles = []
self.maxRecent = 7
self.lineColor = None
self.fillColor = None
self.otherData = None
self.zoom_level = 100
self.fit_window = False
if filename is not None and osp.isdir(filename):
self.importDirImages(filename, load=False)
else:
self.filename = filename
if config['file_search']:
self.fileSearch.setText(config['file_search'])
self.fileSearchChanged()
# XXX: Could be completely declarative.
# Restore application settings.
self.settings = QtCore.QSettings('labelme', 'labelme')
# FIXME: QSettings.value can return None on PyQt4
self.recentFiles = self.settings.value('recentFiles', []) or []
size = self.settings.value('window/size', QtCore.QSize(600, 500))
position = self.settings.value('window/position', QtCore.QPoint(0, 0))
self.resize(size)
self.move(position)
# or simply:
# self.restoreGeometry(settings['window/geometry']
self.restoreState(
self.settings.value('window/state', QtCore.QByteArray()))
self.lineColor = QtGui.QColor(
self.settings.value('line/color', Shape.line_color))
self.fillColor = QtGui.QColor(
self.settings.value('fill/color', Shape.fill_color))
Shape.line_color = self.lineColor
Shape.fill_color = self.fillColor
# Populate the File menu dynamically.
self.updateFileMenu()
# Since loading the file may take some time,
# make sure it runs in the background.
if self.filename is not None:
self.queueEvent(functools.partial(self.loadFile, self.filename))
# Callbacks:
self.zoomWidget.valueChanged.connect(self.paintCanvas)
self.populateModeActions()
# self.firstStart = True
# if self.firstStart:
# QWhatsThis.enterWhatsThisMode()
def menu(self, title, actions=None):
menu = self.menuBar().addMenu(title)
if actions:
utils.addActions(menu, actions)
return menu
def toolbar(self, title, actions=None):
toolbar = ToolBar(title)
toolbar.setObjectName('%sToolBar' % title)
# toolbar.setOrientation(Qt.Vertical)
toolbar.setToolButtonStyle(Qt.ToolButtonTextUnderIcon)
if actions:
utils.addActions(toolbar, actions)
self.addToolBar(Qt.LeftToolBarArea, toolbar)
return toolbar
# Support Functions
def noShapes(self):
return not self.labelList.itemsToShapes
def populateModeActions(self):
tool, menu = self.actions.tool, self.actions.menu
self.tools.clear()
utils.addActions(self.tools, tool)
self.canvas.menus[0].clear()
utils.addActions(self.canvas.menus[0], menu)
self.menus.edit.clear()
actions = (
self.actions.createMode,
self.actions.createRectangleMode,
self.actions.createCircleMode,
self.actions.createLineMode,
self.actions.createPointMode,
self.actions.createLineStripMode,
self.actions.editMode,
)
utils.addActions(self.menus.edit, actions + self.actions.editMenu)
def setDirty(self):
if self._config['auto_save'] or self.actions.saveAuto.isChecked():
label_file = osp.splitext(self.imagePath)[0] + '.json'
if self.output_dir:
label_file_without_path = osp.basename(label_file)
label_file = osp.join(self.output_dir, label_file_without_path)
self.saveLabels(label_file)
return
self.dirty = True
self.actions.save.setEnabled(True)
self.actions.undo.setEnabled(self.canvas.isShapeRestorable)
title = __appname__
if self.filename is not None:
title = '{} - {}*'.format(title, self.filename)
self.setWindowTitle(title)
def setClean(self):
self.dirty = False
self.actions.save.setEnabled(False)
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
title = __appname__
if self.filename is not None:
title = '{} - {}'.format(title, self.filename)
self.setWindowTitle(title)
if self.hasLabelFile():
self.actions.deleteFile.setEnabled(True)
else:
self.actions.deleteFile.setEnabled(False)
def toggleActions(self, value=True):
"""Enable/Disable widgets which depend on an opened image."""
for z in self.actions.zoomActions:
z.setEnabled(value)
for action in self.actions.onLoadActive:
action.setEnabled(value)
def queueEvent(self, function):
QtCore.QTimer.singleShot(0, function)
def status(self, message, delay=5000):
self.statusBar().showMessage(message, delay)
def resetState(self):
self.labelList.clear()
self.filename = None
self.imagePath = None
self.imageData = None
self.labelFile = None
self.otherData = None
self.canvas.resetState()
def currentItem(self):
items = self.labelList.selectedItems()
if items:
return items[0]
return None
def addRecentFile(self, filename):
if filename in self.recentFiles:
self.recentFiles.remove(filename)
elif len(self.recentFiles) >= self.maxRecent:
self.recentFiles.pop()
self.recentFiles.insert(0, filename)
# Callbacks
def undoShapeEdit(self):
self.canvas.restoreShape()
self.labelList.clear()
self.loadShapes(self.canvas.shapes)
self.actions.undo.setEnabled(self.canvas.isShapeRestorable)
def tutorial(self):
url = 'https://github.com/wkentaro/labelme/tree/master/examples/tutorial' # NOQA
webbrowser.open(url)
def toggleDrawingSensitive(self, drawing=True):
"""Toggle drawing sensitive.
In the middle of drawing, toggling between modes should be disabled.
"""
self.actions.editMode.setEnabled(not drawing)
self.actions.undoLastPoint.setEnabled(drawing)
self.actions.undo.setEnabled(not drawing)
self.actions.delete.setEnabled(not drawing)
def toggleDrawMode(self, edit=True, createMode='polygon'):
self.canvas.setEditing(edit)
self.canvas.createMode = createMode
if edit:
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
else:
if createMode == 'polygon':
self.actions.createMode.setEnabled(False)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
elif createMode == 'rectangle':
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(False)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
elif createMode == 'line':
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(False)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
elif createMode == 'point':
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(False)
self.actions.createLineStripMode.setEnabled(True)
elif createMode == "circle":
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(False)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(True)
elif createMode == "linestrip":
self.actions.createMode.setEnabled(True)
self.actions.createRectangleMode.setEnabled(True)
self.actions.createCircleMode.setEnabled(True)
self.actions.createLineMode.setEnabled(True)
self.actions.createPointMode.setEnabled(True)
self.actions.createLineStripMode.setEnabled(False)
else:
raise ValueError('Unsupported createMode: %s' % createMode)
self.actions.editMode.setEnabled(not edit)
def setEditMode(self):
self.toggleDrawMode(True)
def updateFileMenu(self):
current = self.filename
def exists(filename):
return osp.exists(str(filename))
menu = self.menus.recentFiles
menu.clear()
files = [f for f in self.recentFiles if f != current and exists(f)]
for i, f in enumerate(files):
icon = utils.newIcon('labels')
action = QtWidgets.QAction(
icon, '&%d %s' % (i + 1, QtCore.QFileInfo(f).fileName()), self)
action.triggered.connect(functools.partial(self.loadRecent, f))
menu.addAction(action)
def popLabelListMenu(self, point):
self.menus.labelList.exec_(self.labelList.mapToGlobal(point))
def validateLabel(self, label):
# no validation
if self._config['validate_label'] is None:
return True
for i in range(self.uniqLabelList.count()):
label_i = self.uniqLabelList.item(i).text()
if self._config['validate_label'] in ['exact', 'instance']:
if label_i == label:
return True
if self._config['validate_label'] == 'instance':
m = re.match(r'^{}-[0-9]*$'.format(label_i), label)
if m:
return True
return False
def editLabel(self, item=False):
if item and not isinstance(item, QtWidgets.QListWidgetItem):
raise TypeError('unsupported type of item: {}'.format(type(item)))
if not self.canvas.editing():
return
if not item:
item = self.currentItem()
if item is None:
return
shape = self.labelList.get_shape_from_item(item)
if shape is None:
return
text, flags = self.labelDialog.popUp(shape.label, flags=shape.flags)
if text is None:
return
if not self.validateLabel(text):
self.errorMessage('Invalid label',
"Invalid label '{}' with validation type '{}'"
.format(text, self._config['validate_label']))
return
shape.label = text
shape.flags = flags
item.setText(text)
self.setDirty()
if not self.uniqLabelList.findItems(text, Qt.MatchExactly):
self.uniqLabelList.addItem(text)
self.uniqLabelList.sortItems()
def fileSearchChanged(self):
self.importDirImages(
self.lastOpenDir,
pattern=self.fileSearch.text(),
load=False,
)
def fileSelectionChanged(self):
items = self.fileListWidget.selectedItems()
if not items:
return
item = items[0]
if not self.mayContinue():
return
currIndex = self.imageList.index(str(item.text()))
if currIndex < len(self.imageList):
filename = self.imageList[currIndex]
if filename:
self.loadFile(filename)
# React to canvas signals.
def shapeSelectionChanged(self, selected_shapes):
self._noSelectionSlot = True
for shape in self.canvas.selectedShapes:
shape.selected = False
self.labelList.clearSelection()
self.canvas.selectedShapes = selected_shapes
for shape in self.canvas.selectedShapes:
shape.selected = True
item = self.labelList.get_item_from_shape(shape)
item.setSelected(True)
self._noSelectionSlot = False
n_selected = len(selected_shapes)
self.actions.delete.setEnabled(n_selected)
self.actions.copy.setEnabled(n_selected)
self.actions.edit.setEnabled(n_selected == 1)
self.actions.shapeLineColor.setEnabled(n_selected)
self.actions.shapeFillColor.setEnabled(n_selected)
def addLabel(self, shape):
item = QtWidgets.QListWidgetItem(shape.label)
item.setFlags(item.flags() | Qt.ItemIsUserCheckable)
item.setCheckState(Qt.Checked)
self.labelList.itemsToShapes.append((item, shape))
self.labelList.addItem(item)
if not self.uniqLabelList.findItems(shape.label, Qt.MatchExactly):
self.uniqLabelList.addItem(shape.label)
self.uniqLabelList.sortItems()
self.labelDialog.addLabelHistory(item.text())
for action in self.actions.onShapesPresent:
action.setEnabled(True)
def remLabels(self, shapes):
for shape in shapes:
item = self.labelList.get_item_from_shape(shape)
self.labelList.takeItem(self.labelList.row(item))
def loadShapes(self, shapes, replace=True):
self._noSelectionSlot = True
for shape in shapes:
self.addLabel(shape)
self.labelList.clearSelection()
self._noSelectionSlot = False
self.canvas.loadShapes(shapes, replace=replace)
def loadLabels(self, shapes):
s = []
for label, points, line_color, fill_color, shape_type, flags in shapes:
shape = Shape(label=label, shape_type=shape_type)
for x, y in points:
shape.addPoint(QtCore.QPointF(x, y))
shape.close()
if line_color:
shape.line_color = QtGui.QColor(*line_color)
if fill_color:
shape.fill_color = QtGui.QColor(*fill_color)
default_flags = {}
if self._config['label_flags']:
for pattern, keys in self._config['label_flags'].items():
if re.match(pattern, label):
for key in keys:
default_flags[key] = False
shape.flags = default_flags
shape.flags.update(flags)
s.append(shape)
self.loadShapes(s)
def loadFlags(self, flags):
self.flag_widget.clear()
for key, flag in flags.items():
item = QtWidgets.QListWidgetItem(key)
item.setFlags(item.flags() | Qt.ItemIsUserCheckable)
item.setCheckState(Qt.Checked if flag else Qt.Unchecked)
self.flag_widget.addItem(item)
def saveLabels(self, filename):
lf = LabelFile()
def format_shape(s):
return dict(
label=s.label.encode('utf-8') if PY2 else s.label,
line_color=s.line_color.getRgb()
if s.line_color != self.lineColor else None,
fill_color=s.fill_color.getRgb()
if s.fill_color != self.fillColor else None,
points=[(p.x(), p.y()) for p in s.points],
shape_type=s.shape_type,
flags=s.flags
)
shapes = [format_shape(shape) for shape in self.labelList.shapes]
flags = {}
for i in range(self.flag_widget.count()):
item = self.flag_widget.item(i)
key = item.text()
flag = item.checkState() == Qt.Checked
flags[key] = flag
try:
imagePath = osp.relpath(
self.imagePath, osp.dirname(filename))
imageData = self.imageData if self._config['store_data'] else None
if osp.dirname(filename) and not osp.exists(osp.dirname(filename)):
os.makedirs(osp.dirname(filename))
lf.save(
filename=filename,
shapes=shapes,
imagePath=imagePath,
imageData=imageData,
imageHeight=self.image.height(),
imageWidth=self.image.width(),
lineColor=self.lineColor.getRgb(),
fillColor=self.fillColor.getRgb(),
otherData=self.otherData,
flags=flags,
)
self.labelFile = lf
items = self.fileListWidget.findItems(
self.imagePath, Qt.MatchExactly
)
if len(items) > 0:
if len(items) != 1:
raise RuntimeError('There are duplicate files.')
items[0].setCheckState(Qt.Checked)
# disable allows next and previous image to proceed
# self.filename = filename
return True
except LabelFileError as e:
self.errorMessage('Error saving label data', '<b>%s</b>' % e)
return False
def copySelectedShape(self):
added_shapes = self.canvas.copySelectedShapes()
self.labelList.clearSelection()
for shape in added_shapes:
self.addLabel(shape)
self.setDirty()
def labelSelectionChanged(self):
if self._noSelectionSlot:
return
if self.canvas.editing():
selected_shapes = []
for item in self.labelList.selectedItems():
shape = self.labelList.get_shape_from_item(item)
selected_shapes.append(shape)
if selected_shapes:
self.canvas.selectShapes(selected_shapes)
def labelItemChanged(self, item):
shape = self.labelList.get_shape_from_item(item)
label = str(item.text())
if label != shape.label:
shape.label = str(item.text())
self.setDirty()
else: # User probably changed item visibility
self.canvas.setShapeVisible(shape, item.checkState() == Qt.Checked)
# Callback functions:
def newShape(self):
"""Pop-up and give focus to the label editor.
position MUST be in global coordinates.
"""
items = self.uniqLabelList.selectedItems()
text = None
flags = {}
if items:
text = items[0].text()
if self._config['display_label_popup'] or not text:
# instance label auto increment
if self._config['instance_label_auto_increment']:
previous_label = self.labelDialog.edit.text()
split = previous_label.split('-')
if len(split) > 1 and split[-1].isdigit():
split[-1] = str(int(split[-1]) + 1)
instance_text = '-'.join(split)
else:
instance_text = previous_label
if instance_text != '':
text = instance_text
text, flags = self.labelDialog.popUp(text)
if text is None:
self.labelDialog.edit.setText(previous_label)
if text and not self.validateLabel(text):
self.errorMessage('Invalid label',
"Invalid label '{}' with validation type '{}'"
.format(text, self._config['validate_label']))
text = ''
if text:
self.labelList.clearSelection()
self.addLabel(self.canvas.setLastLabel(text, flags))
self.actions.editMode.setEnabled(True)
self.actions.undoLastPoint.setEnabled(False)
self.actions.undo.setEnabled(True)
self.setDirty()
else:
self.canvas.undoLastLine()
self.canvas.shapesBackups.pop()
def scrollRequest(self, delta, orientation):
units = - delta * 0.1 # natural scroll
bar = self.scrollBars[orientation]
bar.setValue(bar.value() + bar.singleStep() * units)
def setZoom(self, value):
self.actions.fitWidth.setChecked(False)
self.actions.fitWindow.setChecked(False)
self.zoomMode = self.MANUAL_ZOOM
self.zoomWidget.setValue(value)
def addZoom(self, increment=1.1):
self.setZoom(self.zoomWidget.value() * increment)
def zoomRequest(self, delta, pos):
canvas_width_old = self.canvas.width()
units = 1.1
if delta < 0:
units = 0.9
self.addZoom(units)
canvas_width_new = self.canvas.width()
if canvas_width_old != canvas_width_new:
canvas_scale_factor = canvas_width_new / canvas_width_old
x_shift = round(pos.x() * canvas_scale_factor) - pos.x()
y_shift = round(pos.y() * canvas_scale_factor) - pos.y()
self.scrollBars[Qt.Horizontal].setValue(
self.scrollBars[Qt.Horizontal].value() + x_shift)
self.scrollBars[Qt.Vertical].setValue(
self.scrollBars[Qt.Vertical].value() + y_shift)
def setFitWindow(self, value=True):
if value:
self.actions.fitWidth.setChecked(False)
self.zoomMode = self.FIT_WINDOW if value else self.MANUAL_ZOOM
self.adjustScale()
def setFitWidth(self, value=True):
if value:
self.actions.fitWindow.setChecked(False)
self.zoomMode = self.FIT_WIDTH if value else self.MANUAL_ZOOM
self.adjustScale()
def togglePolygons(self, value):
for item, shape in self.labelList.itemsToShapes:
item.setCheckState(Qt.Checked if value else Qt.Unchecked)
def loadFile(self, filename=None):
"""Load the specified file, or the last opened file if None."""
# changing fileListWidget loads file
if (filename in self.imageList and
self.fileListWidget.currentRow() !=
self.imageList.index(filename)):
self.fileListWidget.setCurrentRow(self.imageList.index(filename))
self.fileListWidget.repaint()
return
self.resetState()
self.canvas.setEnabled(False)
if filename is None:
filename = self.settings.value('filename', '')
filename = str(filename)
if not QtCore.QFile.exists(filename):
self.errorMessage(
'Error opening file', 'No such file: <b>%s</b>' % filename)
return False
# assumes same name, but json extension
self.status("Loading %s..." % osp.basename(str(filename)))
label_file = osp.splitext(filename)[0] + '.json'
if self.output_dir:
label_file_without_path = osp.basename(label_file)
label_file = osp.join(self.output_dir, label_file_without_path)
if QtCore.QFile.exists(label_file) and \
LabelFile.is_label_file(label_file):
try:
self.labelFile = LabelFile(label_file)
except LabelFileError as e:
self.errorMessage(
'Error opening file',
"<p><b>%s</b></p>"
"<p>Make sure <i>%s</i> is a valid label file."
% (e, label_file))
self.status("Error reading %s" % label_file)
return False
self.imageData = self.labelFile.imageData
self.imagePath = osp.join(
osp.dirname(label_file),
self.labelFile.imagePath,
)
if self.labelFile.lineColor is not None:
self.lineColor = QtGui.QColor(*self.labelFile.lineColor)
if self.labelFile.fillColor is not None:
self.fillColor = QtGui.QColor(*self.labelFile.fillColor)
self.otherData = self.labelFile.otherData
else:
self.imageData = LabelFile.load_image_file(filename)
if self.imageData:
self.imagePath = filename
self.labelFile = None
image = QtGui.QImage.fromData(self.imageData)
if image.isNull():
formats = ['*.{}'.format(fmt.data().decode())
for fmt in QtGui.QImageReader.supportedImageFormats()]
self.errorMessage(
'Error opening file',
'<p>Make sure <i>{0}</i> is a valid image file.<br/>'
'Supported image formats: {1}</p>'
.format(filename, ','.join(formats)))
self.status("Error reading %s" % filename)
return False
self.image = image
self.filename = filename
if self._config['keep_prev']:
prev_shapes = self.canvas.shapes
self.canvas.loadPixmap(QtGui.QPixmap.fromImage(image))
if self._config['flags']:
self.loadFlags({k: False for k in self._config['flags']})
if self.labelFile:
self.loadLabels(self.labelFile.shapes)
if self.labelFile.flags is not None:
self.loadFlags(self.labelFile.flags)
if self._config['keep_prev'] and not self.labelList.shapes:
self.loadShapes(prev_shapes, replace=False)
self.setClean()
self.canvas.setEnabled(True)
self.adjustScale(initial=True)
self.paintCanvas()
self.addRecentFile(self.filename)
self.toggleActions(True)
self.status("Loaded %s" % osp.basename(str(filename)))
return True
def resizeEvent(self, event):
if self.canvas and not self.image.isNull()\
and self.zoomMode != self.MANUAL_ZOOM:
self.adjustScale()
super(MainWindow, self).resizeEvent(event)
def paintCanvas(self):
assert not self.image.isNull(), "cannot paint null image"
self.canvas.scale = 0.01 * self.zoomWidget.value()
self.canvas.adjustSize()
self.canvas.update()
def adjustScale(self, initial=False):
value = self.scalers[self.FIT_WINDOW if initial else self.zoomMode]()
self.zoomWidget.setValue(int(100 * value))
def scaleFitWindow(self):
"""Figure out the size of the pixmap to fit the main widget."""
e = 2.0 # So that no scrollbars are generated.
w1 = self.centralWidget().width() - e
h1 = self.centralWidget().height() - e
a1 = w1 / h1
# Calculate a new scale value based on the pixmap's aspect ratio.
w2 = self.canvas.pixmap.width() - 0.0
h2 = self.canvas.pixmap.height() - 0.0
a2 = w2 / h2
return w1 / w2 if a2 >= a1 else h1 / h2
def scaleFitWidth(self):
# The epsilon does not seem to work too well here.
w = self.centralWidget().width() - 2.0
return w / self.canvas.pixmap.width()
def closeEvent(self, event):
if not self.mayContinue():
event.ignore()
self.settings.setValue(
'filename', self.filename if self.filename else '')
self.settings.setValue('window/size', self.size())
self.settings.setValue('window/position', self.pos())
self.settings.setValue('window/state', self.saveState())
self.settings.setValue('line/color', self.lineColor)
self.settings.setValue('fill/color', self.fillColor)
self.settings.setValue('recentFiles', self.recentFiles)
# ask the use for where to save the labels
# self.settings.setValue('window/geometry', self.saveGeometry())
# User Dialogs #
def loadRecent(self, filename):
if self.mayContinue():
self.loadFile(filename)
def openPrevImg(self, _value=False):
keep_prev = self._config['keep_prev']
if QtGui.QGuiApplication.keyboardModifiers() == \
(QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier):
self._config['keep_prev'] = True
if not self.mayContinue():
return
if len(self.imageList) <= 0:
return
if self.filename is None:
return
currIndex = self.imageList.index(self.filename)
if currIndex - 1 >= 0:
filename = self.imageList[currIndex - 1]
if filename:
self.loadFile(filename)
self._config['keep_prev'] = keep_prev
def openNextImg(self, _value=False, load=True):
keep_prev = self._config['keep_prev']
if QtGui.QGuiApplication.keyboardModifiers() == \
(QtCore.Qt.ControlModifier | QtCore.Qt.ShiftModifier):
self._config['keep_prev'] = True
if not self.mayContinue():
return
if len(self.imageList) <= 0:
return
filename = None
if self.filename is None:
filename = self.imageList[0]
else:
currIndex = self.imageList.index(self.filename)
if currIndex + 1 < len(self.imageList):
filename = self.imageList[currIndex + 1]
else:
filename = self.imageList[-1]
self.filename = filename
if self.filename and load:
self.loadFile(self.filename)
self._config['keep_prev'] = keep_prev
def openFile(self, _value=False):
if not self.mayContinue():
return
path = osp.dirname(str(self.filename)) if self.filename else '.'
formats = ['*.{}'.format(fmt.data().decode())
for fmt in QtGui.QImageReader.supportedImageFormats()]
filters = "Image & Label files (%s)" % ' '.join(
formats + ['*%s' % LabelFile.suffix])
filename = QtWidgets.QFileDialog.getOpenFileName(
self, '%s - Choose Image or Label file' % __appname__,
path, filters)
if QT5:
filename, _ = filename
filename = str(filename)
if filename:
self.loadFile(filename)
def changeOutputDirDialog(self, _value=False):
default_output_dir = self.output_dir
if default_output_dir is None and self.filename:
default_output_dir = osp.dirname(self.filename)
if default_output_dir is None:
default_output_dir = self.currentPath()
output_dir = QtWidgets.QFileDialog.getExistingDirectory(
self, '%s - Save/Load Annotations in Directory' % __appname__,
default_output_dir,
QtWidgets.QFileDialog.ShowDirsOnly |
QtWidgets.QFileDialog.DontResolveSymlinks,
)
output_dir = str(output_dir)
if not output_dir:
return
self.output_dir = output_dir
self.statusBar().showMessage(
'%s . Annotations will be saved/loaded in %s' %
('Change Annotations Dir', self.output_dir))
self.statusBar().show()
current_filename = self.filename
self.importDirImages(self.lastOpenDir, load=False)
if current_filename in self.imageList:
# retain currently selected file
self.fileListWidget.setCurrentRow(
self.imageList.index(current_filename))
self.fileListWidget.repaint()
def saveFile(self, _value=False):
assert not self.image.isNull(), "cannot save empty image"
if self._config['flags'] or self.hasLabels():
if self.labelFile:
# DL20180323 - overwrite when in directory
self._saveFile(self.labelFile.filename)
elif self.output_file:
self._saveFile(self.output_file)
self.close()
else:
self._saveFile(self.saveFileDialog())
def saveFileAs(self, _value=False):
assert not self.image.isNull(), "cannot save empty image"
if self.hasLabels():
self._saveFile(self.saveFileDialog())
def saveFileDialog(self):
caption = '%s - Choose File' % __appname__
filters = 'Label files (*%s)' % LabelFile.suffix
if self.output_dir:
dlg = QtWidgets.QFileDialog(
self, caption, self.output_dir, filters
)
else:
dlg = QtWidgets.QFileDialog(
self, caption, self.currentPath(), filters
)
dlg.setDefaultSuffix(LabelFile.suffix[1:])
dlg.setAcceptMode(QtWidgets.QFileDialog.AcceptSave)
dlg.setOption(QtWidgets.QFileDialog.DontConfirmOverwrite, False)
dlg.setOption(QtWidgets.QFileDialog.DontUseNativeDialog, False)
basename = osp.basename(osp.splitext(self.filename)[0])
if self.output_dir:
default_labelfile_name = osp.join(
self.output_dir, basename + LabelFile.suffix
)
else:
default_labelfile_name = osp.join(
self.currentPath(), basename + LabelFile.suffix
)
filename = dlg.getSaveFileName(
self, 'Choose File', default_labelfile_name,
'Label files (*%s)' % LabelFile.suffix)
if QT5:
filename, _ = filename
filename = str(filename)
return filename
def _saveFile(self, filename):
if filename and self.saveLabels(filename):
self.addRecentFile(filename)
self.setClean()
def closeFile(self, _value=False):
if not self.mayContinue():
return
self.resetState()
self.setClean()
self.toggleActions(False)
self.canvas.setEnabled(False)
self.actions.saveAs.setEnabled(False)
def getLabelFile(self):
if self.filename.lower().endswith('.json'):
label_file = self.filename
else:
label_file = osp.splitext(self.filename)[0] + '.json'
return label_file
def deleteFile(self):
mb = QtWidgets.QMessageBox
msg = 'You are about to permanently delete this label file, ' \
'proceed anyway?'
answer = mb.warning(self, 'Attention', msg, mb.Yes | mb.No)
if answer != mb.Yes:
return
label_file = self.getLabelFile()
if osp.exists(label_file):
os.remove(label_file)
logger.info('Label file is removed: {}'.format(label_file))
item = self.fileListWidget.currentItem()
item.setCheckState(Qt.Unchecked)
self.resetState()
# Message Dialogs. #
def hasLabels(self):
if not self.labelList.itemsToShapes:
self.errorMessage(
'No objects labeled',
'You must label at least one object to save the file.')
return False
return True
def hasLabelFile(self):
if self.filename is None:
return False
label_file = self.getLabelFile()
return osp.exists(label_file)
def mayContinue(self):
if not self.dirty:
return True
mb = QtWidgets.QMessageBox
msg = 'Save annotations to "{}" before closing?'.format(self.filename)
answer = mb.question(self,
'Save annotations?',
msg,
mb.Save | mb.Discard | mb.Cancel,
mb.Save)
if answer == mb.Discard:
return True
elif answer == mb.Save:
self.saveFile()
return True
else: # answer == mb.Cancel
return False
def errorMessage(self, title, message):
return QtWidgets.QMessageBox.critical(
self, title, '<p><b>%s</b></p>%s' % (title, message))
def currentPath(self):
return osp.dirname(str(self.filename)) if self.filename else '.'
def chooseColor1(self):
color = self.colorDialog.getColor(
self.lineColor, 'Choose line color', default=DEFAULT_LINE_COLOR)
if color:
self.lineColor = color
# Change the color for all shape lines:
Shape.line_color = self.lineColor
self.canvas.update()
self.setDirty()
def chooseColor2(self):
color = self.colorDialog.getColor(
self.fillColor, 'Choose fill color', default=DEFAULT_FILL_COLOR)
if color:
self.fillColor = color
Shape.fill_color = self.fillColor
self.canvas.update()
self.setDirty()
def toggleKeepPrevMode(self):
self._config['keep_prev'] = not self._config['keep_prev']
def deleteSelectedShape(self):
yes, no = QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No
msg = 'You are about to permanently delete {} polygons, ' \
'proceed anyway?'.format(len(self.canvas.selectedShapes))
if yes == QtWidgets.QMessageBox.warning(self, 'Attention', msg,
yes | no):
self.remLabels(self.canvas.deleteSelected())
self.setDirty()
if self.noShapes():
for action in self.actions.onShapesPresent:
action.setEnabled(False)
def chshapeLineColor(self):
color = self.colorDialog.getColor(
self.lineColor, 'Choose line color', default=DEFAULT_LINE_COLOR)
if color:
for shape in self.canvas.selectedShapes:
shape.line_color = color
self.canvas.update()
self.setDirty()
def chshapeFillColor(self):
color = self.colorDialog.getColor(
self.fillColor, 'Choose fill color', default=DEFAULT_FILL_COLOR)
if color:
for shape in self.canvas.selectedShapes:
shape.fill_color = color
self.canvas.update()
self.setDirty()
def copyShape(self):
self.canvas.endMove(copy=True)
self.labelList.clearSelection()
for shape in self.canvas.selectedShapes:
self.addLabel(shape)
self.setDirty()
def moveShape(self):
self.canvas.endMove(copy=False)
self.setDirty()
def openDirDialog(self, _value=False, dirpath=None):
if not self.mayContinue():
return
defaultOpenDirPath = dirpath if dirpath else '.'
if self.lastOpenDir and osp.exists(self.lastOpenDir):
defaultOpenDirPath = self.lastOpenDir
else:
defaultOpenDirPath = osp.dirname(self.filename) \
if self.filename else '.'
targetDirPath = str(QtWidgets.QFileDialog.getExistingDirectory(
self, '%s - Open Directory' % __appname__, defaultOpenDirPath,
QtWidgets.QFileDialog.ShowDirsOnly |
QtWidgets.QFileDialog.DontResolveSymlinks))
self.importDirImages(targetDirPath)
@property
def imageList(self):
lst = []
for i in range(self.fileListWidget.count()):
item = self.fileListWidget.item(i)
lst.append(item.text())
return lst
def importDirImages(self, dirpath, pattern=None, load=True):
self.actions.openNextImg.setEnabled(True)
self.actions.openPrevImg.setEnabled(True)
if not self.mayContinue() or not dirpath:
return
self.lastOpenDir = dirpath
self.filename = None
self.fileListWidget.clear()
for filename in self.scanAllImages(dirpath):
if pattern and pattern not in filename:
continue
label_file = osp.splitext(filename)[0] + '.json'
if self.output_dir:
label_file_without_path = osp.basename(label_file)
label_file = osp.join(self.output_dir, label_file_without_path)
item = QtWidgets.QListWidgetItem(filename)
item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable)
if QtCore.QFile.exists(label_file) and \
LabelFile.is_label_file(label_file):
item.setCheckState(Qt.Checked)
else:
item.setCheckState(Qt.Unchecked)
self.fileListWidget.addItem(item)
self.openNextImg(load=load)
def scanAllImages(self, folderPath):
extensions = ['.%s' % fmt.data().decode("ascii").lower()
for fmt in QtGui.QImageReader.supportedImageFormats()]
images = []
for root, dirs, files in os.walk(folderPath):
for file in files:
if file.lower().endswith(tuple(extensions)):
relativePath = osp.join(root, file)
images.append(relativePath)
images.sort(key=lambda x: x.lower())
return images
# flake8: noqa
from . import draw_json
from . import draw_label_png
from . import json_to_dataset
from . import on_docker
#!/usr/bin/env python
import argparse
import base64
import json
import os
import sys
import matplotlib.pyplot as plt
from labelme import utils
PY2 = sys.version_info[0] == 2
def main():
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
args = parser.parse_args()
json_file = args.json_file
data = json.load(open(json_file))
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in sorted(data['shapes'], key=lambda x: x['label']):
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = utils.draw_label(lbl, img, label_names)
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(lbl_viz)
plt.show()
if __name__ == '__main__':
main()
import argparse
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from labelme.logger import logger
from labelme import utils
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('label_png', help='label PNG file')
args = parser.parse_args()
lbl = np.asarray(PIL.Image.open(args.label_png))
logger.info('label shape: {}'.format(lbl.shape))
logger.info('unique label values: {}'.format(np.unique(lbl)))
lbl_viz = utils.draw_label(lbl)
plt.imshow(lbl_viz)
plt.show()
if __name__ == '__main__':
main()
import argparse
import base64
import json
import os
import os.path as osp
import PIL.Image
import yaml
from labelme.logger import logger
from labelme import utils
def main():
logger.warning('This script is aimed to demonstrate how to convert the'
'JSON file to a single image dataset, and not to handle'
'multiple JSON files to generate a real-use dataset.')
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
if args.out is None:
out_dir = osp.basename(json_file).replace('.', '_')
out_dir = osp.join(osp.dirname(json_file), out_dir)
else:
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir)
data = json.load(open(json_file))
imageData = data.get('imageData')
if not imageData:
imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in sorted(data['shapes'], key=lambda x: x['label']):
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = utils.draw_label(lbl, img, label_names)
PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n')
logger.warning('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
logger.info('Saved to: {}'.format(out_dir))
if __name__ == '__main__':
main()
#!/usr/bin/env python
from __future__ import print_function
import argparse
import distutils.spawn
import json
import os
import os.path as osp
import platform
import shlex
import subprocess
import sys
def get_ip():
dist = platform.platform().split('-')[0]
if dist == 'Linux':
return ''
elif dist == 'Darwin':
cmd = 'ifconfig en0'
output = subprocess.check_output(shlex.split(cmd))
if str != bytes: # Python3
output = output.decode('utf-8')
for row in output.splitlines():
cols = row.strip().split(' ')
if cols[0] == 'inet':
ip = cols[1]
return ip
else:
raise RuntimeError('No ip is found.')
else:
raise RuntimeError('Unsupported platform.')
def labelme_on_docker(in_file, out_file):
ip = get_ip()
cmd = 'xhost + %s' % ip
subprocess.check_output(shlex.split(cmd))
if out_file:
out_file = osp.abspath(out_file)
if osp.exists(out_file):
raise RuntimeError('File exists: %s' % out_file)
else:
open(osp.abspath(out_file), 'w')
cmd = 'docker run -it --rm' \
' -e DISPLAY={0}:0' \
' -e QT_X11_NO_MITSHM=1' \
' -v /tmp/.X11-unix:/tmp/.X11-unix' \
' -v {1}:{2}' \
' -w /home/developer'
in_file_a = osp.abspath(in_file)
in_file_b = osp.join('/home/developer', osp.basename(in_file))
cmd = cmd.format(
ip,
in_file_a,
in_file_b,
)
if out_file:
out_file_a = osp.abspath(out_file)
out_file_b = osp.join('/home/developer', osp.basename(out_file))
cmd += ' -v {0}:{1}'.format(out_file_a, out_file_b)
cmd += ' wkentaro/labelme labelme {0}'.format(in_file_b)
if out_file:
cmd += ' -O {0}'.format(out_file_b)
subprocess.call(shlex.split(cmd))
if out_file:
try:
json.load(open(out_file))
return out_file
except Exception:
if open(out_file).read() == '':
os.remove(out_file)
raise RuntimeError('Annotation is cancelled.')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('in_file', help='Input file or directory.')
parser.add_argument('-O', '--output')
args = parser.parse_args()
if not distutils.spawn.find_executable('docker'):
print('Please install docker', file=sys.stderr)
sys.exit(1)
try:
out_file = labelme_on_docker(args.in_file, args.output)
if out_file:
print('Saved to: %s' % out_file)
except RuntimeError as e:
sys.stderr.write(e.__str__() + '\n')
sys.exit(1)
if __name__ == '__main__':
main()
import os.path as osp
import shutil
import yaml
from labelme.logger import logger
here = osp.dirname(osp.abspath(__file__))
def update_dict(target_dict, new_dict, validate_item=None):
for key, value in new_dict.items():
if validate_item:
validate_item(key, value)
if key not in target_dict:
logger.warn('Skipping unexpected key in config: {}'
.format(key))
continue
if isinstance(target_dict[key], dict) and \
isinstance(value, dict):
update_dict(target_dict[key], value, validate_item=validate_item)
else:
target_dict[key] = value
# -----------------------------------------------------------------------------
def get_default_config():
config_file = osp.join(here, 'default_config.yaml')
with open(config_file) as f:
config = yaml.safe_load(f)
# save default config to ~/.labelmerc
user_config_file = osp.join(osp.expanduser('~'), '.labelmerc')
if not osp.exists(user_config_file):
try:
shutil.copy(config_file, user_config_file)
except Exception:
logger.warn('Failed to save config: {}'.format(user_config_file))
return config
def validate_config_item(key, value):
if key == 'validate_label' and value not in [None, 'exact', 'instance']:
raise ValueError(
"Unexpected value for config key 'validate_label': {}"
.format(value)
)
if key == 'labels' and value is not None and len(value) != len(set(value)):
raise ValueError(
"Duplicates are detected for config key 'labels': {}".format(value)
)
def get_config(config_from_args=None, config_file=None):
# Configuration load order:
#
# 1. default config (lowest priority)
# 2. config file passed by command line argument or ~/.labelmerc
# 3. command line argument (highest priority)
# 1. default config
config = get_default_config()
# 2. config from yaml file
if config_file is not None and osp.exists(config_file):
with open(config_file) as f:
user_config = yaml.safe_load(f) or {}
update_dict(config, user_config, validate_item=validate_config_item)
# 3. command line argument
if config_from_args is not None:
update_dict(config, config_from_args,
validate_item=validate_config_item)
return config
auto_save: false
display_label_popup: true
instance_label_auto_increment: true
store_data: true
keep_prev: false
logger_level: info
flags: null
label_flags: null
labels: null
file_search: null
sort_labels: true
validate_label: null
# main
flag_dock:
show: true
closable: true
movable: true
floatable: true
label_dock:
show: true
closable: true
movable: true
floatable: true
shape_dock:
show: true
closable: true
movable: true
floatable: true
file_dock:
show: true
closable: true
movable: true
floatable: true
# label_dialog
show_label_text_field: true
label_completion: startswith
fit_to_content:
column: true
row: false
epsilon: 10.0
shortcuts:
close: Ctrl+W
open: Ctrl+O
open_dir: Ctrl+U
quit: Ctrl+Q
save: Ctrl+S
save_as: Ctrl+Shift+S
save_to: null
delete_file: Ctrl+Delete
open_next: [D, Ctrl+Shift+D]
open_prev: [A, Ctrl+Shift+A]
zoom_in: [Ctrl++, Ctrl+=]
zoom_out: Ctrl+-
zoom_to_original: Ctrl+0
fit_window: Ctrl+F
fit_width: Ctrl+Shift+F
create_polygon: Ctrl+N
create_rectangle: Ctrl+R
create_circle: null
create_line: null
create_point: null
create_linestrip: null
edit_polygon: Ctrl+J
delete_polygon: Delete
duplicate_polygon: Ctrl+D
undo: Ctrl+Z
undo_last_point: [Ctrl+Z, Backspace]
add_point_to_edge: Ctrl+Shift+P
edit_label: Ctrl+E
edit_line_color: Ctrl+L
edit_fill_color: Ctrl+Shift+L
toggle_keep_prev_mode: Ctrl+P
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
width="48pt"
height="48pt"
viewBox="0 0 256 256"
style="overflow:visible;enable-background:new 0 0 256 256"
xml:space="preserve"
xmlns="http://www.w3.org/2000/svg"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:xlink="http://www.w3.org/1999/xlink"
id="svg548"
sodipodi:version="0.32"
sodipodi:docname="/home/david/Desktop/action/button_ok.svg"
sodipodi:docbase="/home/david/Desktop/action/">
<defs
id="defs584">
<linearGradient
id="XMLID_5_"
gradientUnits="userSpaceOnUse"
x1="127.9536"
y1="47.3267"
x2="127.9536"
y2="212.9885">
<stop
offset="0"
style="stop-color:#009900"
id="stop556" />
<stop
offset="1"
style="stop-color:#334966"
id="stop557" />
<a:midPointStop
offset="0"
style="stop-color:#009900"
id="midPointStop558" />
<a:midPointStop
offset="0.5"
style="stop-color:#009900"
id="midPointStop559" />
<a:midPointStop
offset="1"
style="stop-color:#334966"
id="midPointStop560" />
</linearGradient>
<linearGradient
id="XMLID_6_"
gradientUnits="userSpaceOnUse"
x1="127.9536"
y1="77.2075"
x2="127.9536"
y2="307.6057">
<stop
offset="0"
style="stop-color:#33CC33"
id="stop563" />
<stop
offset="1"
style="stop-color:#336666"
id="stop564" />
<a:midPointStop
offset="0"
style="stop-color:#33CC33"
id="midPointStop565" />
<a:midPointStop
offset="0.5"
style="stop-color:#33CC33"
id="midPointStop566" />
<a:midPointStop
offset="1"
style="stop-color:#336666"
id="midPointStop567" />
</linearGradient>
<linearGradient
id="XMLID_7_"
gradientUnits="userSpaceOnUse"
x1="127.9536"
y1="77.3672"
x2="127.9536"
y2="307.3626">
<stop
offset="0.0056"
style="stop-color:#CCFF66"
id="stop570" />
<stop
offset="1"
style="stop-color:#009900"
id="stop571" />
<a:midPointStop
offset="0.0056"
style="stop-color:#CCFF66"
id="midPointStop572" />
<a:midPointStop
offset="0.5"
style="stop-color:#CCFF66"
id="midPointStop573" />
<a:midPointStop
offset="1"
style="stop-color:#009900"
id="midPointStop574" />
</linearGradient>
<radialGradient
id="XMLID_8_"
cx="54.2729"
cy="89.3477"
r="120.8132"
fx="54.2729"
fy="89.3477"
gradientUnits="userSpaceOnUse">
<stop
offset="0.000000"
style="stop-color:#ffffff;stop-opacity:1;"
id="stop577" />
<stop
offset="1.000000"
style="stop-color:#92ff00;stop-opacity:1;"
id="stop578" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop579" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop580" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop581" />
</radialGradient>
</defs>
<sodipodi:namedview
id="base" />
<metadata
id="metadata549">
<xpacket>begin='' id='W5M0MpCehiHzreSzNTczkc9d' </xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1" />
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1" />
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1">
<xap:CreateDate>
2003-12-22T22:34:35+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-04-17T21:25:50Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-01-19T17:51:02+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq
7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FWGefPzS8v+
U4mhdhe6uR+70+JhUVGxlbf0x+PtmFqtdDDtzl3Ou1vaWPAK5z7v1vD9U/OP8w9SuWli1A2cQPJb
e1RVRR8yGc/7Js0OTtLNI3de55nL2vqJm+KvczD8u/z0v3v4tM81OssM5CRakqhGRj0EqoApU/zA
bd69s7RdpyMhHJ16uy7O7YlKQhl69f1vcIZopo1kicPG26spqM3r0q/FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqo3l5aWVtJdXcyW9tCvKWaRgqKo7ljsMEp
ACzyYymIiyaDw/8AMD8+Zrj1NO8ploYTVZNUYUkYd/RU/YH+Ud/ADrmi1fahPpx/P9Tzeu7aJ9OL
b+l+p5jYaLe6jKbq7dgkjF3lclpJCTUnfffxOaUl52Rs2Wb2vlaWy0Z770xbWw4iIPs8rMQNgdzt
U1P0ZV4gunI/KzGM5DsOnmwHzBEkOqyenRQ3F6DsSN/65aHHD6D/ACn1ue40+3ilflyBjavio5Kf
u2ztoG4gvouOVxB7w9IyTN2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxVivnf8AMjy55Rtz9dl9fUGWsGnREGVvAt/Iv+U30VzF1GrhiG/PucLV67HgG+8u587ebfPn
mjzrfBblitqprb6dDURJ/lN/M3+U30UzntTqp5T6uXc8nrNdkzn1HbuRHl/yfJJPGvpG6vG3WJRV
F9z8vE7ZgymA4kISmeGIsvT9O8r6XodqdR1h1llj3CdUU9goP22/z98w5ZTI1F3eHQ48EePLuR+P
iwnzn5xe4lNxMaAVFna12A8T/E5k4sVB1Wq1Ms8rPLoGBWsFzqd8ZJCWDMGmf28B+oZsdJpTllX8
PVu0OiOaYH8I5vffyv06aMQVFPjMjewUf12zq3uHqWKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV
2KuxV2KuxV2KuxV2KuxV2KrJpoYIXmnkWKGMFpJHIVVUbkknYAYCaQSALLxf8wfz7jj9XTfKdHk3
WTVnFVH/ABgQ/a/1m28AeuanU9o9Mfz/AFOg1vbFenF8/wBTyO103VNZuXvbyV29VuUt1MS7ue5q
27fPNJknvZ3LzmSZJs7l6H5T8hy3EatEn1ayP27hhV3p/L4/qzDy5wPe5Wl0E8252j3/AKno1tZ6
RoGnuyAQQoKyzNu7H3PUnwH3ZhkymXoIY8WnhtsO95j5085tcsZpSVt0JFpa1oSf5m9/E9szsOGn
nNXqpZ5f0RyedKLzVr4sxqzfbb9lFzY6fTHJLhDLSaSWaXDH4nuem+SfJjzPEqRnjXYdyT3/ANb9
WdNhwxxx4YvZ6fTxww4Yvc9E0aDTLVY0A9QgB2HQU/ZHtlremOKuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxVj3nHz35d8p2Yn1Sf9/ICbezjo00tP5V7D/KO2U5tRHGN3G1O
rhhFyPwfOnnb8zPM/nO5+rGtvpvL9xpkBPE0OxlbrI3z2HYDNFqdXLJz2j3PLazXzzc9o9yhoXlB
5JoxNGbi5c/BbJ8QHzp1/VmtyZXXDimaiLL1ny95EgtwlxqYWWUUK2w3jX/W/m/V881+TPewd3pO
yhH1ZNz3MqnngtoGllYRQxCrMdgAMxwLdvKQiLOwDyjzt50F1WR6pZREi3g/adv5j7/qzYYMNe95
bWauWeVD6Q80d7zV7+p3ZvnxRR/DNpg05meGKdNpZZZCMXo/krya0rRoqEioNabknv8APwGdHgwx
xxoPY6bTRww4Y/2vdtA0G30q2VQB6xFGPgPAfxy5yE1xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2
KuxV2KuxV2KuxV2KuxVpmVFLMQqqKsx2AA7nFXkH5hfnzY6f6mneVil7eCqyaifigjPT92P92N7/
AGf9bNdqNcBtDc97ptZ2qI+nHue/p+14qsGteYb6S+vZ5JpJWrNeTEsSfAV607AbDNLly72dy83l
ykm5Gyzzyn5HlnH+jJ6UHSW8kFSfZelfkNswM2eubPT6TJnPdHven6Poun6VDwtk/eMKSTNu7fM+
HsM185mXN6HT6WGIVEfFHSzxxRtLIwSNAWdjsAB1ORAciUgBZ5PLvO3nRLoE8jHp8J/dp+1K3Ykf
qHbNhgwV73mdbrDnlwx+kPLp573V77YVJ+wn7KL/AJ9c2uDAZHhix0+mlOQjHm9B8meTjKURUqCQ
WYjdiehp+oZ0GDAMcaD1+k0scMaHPqXvPlzy9BpVstVHrkb9+Pjv4nucvcpOcVdirsVdirsVdirs
VeFfmV+eupwancaR5XZIY7ZjFPqTKJHeRTRhEGqgUHbkQa9s1mo1hBqLotZ2nISMcfTqw3S/zp/M
XTbpZZtQN5ETye2uo0ZWHsQFdf8AYnMeGryA87cHH2lmibu3v3kT8w9D836cs1q4gv0AF3YOfjjb
2O3JT2Yfgc2uHMMgsPRaXVRzRsc+oZTlzkuxV2KuxV2KuxV2KuxV2KuxV2KpL5q84aB5X083ur3I
iU1EMC/FNKw/ZjTqfn0Hc5XkyxgLLTn1EMQuRfOnn782/MXm6VrG2DWOkMaJYxEl5fAzMN2/1Rt8
+uajUaqU/KLzer7Qnl2+mP45pPo3lR5JEN0hkkYj07ZNyT706/IZrMmbudUZkmovVfL3kWONUm1J
R8NPTtF+yAOnMj9QzWZNRe0XZ6Xsz+LJ8v1syUJGgRAFVRRVAoAB2AGYpDuQABQaeZERndgqKCWY
mgAHUk4KUyA3Lzfzp5yjuFeOOQx6bF1PQysOm3h4D6flsNPp697z2t1hynhj9P3vK7y8vNWvAqgm
ppFEOijxP8Tm3w4DyHNrwacyIjEWSzvyb5PaRkCpyLEc3p9o/wBPAd832DAMY83rdJpI4Y0Pq6l7
15Z8tQaXbq7oPXI2B341/wCNsvctPsVdirsVdirsVdirsVQuqzSwaZeTxf3sUEjx/wCsqEj8cEjs
xmaiS+OPL0ccuqp6tGoGcBt6sB/mc5rNtF4bLyZrqnl83OkxXMoD201Qsq9Y5ASKHwO305gwy1Ku
rDwpRiJjkWHWl5rHlfWY7u0kMVxEaxyCvGRa7gjuD3GbPDlIPFFytPnMDxR5vpr8uPzH03zbpy/E
ItSiAFxbk718R4g9jm8w5hMWHq9Lqo5o2OfUMzy1yXYq7FXYq7FXYq7FXYq7FXlf5h/nnpOiepp/
l/hqWqiqvPWttCe9SP7xh4KaeJ7Zh5tWI7R3Lq9X2lGG0N5fY8JuZ/MHmjU5L/ULh7meQ/vbmU/C
o/lUCgAHZVGanLl3uR3edzZzI3I2WX+VvJkkzUtE26S3kg2HsP6D6c1ufUVz+TXiwTzHbk9P0Ty7
Y6ZHWJecxFHuH+0fl4DNfKUp8+TvdNpIYhtz702qB0wVTlqbyAAkmgG5JyosSXnnnLzgkqSQQS8L
CL+9lH+7COw/yfDxzP0+n6nm6LW6w5DwQ+n73lOoahdardqiKeNaQxD9Z982+LDWw5tOHASaG5LN
PJ3lB3dfh5s394/Y07D/ACR+ObzBgGMeb1ej0Ywx/pHm988qeV4NNt0lkT99SqqR09z7/qzIcxke
KuxV2KuxV2KuxV2KuxVxAYEEVB2IPQjFXx/5w0K48oedLuwAPp28vqWrH9u3k+JN/wDVPE+9c0mf
DRMXkdXp+CZi9D8j6lbziXTpqSWt6nqRq3Qmm4+lf1Zz+qgR6hzDDQTFnHLkUs84eUFgUggyWUh/
dS/tRt4H/PfLdNqL97VqdMcMrH0sBs7zWfK+sx3dpIYriI1jkFeMi13BHcHuM3OHL/FFs0+cxPFH
m+mvy4/MjTPNunKOQi1OIAXFsSOVfEeIPj/tZuMWUTD1Om1McsbHPuZplrkuxV2KuxV2KuxVLPMP
mXRPLunNqGr3SWtuuy8t3dv5Y0HxM3sMjOYiLLXlyxxi5Gnzt+YX50655mMmnaUH03R2JUxof384
O37xl6A/yL9JOa3NqTLYbB0Gq7Qlk2HpixXSfLMkrLJdgjl9m3X7R+dP1ZrMmcDk6eWToHp/l7yP
VY3vk9OID93aJsaf5RHT5ZqsupJNR3Lm6bs8nefyZ3b2sMESxooREFERRRQPllQxdTzdzGAiKCqz
4SyJUXkplMixJYD5w83I6S2lvIFtE/3onB+3T9lafs/rzL02nPM83S63V8fojyeT6pqc+p3KxxA+
kDSKLuSe5983WHDXvaMWE3Q3JZd5P8oyO61XlI/237U/lB8B3ObnBgEB5vUaLRjELP1F775Q8qQ6
dbxzSr+8oCikUp4Ej9Q7ZkOcyjFXYq7FXYq7FXYq7FXYq7FXYq8e/wCcivKX1zRrXzJbJWfTj6F4
QNzbyH4WP+pIf+GOYmqx2LdV2pguImOjybyfqskYVVak1qwkiJ/lrX8Dmj1WL5F5vJcZCQe32CW+
tWHwqJEnj5iFt+Q/aX/WGaXFgkZED6x9rv8AGBlj7w8483eUxbhkZTJZSH93J+1G3gff9eZum1F/
1nSajTnFKx9LAbe41jyzq8V5ZymKeI8oZlrxda7gjw8Rm5w5eobcGcxPFHm+mPy1/MzT/N1gEciH
VYQBcW5PU/zL4g5tsWUTD0+m1McsbHPqGcZa5LsVdirsVeb/AJifnVofln1dP03jqWtrVTGp/cQt
/wAWuOpH8i7+JGY+XOI7Dm4Gq18cew3k+fdV1bzL5v1V73UZ2upztyb4Yol6hUUbKPYZrc2XrIvP
59QZHikWR+WvKDySAW0fqSjaS5fZV+Xh+vNXqNTXNxoQnlNDk9P0Dyta2KiQD1J/2rhx+CDtmuJn
l8ou402jjDfr3shVUjFFHzPfLowERs5oFLWfIlVGWUKPftlE5UxJYL5u81rwls7aTjGtRdXFaCg6
qD4eOX6bTkniLp9Zq79Efi8l1bVZdQnEMIPoA0jQdWPiR+rN5hw173HxYfmyjyf5SkkkVmXlM32i
P2R/KD+s5t8GDh3PN6bRaMYhZ+r7nvvk3yjDY28c8yDlQFFp18D8vD78yHPZdirsVdirsVdirsVd
irsVdirsVdiqG1PTbTU9OudOvE9S1u4mhmTxVxQ08D4HARYpjOIkCDyL471DT7zyt5pudOuv7yxm
aGU0IDx9nA8GUhhmozYrBi8nqMBBMT0es/l/rbRMbblUxn1oPdT9pc0Ge8cxkHRn2dmr09z0LWdI
t9StTNEgcSrWSI9HB/42zL1WlGQeLj+rn7/2u6zYRMX3vHPNnlQW4ZGUyWUh/dyftRt4H3/XlOm1
N/1nnM+A4pWOTAre41fy1q8V3aSmKeI8opV+y69wR4eIzdYct7huwZyDxR5vpr8s/wAzNP8ANunh
HIh1WEAXFuTuT/MviDm0x5BIPS6bUjLGxzZxljkoHWdb0nRbCTUNVuktLSL7UshpU9lUdWY9gN8B
kBuWE8kYCyaD58/MT89dW1v1dN8vc9O0pqo9z0uZl+Y/u1PgN/E9sw8ucnYcnS6nXyntHYMD0zy7
NORLd1SM7iP9tvn4ZrcucDYOmnlrYPSPLvkpnWM3EfoW/wCxbqKO3z8P15p82qs1HeTdg0Rmbm9C
sNKt7WFUCKiL9mJeg+fjkIaezc9y7nHhERSNLU27ZeW1SZ8qLFQlmCCp69hlM5UxJYV5r81emJLS
1lowqLicGgUd1B/Wcnp9OZHik6rV6r+GPN5JrOsPeyfV4K/VwaADq58f6DN9hwcO55uNiw172Q+U
fKcssqO6Ezt/wgPYf5Xie2bXDh4dzzej0WjEBxS+r7nvnkvydDaQJcXEYpQcFPf/AJt/XmQ7FmuK
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KvCP+ckPKXF7LzTbJs1LO/p4irQufo5KT/q5jZ4dXU9pYeU
x7mA+TtaeIQyg1ltGAYdyh/5tqM0eswXY73QS/dzEg9+8s6kk9r6YbkoAkiPijb5j9m5tjA84vRa
bJYb13RYb2KRlQMWFJYj0cf1w6zScR44fV9658IkHjnmvysIAyMpezc/u5P2kbwPv+vK9Lqb/rPP
ZsJxGxyYLb3Or+WtXivLOUxTxHlFKv2XXuCPDxGbzDlvcOTgzkHijze2xf8AORmkReWEnktHm14j
h9UHwx8gPtvJ/L8tz7Zm+OK83dHtGPBderuePeYPM/mnzpqn1jUZ2nYV9KFfhghU9kXovz6nvXMT
Ll6ydPqNQZG5FNPL3lR2mUQx+vcjdpDsif0/Xmq1Gqob7BwrlkNReneXfKMNuVlYCWcdZmHwqf8A
IH8c1hlPNsNouy02jEd+ZZZDBFAtEFWPVj1OZGPFGA2diIgNs+ElbUmfKyWNqE06otT9AymcwAxJ
phvmjzQYeVrauPXIpLKD/djwHv8Aqx0+AzPFLk6zVaqvTHm8k1vWmumNtAf3APxMP2yP4Z0GDBw7
nm42LDW55p15S8qzSypNIhMzU4rT7Ff+NjmzxYq3L0Oi0fD6pfV9z3zyT5Mht4VuJ0+Gmy/ze3y8
fHMh2TO8VdirsVdirsVdirsVdirsVdirsVdirsVdiqV+adAtfMHl6/0a52jvIigb+VxvG/8AsXAb
BIWKa8uMTiYnq+PrUXWja7LZXimKWGV7a6Q/ssrcT9zDNZnxXHzDy+fEaI6h7H5D1sogiY/FbHp4
xN/T+mc7l/dZRMci2aDNQruemCUEAg1B3Bzb8Vu7tJ9c0eG8idlQMWFJYj0cf1zX6rTWeOH1OPmw
iQeReafKwhRgymSzc/A/7Ubdq/1w6XVWf6TocuE4jY5MLt/LUxuGE7gQKdmX7TD28M2stSK25pln
Fbc2eeXvJ7yInJDb2v7KAfvH+/8AWc0+o1m9D1STi00pm5PR9K0G3tYVX0xHGNxEvf3Y5TDTGR4p
u3xYBEJryVVooAA6AZl8m9TZ8gSi1NnyslFqE06ovJvuymcgAwMqYh5m8zG35W8DVuWHxMOkYP8A
xtgwYDkPFLk67VamthzeSa7rZnLW9uxMVf3sn858Pl+vOh0+nrcuPhw1ueaZ+VPK808yTypWQ0Ma
EV4g9GI/m8Bmyx463LvtHpK9UufR755G8lRwxrcTrRB27se4r+s/QMvdm9BACgACgGwA6AYq7FXY
q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXzj/wA5FeUvqHmC38xW6UttVX07kjoLmJaV/wBnGB9I
OU5I726jX4qlxDqx7ydrhja3uWbdD6Vx7r0r92+aDXae7HxDpP7vJfR7hol8JrQRk1aLYHxU9Mxd
FluFHmHeYZ2EwMmZlt1pTq+kxXaOyKCzikkZ6OP65g6jT2eKP1OPlxCTGtP8lQQXXqLCxYGqmYgq
nyFN/wAcpJzT2Ozh49GAbplVraQWwqvxSd3PX6PDL8WCMOXNzoxAVmky0llam0mVkotSaTIEsbUJ
p1RSzHYZVOQAtiZUxTzJ5lFuDDCa3TDYdRGD3PvkMOE5TxH6XA1GorYc3k+va40rPbwSFuRPry1q
WJ6gH9edHptNW5cfDh/iKK8q+WZbqZJ5kqTQxIR0/wAph+oZsYQ6l3uj0n8Uvg978i+SVRFnnWiL
1J6k9wPfxOXOzejoiIgRAFVRRVGwAGKt4q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FWN/mJ
5UTzR5Qv9KoDcsnq2THtcR/FHuenI/CfYnARYac+PjgQ+S9CuXtdQa3lBT1D6bqdiHU7V+nbMDVY
rjfc81qMdx9z2byTrVYY1dvii/dS/wCofsn/AD8M5qY8LLfSTbo82zOTJmdbs7aMmRtFrDJgJRaw
yZElFqbSZAlFqbSZAlFqMs6opZjQDK5SpiZMX8xeYxbIUjINww/dp1Cj+Zsrw4TllZ+lws+or3vK
vMGvSO8kEUnOR6+vNWpqeoB/XnSaXSgCzy6OPhw36pLvK/luS8lSeZKqd4oz0P8AlN7frzZRi7vS
6W/VLk968i+SBRZp1IRd2Y9a/wDNX6ssdo9NiijijWONQqKKKo6AYquxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV2KuxV2Kvlv8APjyk2g+dG1C3ThZayDdREbATgj11+fIh/wDZZEh1GrxVK+hU
fKGsgSwTMaJMPTmHYN0r9/4ZzfaGm2I7tw6aP7uddHrunXnrWq1Pxp8LfR0zDwZOKLtsc7CIMuW2
ztaZcFotYZMiSi1NpMiSi1KSZVUsxoB1OVylTEyY35g8wrbR0WjSt/dRf8bNleLEc0v6IcTNnp5b
5g16QySRI5a4kP76Xwr2Hv8AqzpdJpBQJ5dGjDhMjxSUfLPl2W/lSeVaxVrGh/ap3P8Ak5swHdab
TcXqPJ7z5E8kcys0q8VWhZiP89/Adsk7R6nBBFBEsUS8Y0FFGKr8VdirsVdirsVdirsVdirsVdir
sVdirsVdirsVdirsVdirsVYN+cnlH/Enkm6SFOWoaf8A6ZZ0FWLRg80H+ulRTxpi0ajHxRfMHly8
4TtbMfhl3T/WH9RmHrMVji7nntVjsX3PY/Kmr+tBGWPxH93L/rDofpzlJR8LKR0LLT5GSmXLrcu1
hlwWi1plyJKLU3mABJNAOpyJKCWPa7r8dtFXqx/uo/E+J9srx4zmlX8IcbLlp5j5g1+T1HVX53Un
23/lH9c6XR6MUNvSGnDhMzxS5ITy75fm1GdZpVJgr8K95D/TxObWnc6fT8W55PdvInkgyMkjqFRQ
CWpsB22/UMXaPWba3ht4VhhXiijYfxOKqmKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku
xV2KuxV2KvkX82fKj+U/PV1FbJ6djct9d08gUUJISSg/4xuCtPCmS4RIUXU6jFUiOhTPypqq+qlD
SK6UU9nHT+mct2lpzR74umiDCVPRre69WFWrv0b5jNfCdhzoysLjLhtNrGmAFSdsiSi0l1nW4reL
kTWv93H3Y/0yOPHLNKhyaMmR5r5g8wSh2+PndydT2Qf59BnTaLRCuXpH2teHCZmzyS3QNDn1O5Ek
oYwctz3dvAH9ZzbnZ3GDT8XP6XunkTyO0rIzRgIAO3whR028PAd/lkHZgU9etLSC0gWGFeKL95Pi
cUq2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV5h/wA5AeUP015OOqW6
cr7RSZxQVZrdqCZf9iAH/wBicnA7uPqYXG+588+W70qWtyaMD6kR/X/XMPX4f4vgXQ6vHyk9X0TU
hPbo9f7wfEPBxsc46cPDmYsMc0yM3vjbbaV6rrEVvCWY7fsr3Y4MeOWWXCOTTObzvzB5gkDlmYNc
uPgXsi/LOn0OhFUPpH2ow4TkNnkk+iaNcatdc35ejy+N+7Mf2R75uTURQdxgwcXue4eRPI5maMem
AigAbfCFH8B+OVOyArZ7JY2NvZW6wwigH2m7k+JxSiMVdirsVdirsVdirsVdirsVdirsVdirsVdi
rsVdirsVdirsVdirsVdirsVWTQxTQvDMgkilUpIjCoZWFCCPAjFXxp538uz+T/Ot7ptD6VvL6lox
r8dvJ8Ue/f4TxPvXL5QE4V3uqz4ecWUeWdRXn6Yb4JQJIj70r+Izj+08BA4usdi6UXE0yC/1SOCA
yOaL4dyfAZrMcJZJcIZymwLX9fYMZHo0zCkUfZR751Gg0Aqhy6lOHCch8ki0jSrrV7ssxPp1Hqyd
SSf2V983hqAoO5w4b2HJ7b5E8jmZolWIKi7KvYAdd/1nMcl2IAAoPadN06CwthDEP9dqUJP+fTFK
KxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV4z/zkl5Q+u6Ha
+ZbZK3GmEQXZHU28rfCf9hIf+GOX4Zb04+ohYt4l5b1FlUR8qSwtyjr3Fa/gcwO0dNe/SXN0esxU
eIJjr2vEEySbuRSGGuw98w9B2fQocupacOE5D5Me03TrzV7wkk8agzS+A8B7+AzfnhxxoO5w4eg5
PaPInkcyNCkcXFF2Vf11P6zmKTbsIxAFB7dpWlW+nWywxAcqDm4FK0/gMCUbirsVdirsVdirsVdi
rsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVQ+o6faajYXFheRia0uo2hniPRkcc
WH3HCDSCLfKX5gfk/wCYfK+pymzRr3SWJa1ulpzCH9mQbfEvQkbd9sy45okbuLPCfexez8savdTA
SoYkJozuat9C1qcJyxiNkRwn3PW/Ivkcs0UUcRCA7DuT3JP836sxJSJNlyoxAFB7lo2j2+mWqxxq
PUoA7D9Q9siyTDFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYqpXNrb3MRiuIxJGexxVIG/L3yuZfUFsUJ6qjFR+GKp1YaVYWEfC0hWMUpUbmnzOKorFXYq
7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq//Z</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1">
<xapMM:DocumentID>
uuid:4b4d592f-95b8-4bcd-a892-74a536c5e52f</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:609bc623-b01c-476b-9349-300763160df1">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
test.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>end='w' </xpacket>
</metadata>
<rect
id="_x3C_Slice_x3E_"
style="font-size:12;fill:none;"
width="256"
height="256" />
<path
style="font-size:12;opacity:0.2;"
d="M221.848,47.811c0,0-130.558,89.471-132.578,90.855c-1.689-1.683-41.779-41.595-41.779-41.595 c-2.978-2.968-6.891-4.068-10.467-2.943c-3.89,1.232-6.403,4.005-7.08,7.809l-0.42,2.363c-0.135,0.765-0.122,1.532,0.037,2.285 l0.589,2.802l0.408,1.247l46.254,101.694c1.449,3.183,4.375,5.427,7.83,6.001c3.441,0.579,6.936-0.598,9.349-3.144 L235.225,65.893c2.066-2.169,3.252-5.263,3.252-8.481l-0.129-1.236l-0.572-2.723c-0.697-3.33-2.852-5.804-6.227-7.157 C229.395,45.431,225.963,44.991,221.848,47.811z"
id="path552" />
<path
style="font-size:12;opacity:0.2;"
d="M218.848,47.811c0,0-130.558,89.471-132.578,90.855c-1.689-1.683-41.779-41.595-41.779-41.595 c-2.978-2.968-6.891-4.068-10.467-2.943c-3.89,1.232-6.403,4.005-7.08,7.809l-0.42,2.363c-0.135,0.765-0.122,1.532,0.037,2.285 l0.589,2.802l0.408,1.247l46.254,101.694c1.449,3.183,4.375,5.427,7.83,6.001c3.441,0.579,6.936-0.598,9.349-3.144 L232.225,65.893c2.066-2.169,3.252-5.263,3.252-8.481l-0.129-1.236l-0.572-2.723c-0.697-3.33-2.852-5.804-6.227-7.157 C226.395,45.431,222.963,44.991,218.848,47.811z"
id="path553" />
<path
style="font-size:12;opacity:0.2;"
d="M217.848,45.811c0,0-130.558,89.471-132.578,90.855c-1.689-1.683-41.779-41.595-41.779-41.595 c-2.978-2.968-6.891-4.068-10.467-2.943c-3.89,1.232-6.403,4.005-7.08,7.809l-0.42,2.363c-0.135,0.765-0.122,1.532,0.037,2.285 l0.589,2.802l0.408,1.247l46.254,101.694c1.449,3.183,4.375,5.427,7.83,6.001c3.441,0.579,6.936-0.598,9.349-3.144 L231.225,63.893c2.066-2.169,3.252-5.263,3.252-8.481l-0.129-1.236l-0.572-2.723c-0.697-3.33-2.852-5.804-6.227-7.157 C225.395,43.431,221.963,42.991,217.848,45.811z"
id="path554" />
<path
style="font-size:12;fill:url(#XMLID_5_);"
d="M215.848,43.811c0,0-130.558,89.471-132.578,90.855 c-1.689-1.683-41.779-41.595-41.779-41.595c-2.978-2.968-6.891-4.068-10.467-2.943c-3.89,1.232-6.403,4.005-7.08,7.809 l-0.42,2.363c-0.135,0.765-0.122,1.532,0.037,2.285l0.589,2.802l0.408,1.247l46.254,101.694c1.449,3.183,4.375,5.427,7.83,6.001 c3.441,0.579,6.936-0.598,9.349-3.144L229.225,61.893c2.066-2.169,3.252-5.263,3.252-8.481l-0.129-1.236l-0.572-2.723 c-0.697-3.33-2.852-5.804-6.227-7.157C223.395,41.431,219.963,40.991,215.848,43.811z"
id="path561" />
<path
style="font-size:12;fill:url(#XMLID_6_);"
d="M219.239,48.761c0,0-135.454,92.824-136.679,93.665 c-5.106-5.083-45.302-45.103-45.302-45.103c-1.187-1.182-2.833-1.976-4.431-1.472c-1.597,0.505-2.684,1.485-2.977,3.135 l-0.42,2.364l0.589,2.802c0.007,0.016,46.252,101.691,46.252,101.691c0.621,1.363,1.876,2.321,3.354,2.567 c1.477,0.247,2.978-0.265,4.008-1.353L224.865,57.77c1.021-1.072,1.611-2.665,1.611-4.358l-0.572-2.728 c-0.309-1.471-1.192-2.26-2.588-2.82C221.922,47.305,220.477,47.913,219.239,48.761z"
id="path568" />
<path
style="font-size:12;fill:url(#XMLID_7_);"
d="M84.485,146.561c-1.425,0.977-3.344,0.803-4.567-0.416c0,0-44.921-44.724-45.833-45.632 c-0.091,0.252-0.154,0.533-0.154,0.838c0,0.328,0.06,0.662,0.192,0.955c0,0,46.096,101.347,46.241,101.664 c0.877-0.93,141.232-149.292,141.232-149.292c0.232-0.243,0.381-0.741,0.381-1.266c0-0.322-0.074-0.645-0.2-0.935 C220.751,53.177,84.485,146.561,84.485,146.561z"
id="path575" />
<path
style="font-size:12;fill:url(#XMLID_8_);"
d="M86.517,149.525c-0.001,0-0.001,0.004-0.001,0.004 c-2.848,1.947-6.69,1.596-9.133-0.838c0,0-20.052-19.966-33.287-33.141c10.589,23.282,30.678,67.45,37.327,82.069 c6.078-6.424,93.826-99.178,119.981-126.826C170.026,92.297,86.517,149.525,86.517,149.525z"
id="path582" />
</svg>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:ns0="http://ns.adobe.com/SaveForWeb/1.0/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="48pt"
height="48pt"
viewBox="0 0 256 256"
overflow="visible"
enable-background="new 0 0 256 256"
xml:space="preserve"
id="svg710"
sodipodi:version="0.32"
sodipodi:docname="application-text.svg"
version="1.1"
inkscape:version="0.48.1 r9760">
<defs
id="defs796">
<linearGradient
y2="245.0005"
x2="128.9995"
y1="11"
x1="128.9995"
gradientUnits="userSpaceOnUse"
id="XMLID_9_">
<stop
id="stop717"
style="stop-color:#494949"
offset="0" />
<stop
id="stop718"
style="stop-color:#000000"
offset="1" />
<a:midPointStop
id="midPointStop719"
style="stop-color:#494949"
offset="0" />
<a:midPointStop
id="midPointStop720"
style="stop-color:#494949"
offset="0.5" />
<a:midPointStop
id="midPointStop721"
style="stop-color:#000000"
offset="1" />
</linearGradient>
<linearGradient
y2="226.9471"
x2="226.9471"
y1="29.0532"
x1="29.0532"
gradientUnits="userSpaceOnUse"
id="XMLID_10_">
<stop
id="stop725"
style="stop-color:#FFFFFF"
offset="0" />
<stop
id="stop726"
style="stop-color:#DADADA"
offset="1" />
<a:midPointStop
id="midPointStop727"
style="stop-color:#FFFFFF"
offset="0" />
<a:midPointStop
id="midPointStop728"
style="stop-color:#FFFFFF"
offset="0.5" />
<a:midPointStop
id="midPointStop729"
style="stop-color:#DADADA"
offset="1" />
</linearGradient>
<linearGradient
gradientTransform="matrix(0.1991,0.98,-0.98,0.1991,91.6944,573.5653)"
y2="-164.2214"
x2="-360.2456"
y1="-94.4194"
x1="-481.7007"
gradientUnits="userSpaceOnUse"
id="XMLID_11_">
<stop
id="stop736"
style="stop-color:#990000"
offset="0" />
<stop
id="stop737"
style="stop-color:#7C0000"
offset="1" />
<a:midPointStop
id="midPointStop738"
style="stop-color:#990000"
offset="0" />
<a:midPointStop
id="midPointStop739"
style="stop-color:#990000"
offset="0.5" />
<a:midPointStop
id="midPointStop740"
style="stop-color:#7C0000"
offset="1" />
</linearGradient>
<linearGradient
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-496.5172)"
y2="706.3217"
x2="-1355.0455"
y1="685.3809"
x1="-1375.9844"
gradientUnits="userSpaceOnUse"
id="XMLID_12_">
<stop
id="stop743"
style="stop-color:#F8F1DC"
offset="0" />
<stop
id="stop744"
style="stop-color:#D6A84A"
offset="1" />
<a:midPointStop
id="midPointStop745"
style="stop-color:#F8F1DC"
offset="0" />
<a:midPointStop
id="midPointStop746"
style="stop-color:#F8F1DC"
offset="0.5" />
<a:midPointStop
id="midPointStop747"
style="stop-color:#D6A84A"
offset="1" />
</linearGradient>
<linearGradient
y2="160.1823"
x2="137.6021"
y1="-0.7954"
x1="65.0947"
gradientUnits="userSpaceOnUse"
id="XMLID_13_">
<stop
id="stop750"
style="stop-color:#FFA700"
offset="0" />
<stop
id="stop751"
style="stop-color:#FFD700"
offset="0.7753" />
<stop
id="stop752"
style="stop-color:#FF794B"
offset="1" />
<a:midPointStop
id="midPointStop753"
style="stop-color:#FFA700"
offset="0" />
<a:midPointStop
id="midPointStop754"
style="stop-color:#FFA700"
offset="0.5" />
<a:midPointStop
id="midPointStop755"
style="stop-color:#FFD700"
offset="0.7753" />
<a:midPointStop
id="midPointStop756"
style="stop-color:#FFD700"
offset="0.5" />
<a:midPointStop
id="midPointStop757"
style="stop-color:#FF794B"
offset="1" />
</linearGradient>
<linearGradient
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-496.5172)"
y2="622.5333"
x2="-1325.3219"
y1="635.7949"
x1="-1336.4497"
gradientUnits="userSpaceOnUse"
id="XMLID_14_">
<stop
id="stop763"
style="stop-color:#FFC957"
offset="0" />
<stop
id="stop764"
style="stop-color:#FF6D00"
offset="1" />
<a:midPointStop
id="midPointStop765"
style="stop-color:#FFC957"
offset="0" />
<a:midPointStop
id="midPointStop766"
style="stop-color:#FFC957"
offset="0.5" />
<a:midPointStop
id="midPointStop767"
style="stop-color:#FF6D00"
offset="1" />
</linearGradient>
<linearGradient
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-496.5172)"
y2="699.4763"
x2="-1354.6851"
y1="595.6309"
x1="-1401.459"
gradientUnits="userSpaceOnUse"
id="XMLID_15_">
<stop
id="stop770"
style="stop-color:#FFA700"
offset="0" />
<stop
id="stop771"
style="stop-color:#FFD700"
offset="0.7753" />
<stop
id="stop772"
style="stop-color:#FF9200"
offset="1" />
<a:midPointStop
id="midPointStop773"
style="stop-color:#FFA700"
offset="0" />
<a:midPointStop
id="midPointStop774"
style="stop-color:#FFA700"
offset="0.5" />
<a:midPointStop
id="midPointStop775"
style="stop-color:#FFD700"
offset="0.7753" />
<a:midPointStop
id="midPointStop776"
style="stop-color:#FFD700"
offset="0.5" />
<a:midPointStop
id="midPointStop777"
style="stop-color:#FF9200"
offset="1" />
</linearGradient>
<linearGradient
y2="115.5361"
x2="144.5898"
y1="115.5361"
x1="67.8452"
gradientUnits="userSpaceOnUse"
id="XMLID_16_">
<stop
id="stop780"
style="stop-color:#7D7D99"
offset="0" />
<stop
id="stop781"
style="stop-color:#B1B1C5"
offset="0.1798" />
<stop
id="stop782"
style="stop-color:#BCBCC8"
offset="0.3727" />
<stop
id="stop783"
style="stop-color:#C8C8CB"
offset="0.6825" />
<stop
id="stop784"
style="stop-color:#CCCCCC"
offset="1" />
<a:midPointStop
id="midPointStop785"
style="stop-color:#7D7D99"
offset="0" />
<a:midPointStop
id="midPointStop786"
style="stop-color:#7D7D99"
offset="0.5" />
<a:midPointStop
id="midPointStop787"
style="stop-color:#B1B1C5"
offset="0.1798" />
<a:midPointStop
id="midPointStop788"
style="stop-color:#B1B1C5"
offset="0.2881" />
<a:midPointStop
id="midPointStop789"
style="stop-color:#CCCCCC"
offset="1" />
</linearGradient>
<linearGradient
inkscape:collect="always"
xlink:href="#XMLID_16_"
id="linearGradient80060"
gradientUnits="userSpaceOnUse"
x1="67.8452"
y1="115.5361"
x2="144.5898"
y2="115.5361"
gradientTransform="translate(0,-25.600002)" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_15_"
id="linearGradient80063"
gradientUnits="userSpaceOnUse"
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-522.11722)"
x1="-1401.459"
y1="595.6309"
x2="-1354.6851"
y2="699.4763" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_14_"
id="linearGradient80066"
gradientUnits="userSpaceOnUse"
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-522.11722)"
x1="-1336.4497"
y1="635.7949"
x2="-1325.3219"
y2="622.5333" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_13_"
id="linearGradient80072"
gradientUnits="userSpaceOnUse"
x1="65.0947"
y1="-0.7954"
x2="137.6021"
y2="160.1823"
gradientTransform="translate(0,-25.600002)" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_12_"
id="linearGradient80075"
gradientUnits="userSpaceOnUse"
gradientTransform="matrix(-0.999,0.0435,0.0435,0.999,-1277.0056,-522.11722)"
x1="-1375.9844"
y1="685.3809"
x2="-1355.0455"
y2="706.3217" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_11_"
id="linearGradient80078"
gradientUnits="userSpaceOnUse"
gradientTransform="matrix(0.1991,0.98,-0.98,0.1991,91.6944,547.96528)"
x1="-481.7007"
y1="-94.4194"
x2="-360.2456"
y2="-164.2214" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_10_"
id="linearGradient80085"
gradientUnits="userSpaceOnUse"
x1="29.0532"
y1="29.0532"
x2="226.9471"
y2="226.9471" /><linearGradient
inkscape:collect="always"
xlink:href="#XMLID_9_"
id="linearGradient80089"
gradientUnits="userSpaceOnUse"
x1="128.9995"
y1="11"
x2="128.9995"
y2="245.0005" /></defs>
<sodipodi:namedview
id="base"
showgrid="false"
inkscape:zoom="3.6203867"
inkscape:cx="24.932695"
inkscape:cy="18.484388"
inkscape:window-width="1280"
inkscape:window-height="766"
inkscape:window-x="0"
inkscape:window-y="20"
inkscape:window-maximized="0"
inkscape:current-layer="svg710" />
<metadata
id="metadata711">
<ns0:sfw>
<ns0:slices>
<ns0:slice
x="0"
y="0"
width="256"
height="256"
sliceID="124333141" />
</ns0:slices>
<ns0:sliceSourceBounds
x="0"
y="0"
width="256"
height="256"
bottomLeftOrigin="true" />
<ns0:optimizationSettings>
<ns0:targetSettings
fileFormat="PNG24Format"
targetSettingsID="0">
<ns0:PNG24Format
transparency="true"
includeCaption="false"
interlaced="false"
noMatteColor="false"
matteColor="#FFFFFF"
filtered="false" />
</ns0:targetSettings>
</ns0:optimizationSettings>
</ns0:sfw>
<xpacket
id="xpacket79197">begin='' id='W5M0MpCehiHzreSzNTczkc9d' </xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<metadata
id="metadata79254"><rdf:RDF>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xap:CreateDate>
2004-01-26T11:58:28+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-28T20:41:40Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-16T23:58:32+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqlvmDzFo
3l7TJdT1e5W1tItuTbszHoiKN2Y+AxV4j5g/5ydvTcMnl/SYlgU0Se/LOzDxMcTIF/4M4qk//QzP
nv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8
sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5F
XH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/so
xV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hm
fPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5FXH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A
5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/
8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxVFad/zk75oS4B1HSbG4t+
6W/qwP8A8E7zj/hcVeyeRfzJ8tec7Vn0yUx3kQBuLCaizJ25AAkMlf2l+mmKsqxV2KuxV2KuxV2K
vm/XDqf5ufmk+j287Q+XtJLqJF3VIY2CSzAHYvM9AvtTwOKvePLfk/y35bs0tdHsYrZVFGlCgyuf
GSQ/Ex+ZxVOK4q6oxVrkMVdyGKu5jFWvUGKu9RffFWvVX3xV3rL74q71l8DirXrp4HFXfWE8DirX
1hPA4q76yngcVd9Zj8D+GKtfWo/A/hirvrcfgfw/rirvrcfgfw/rirX1yLwb8P64q765F4N+H9cV
d9di8G/D+uKtfXovBvw/riqVa/5X8r+abR7TV7GO55CiyMoWZP8AKjkHxKR7HFXzB5n0XXfys8/R
NZXBJgIudOujsJYGJUpIB8ijj+oxV9VeWtfs/MGhWWsWf9xexLKErUoxHxI3up2OKplirsVdirsV
Q+oMy2Fyy/aWJyvzCnFXhP8AziwqvL5nmYcpQLIBz1oxuC2/uVGKvficVaxVrFWicVaJxVrFWsVa
JxVonFWsVaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVdCSJkp/MP14q8V/5ypRBJ5ZkCjm
wvVZu5CmAgfRyOKsn/5x3vJX8lwWzElQZmSvbjMR/wAbYq9XxV2KuxV2KofUv+Oddf8AGGT/AIic
VeE/84pn/lKP+jD/ALGcVe+nFWsVaJxVonFWsVaxVonFWicVaxVrFWsVaJxVrFWsVaJxVonFWsVa
xVonFWicVaxVrFWicVXQ/wB9H/rD9eKvFv8AnKw/8ov/ANH/AP2LYqn/APzjn/yisHyuP+T4xV6/
irsVdirsVQ+pf8c66/4wyf8AETirwf8A5xRNf8U/9GH/AGM4q9+PXFWicVaJxVrFWsVaJxVonFWs
VaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVonFWicVXQ/30f8ArD9eKvFf+crjT/C3/R//
ANi2Ksg/5xy/5RS3+Vx/yfGKvYMVdirsVdiqH1L/AI511/xhk/4icVeDf84nmv8Ain/ow/7GcVe/
HrirROKtYq1irROKtE4q1irWKtYq0TirWKtYq0TirROKtYq1irROKtE4q1irWKtE4q0TirWKroP7
+P8A1h+vFXiv/OWBp/hb/o//AOxbFWQf844f8onb/K4/5PjFXsOKuxV2KuxVD6l/xzrr/jDJ/wAR
OKvBP+cTD/ylX/Rh/wBjOKvf2O5xVrFWsVaJxVonFXln5ofnxoPk9pNM05V1XX1qrwK1IYD/AMXO
v7X+Qu/iRmNm1IhsNy7vs7sWef1S9MPtPu/W+fdS81/mp5+uWaS6urm3ZivoQH6vZoaV4mhSKtP5
zXNXn1dbzlT1uDQ6fAPTEX8z+tX8r+Z/Pf5Xa5azXMUo0+evrac8oe3njGz8GQugkWoNRuNq7GhO
m1Q5xNhhrNHh1cDH+Ideo/Y+q/KfnXRfM+nw3umyVinXkgPXbZlPgynqM3UJiQsPAajTzwzMJiiE
+yTS1irROKtE4q1irWKtE4q0TirWKtYq0TirROKtYq1iq6A/v4/9Zf14q8U/5yzP/KK/9H//AGLY
qyH/AJxv/wCUSt/lcf8AJ/FXsWKuxV2KuxVD6l/xzrr/AIwyf8ROKvAv+cSj/wApV/0Yf9jOKvoB
upxVrFWicVaJxV4h+fH50yaCJPK/l2amsSLTUL1DvbI4qET/AItYGtf2R79MPU6jh9I5vSdi9keL
+9yD0dB3/s+95B5J/L5tQC6rrQZ4JgJLe2JPKXlv6krdeJ6qK1br0+1zGu7S8P0w3l937Xryeg5P
W7GwRESONFSNAFjjQBVVR0CqKAD2GaCUpTNyNlxpzA5Jlr3ky01XQTYapDytrj4gw2kikH2HQkfC
wH8QdiRncdk9ncOmqW0pG/c8jqe1JQ1PHjO0dvIvF/L+u6/+Vvm19PvuUmnyMryqlaPGTRLiCtPi
FKHxoVPTaeHMcciO40XoNTpsfaGATjtLp+o/jzfVXlnzJY67psN3bSrKJUEiOvR1P7Q/iOxzbRkC
LDw2XHKEjGQqQTgnCwaJxVrFWsVaJxVonFWsVaxVonFWicVaxVrFWicVXwf38f8ArL+vFXiX/OWp
/wCUV/6P/wDsWxVkX/ONv/KI23yuf+T+KvY8VdirsVdiqH1L/jnXX/GGT/iJxV4D/wA4kGv+K/8A
t3/9jOKvoFvtH54qtJxVonFWMfmT5vXyj5M1LWwA1xDGEs4z0aeUhI6juAzcm9gcryz4YkuZ2fpf
HzRh0PP3PkvyBob+ZPMFzqWpt9aS3YT3Pq0czTzMSvME7glWZutaUPXOY7R1RxQ2+qX4t9GkBECI
2H6HtlraEmp3J3JOcsBbjZMjItDtrU3a+oQWT4lQ9GI7Z1HY/YxmRlyD0dB3/s+/3PM9p9p1cIHf
qe5mUsMV5CSAC1KMh751s5iIsvOAW87/ADA8gadr+mtY3i8WXk1hegVkglI/FTQc16MPAgEeXajX
ZtNq5ZpbwyHcfo946PXdn5/DiBHp073j/kXzlrX5ceZZNB1rktgJfiZakRM2wnjJA5RuPtDw361B
7fQ62MoiUTcJOX2n2fHVw8SH94Pt8i+qNH1i11SzS4gdW5KGPA8lIYVDKR1U9jm5BeHlEg0eaOxQ
1irROKtE4q1irWKtE4q0TirWKtYq0TirROKr4P7+P/XX9eKvEv8AnLc0/wAKf9vD/sWxVkf/ADjX
/wAofbfK5/5P4q9jxV2KuxV2KofUv+Oddf8AGGT/AIicVfP/APziMa/4r/7d/wD2M4q+gm+0fniq
0nFWsVedfn15Y1LzF+Xlzb6chlurOaO8WAbtIsQZWVffi5I+WUamBlDZ2vYupjh1AMuRFPn78qPM
lrYm40e4iIuJpDNCxNAxChWjpTZhxqPHfw35/P2fHUyAMuCvK/1PXdpZp4o+JEcUevf7/c9Xt9Qk
moFURr4Dc/fm30Xs/gwnil65efL5frt43Vdq5cuw9I8v1ptbB6rwryG4I7ZstXq8WngZ5JCMR3/j
d1+PHKZqIssu0fUGZQrn9+o+LwYZwp9pBq8hEPTGPIHr5/s6O1/I+HHfcpndWsN3CSBWv2l/z75b
qtNDUQJq+8fjqxx5DAvKfzN/LO08x2fAkQapbqTp98QeJHUxTUqSh+9TuO6tzej1U+z8vBPfDL8X
7+96HR6wjccuoed/lX+Y+p+TtZPlrzCWtoIpDHE02wt3O5R/GJ67GtB16bj0PSaoUN7ieRYdr9mD
PHxsX1df6X7Q+oLC/hvbdZoj7MvcHwzaPGognFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVX2/wDv
RF/rr+vFXiP/ADlyaf4U/wC3h/2LYqyT/nGr/lDrb5XP/URir2TFXYq7FXYqh9S/4511/wAYZP8A
iJxV8+/84hn/AJSz/t3/APYzir6Dc/Efniq3FWsVWnf5Yq+d/wA+PydeGWTzf5ahKnl6mpWkIPIP
Wvrx07/zU+fXrg6nT/xB6rsTtblhynb+E/o/V8kF+VXnTStfC6bqf7rW0X4BXilyqipZAOjgCrL9
K7VC6HtjtPXYcXFhIqPPaz79/wBSdb2Ljxz4gPQfs8vd3fLuvqaRJGKIoUe2ebavX5tRLiyzMz5/
o7lx44wFRFLlLIwZTRhuCMx4TMSCNiGZF7FP9M1H1BXpIPtr4+4zs+yu0+Mf0hzH6XW6jBXuRd9Z
Q3UJIFVO5p1B8R75s9do4ajGSOR/FtGHKYF41+bP5W/p+3N3Yqkeu2y/umPwrcxiv7pmNArfyMfk
djVdJ2br5aLJ4OX+7PI937O/uei0WsEf6v3Md/Jr81b3S75PLGvM0c0bfV7V56q3JW4/VpeW6sDs
len2fDPQ9LqOh+Dhds9lgjxsXvIH3j9PzfSFtdQ3MCzRGqt94Pgcz3lVTFWsVaJxVonFWsVaxVon
FWicVaxVrFV9uf8ASIv9df14q8Q/5y8P/KJ/9vD/ALFsVZL/AM40f8oba/K5/wCojFXsuKuxV2Ku
xVD6l/xzrr/jDJ/xE4q+fP8AnEE/8pZ/27/+xnFX0G/2j8ziq3FWsVaJxVZIiOjI6hkYEMp3BB6g
4q+Yvzr/ACku/K+of4r8sq8enGQSzRw1DWsla81p+wT93yzXanT16hyex7H7UGWPg5dz0vr5Hz+9
l35Z/mFaeatMEM7LHrVqg+t2/Tmo29aPxUnr/Kdj1Unzbt3sbwScuMfuzzHd+z7vcy1OnOGVfwnk
f0Hz+/5s0IzmGm243eNw6GjL0OW4ssschKPMLIAiiyDTtQWReQ6/7sTw9xnb9l9piYsfEOrz4KVd
R0+K5hLDodwR2PjmV2l2fDPCxy+78dWGDMYF4X+cX5Wzamr61pMBOs261ubeMfFdRrQBkp1kQDYd
WGw3AB13ZHaUsE/y+fl/Cf0e7u7uT0mi1YGx+k/Yu/JL83pLgx6Hq8pa+ReMMjH/AHoRR3J/3ao/
4Ie+eg6fPfpPN0/bPZXhk5cY9HUd37Pue+xTRzRrLGwZGFVYZlvOricVaJxVrFWsVaJxVonFWsVa
xVonFV9v/vRF/rr+vFXiH/OXx/5RP/t4f9i2Ksl/5xn/AOUMtflc/wDURir2bFXYq7FXYqh9S/45
11/xhk/4icVfPX/OH5r/AIt/7d//AGNYq+hH+23zOKrcVaJxVrFWsVUbq2t7u3ktrmNZYJlKSxuK
qynqCMUgkGw+VPzW/LbV/wAvNfj8xeXnkj0ppfUt7iPrbSMT+6bqCjVoK7EfCffVarTAXtcS9r2X
2jHVQ8LL9f8AuvP3/wBoeofl/wCeLHzboy3KFY9QgAS/tQd0c9CK78XpVfu6g55j232OdNLjh/dH
7PL3d32+dObFLFPhPwPf+3vZORmga7XQyyQyB0NCPxHgcvwZ5YpCUeaJREhRZDYXySIGH2T9te4O
d32b2jGcbHLqO51ebCQWtT02OePkvzVvD+zB2r2ZHLGx8D3fsTp85iXz3+cn5aTQyzea9EjMN3A3
ranBF8P2fiN0lKUYUq9Ov2v5iYdi9rSEvy+baY+k9/l+rvek0epBHAd4nl+r8e5lP5L/AJuLrFuN
M1RwupQj96NgJVH+7Y18R+2o+Y8B3eDPxCjzed7W7MOCXHD+7P2fjo9oV1ZQykFWFQR0IOZLpXYq
1irROKtE4q1irWKtE4q1iq+2/wB6Iv8AXX9eKvD/APnMA0/wl/28P+xXFWTf84y/8oXafK5/6iMV
ez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+eP+cPTX/Fv/bu/wCxrFX0K/22+ZxVaTirWKtYq0TirROK
oPVdLsNV0+fT7+Fbi0uFKSxOAQQfngIvYsoTMSJRNEPlHzr5S8yflN5ui1TSJGbTJWItJ2+JHQ7t
bzgEV6fxBBFc0+r0kSDGQuEnuNFrIa3Fwz+sc/8Aih+PseyeTvOOneaNFi1K0+BvsXNsTVopQAWQ
mgqN9jTcfdnmHa/ZEtLOxvjPI/oP43+biZMRhLhlz+8d/wCOSfBlOaWmFK1vO8EgdOn7Q7EZk6XV
Swz4o/HzYTgJCiyGyvI5Iwa1jbqD2Pvne9n6+M4f0D9jq8uIg+ahqmmCQB02cfYb+BzF7W7L4xxR
+ocj+j9TZp9RWxfNv5qfl1deWb//ABb5YBtIYZBJd28VB9WlJp6kQ6ekxNCnRe3wmi5XYnbByfus
m2aP21+nv+b0mnzxyx8Oe4P2/j8bvTfyh/Naz8xaeLe6ZYb+EAXNvX7J6eqlf91sf+BP3ntsOYTH
m8r2n2dLTz23geR/Q9TrXfLnWNE4q0TirWKtYq0TirWKtYqvtv8AemL/AF1/Xirw7/nMI0/wl/28
f+xXFWUf84x/8oVafK5/6iMVez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+d/wDnDo/8pd/27v8AsaxV
9CyH42+ZxVbirWKtE4q0TirWKtYqlXmXy5pXmPR7jSdThE1rcLxNeqnsynsR45GURIUW3DmlimJx
NEPlbU9P80flB5zPEG4024+yGNI7q3B6EgfDInZqbHxBIOk1uijOJhMXEvb6fPj12K+U4/Yf1F7Z
5e8yabrulQ6np0hktph0YUdHH2o5F3oy9/vFQQc8x7T7MnpcnCd4nke/9rimBBMZfUPx8k2SfNWY
sTBF2d8YJOQ3U/aXxzK0erlgnY5dQ0ZcPEGSWl1HLGBXlG3Q+Htne6LWRyQA5wLqcuMg+aB1nSI5
43BRXDqVZGAKupFCrA7GozWdrdmSvxMe0xyP469zkabUVsXzJ598j6r+XutxeZfLbOulep9glmNs
7HeCWpq8T9FY7/stvRm2/YnbH5gVL05o8x3+f63ooThqIHHk3v7fP3vbPyu/MnT/ADPpMZDenMlE
mgY7xSU+yT3U/sN/mOwxZRMW8frtFLTz4Ty6HvegE5Y4TWKtYq0TirWKtYq1iq+2P+kxf66/rxV4
d/zmKf8AlEf+3j/2K4qyj/nGL/lCbT5XX/URir2jFXYq7FXYqh9S/wCOddf8YZP+InFXzr/zhwf+
Uv8A+3d/2NYq+hpPtt8ziq3FWicVaJxVrFWsVaJxVonFWP8AnbyZpHm7QptK1JNm+KCcfbikH2WU
5CcBIUXI0upngmJw5vmCxuvMX5T+b59M1SJptOmI+sInSWIfZnhJ25rXpX2PY5oNfoI5YnHMbfjc
PbRnDV4xOG0x9nkfL+17fp2q2V/Zw31jOtxZ3C84Jk6MvTvuCCKEHcHY755rrtDPT5DCXwPeGiO/
MURzCNSf3zBMUGCP0/U2t3od4m+0v8RmZodYcEv6B5/rcXNp+IebKbW6jmjCkhkYfA2d1pdRHJHh
O4PIumyYzE2lXmLQLW+tZ7e4hWaC4Ro54W6SIwoRt3pmk7T7PniyDNi2nHf3/j7XK02or8cnzF5l
8va/+VvmmPVtKLTaJcMVgkapVlO7W1xTo4pVT+0ByG4YL0fY3a8dRDiG0x9Q/HR38hDVYzCfP8bh
9C/l9580zzPpENxby8uXw0enNXHWOQfzD8RvnUwmJCw8ZqtLPBMwl/ay7JuM0TirWKtYq1irROKq
lt/vTF/rr+vFXhn/ADmOf+UQ/wC3j/2K4qyn/nGD/lB7P5XX/UTir2nFXYq7FXYqh9S/4511/wAY
ZP8AiJxV85/84bGv+L/+3d/2NYq+iJP7xvmcVWE4q0TirWKtYq0TirROKtYq1irEPzJ/LzS/Ouhv
Z3AEV9EC1jd03jkp38VPcZXlxiYouZodbPTz4o8uo73zh5W17Vvy68y3Pl7zDG8envJ/pCgEiNzR
VuYtqspAo1Oo9xTOd7R7OjngYT59D3PZkxzwGXFz+/8Aon8be57ZFco6JJG6yRSKHilQhkdGFVZW
GxBG4Oec6nSzwzMJjcMIESFhXSf3zFMUGCaaXqxt34SGsLf8KfHNhoNacJ4ZfQfscPUabiFjmy23
uUnjEbmtRVG8c7fDljljwy+BdJPGYmwx7zZ5asdU0+5sr2AT2lyvG4hP7QrUMpHRlIrUdDnPa3SZ
NNl8fD9Q5+Y/HP8AW52l1HL7HzS6+Yfym83ru1zpF38SOPhS4hU9uoWaLluO1f5WFet7K7TjngJw
+I7vx0dxqMENXjo7SH2fsL6X8n+btO8xaXBdWswlWVOSOOrAdQR2dejDOhjISFh4rNhlikYyFEMg
yTU1irWKtE4q1iqpa/70xf66/rxV4X/zmSaf4Q/7eP8A2K4qyr/nF/8A5Qaz+V1/1E4q9qxV2Kux
V2KofUv+Oddf8YZP+InFXzl/zhoa/wCMP+3d/wBjWKvoiT+8b5n9eKrCcVaxVrFWicVaJxVrFWsV
aJxVonFWAfm1+V1j510gtEFh1u1UmzuSOvcxvTs2U5sQmPN2PZ3aEtPO+cDzDwbyD5vv/K2qyeVv
MnK2s1kKIZtvqkxJJ3/31ITv2B+IftV5rtPs2OojR2mOR/HR6+dSAy4975+Y/WP2e7sPqMjFW2Iz
gM2CWORjIVIMokSFjkqpP75QYoME40fWfQYQzN+6J+Fv5T/TNp2drvDPBL6fucDVaXi3HNmEMyXM
fpuaOPsnxzsYSGaPDLm6KUDA2OTCfzD8nWes6Df2VzErRtG8kZYf3M6IxjmSm/wnw6io6EjNHDSZ
NNqRPH9Mj6h5d7tdFqLIHX8bPA/yY8z3eh+Y59HuGeOK4LERmtY7mHqQOx4g8vGgzuNLOjXe2du6
cTxDIOcfuL6k0fU0v7USbeotA9Ohr0I+ebB5FHYq0TirWKtYqqWv+9UP+uv68VeF/wDOZZp/g/8A
7eP/AGK4qyr/AJxd/wCUFs/ldf8AUTir2vFXYq7FXYqh9S/4511/xhk/4icVfOH/ADhia/4w/wC3
b/2NYq+iZT+8b5n9eKrMVaxVonFWicVaxVrFWicVaJxVrFWsVeWfnR+Ulv5ssG1XTI1j1+1QlSBT
6wij+7b3/lOY+fDxCxzdt2X2kcEuGX92fs83kv5c+e7m1nTyr5hYxGFvQ0+5m2eJwaC2lr+xXZCf
s9Ps048x2p2YM8bG2SP2+RerkBH95DeJ5/8AFD9Pf7+fT+boxVgQymhB6gjOGnjMSQRRDkCpCxyK
qk+VmLEwT/Q9c9Nlt5noP91SE9D4H2zb9na4xIhI+4us1mkv1D4ppqdy+tXUGiwL3EmoTDokSmvH
5tnWwHjECveXCwQGnic0vdEd5/Y+b/zp0N/J/wCa0moWqFLW9dNTtlGwJdv3yV95Fb6DmzPplYc7
QZBqNNwy84l7d+Xmrxy8FR+UMyj02HQq45Ic2gNi3jJwMZGJ5hn5OFi1irWKtYqqWp/0qH/XX9Yx
V4V/zmcaf4P/AO3l/wBiuKsr/wCcXP8AlBLL5XX/AFE4q9sxV2KuxV2KofUv+Oddf8YZP+InFXzf
/wA4Xmv+Mf8At2/9jWKvomX+8f5n9eKrMVaJxVonFWsVaxVonFWicVaxVrFWicVaJxV4t+eP5PLr
UMnmPQYQNWiWt5bIAPrCj9r/AFwPvzFz4OLcc3edk9p+EfDmfQfs/Ywv8tvzA/SSxeXtaYrq0Q9O
xu3/AN3hf90yk9JV/ZY/a6H4qcuU7W7L8YccP7wfb+3u+Xc9IR4J4h/dnn/R8x5d/dz72frG7EhQ
aru3sPE+GcfHHKRoCy5RkEdpunXd7MI7YBiDR5m/uk+n9o/575vdB2OSbn8unxcXU6mGIXL5dT+p
6JoOmWmmWxiiq8kh5Tzt9uRvE/wzstPjjAUHkdZqp5pWeQ5DueX/APOT3lb9I+TbbXYUrcaNMPVY
Df6vcEI3Twk4H78syDZzexM/DkMDyl94Yb+TmvPLpFoC/wC9tHNsxP8Ak0eL8CBmVppXH3ON21g4
M5PSW76DhmWaFJV+y6hh9IzIdSuxVrFWicVVLX/eqH/XX9YxV4V/zmgaf4O/7eX/AGK4qyz/AJxa
/wCUDsvldf8AUScVe2Yq7FXYq7FUPqX/ABzrr/jDJ/xE4q+bf+cLTX/GP/bt/wCxrFX0VL/ev/rH
9eKrCcVaJxVrFWsVaJxVonFWsVaxVonFWicVaxVo74q8F/Or8k5by5fzF5ZhUTSVa/sRRQTSvqJ2
BP7Vdu+YmfT3vF6DsvtcYxwZPp6Hu/Y8z078w/O3lu9S31pJNQiiP+8uoF2ald/Tlrypttuy+2az
Jpo3uKL0UTHJD93Kr6int3kj85vJmuCO09UaTemgW0ueKKT4RyD4G9gaE+GARMXn9XoMsSZH1eb0
yC498thN1UosQ/OLz35a0DyZfWWrD61catby21rpyMBJJzUqXrvwVK15U69N8zcOM5Nujjz1XgET
/iB2fOf5VambLX7jTy443KcomFfikhPJSvzQscGnPDMxL0na4GbTxyx8j8JfgPqjytei50xd907e
zbj8a5nPLJvirROKtYqqWv8AvVD/AK6/rGKvCf8AnNI0/wAHf9vL/sVxVlv/ADix/wAoFY/K6/6i
Tir23FXYq7FXYqh9S/4511/xhk/4icVfNf8AzhWf+Uy/7dv/AGN4q+i5T+9f/WP68VWE4q1irWKt
E4q0TirWKtYq0TirROKtYq1irROKtHFWGeavy30fW0k9S3jkVqt6bAAhj3Unb78jKIPNtw554zcC
QXiHm38h720keTSXIpU/Vpq9P8k7n/iWYs9L/Nd/pe3jyyj4j9SRaL+Yv5leRD9RmZ3tACkdregy
xrtt6T1qvH+UNTxGYksfCdw7GeDBqomUCL7x+kMO1rVNX1/UpdS1C8e/vpz8bSbP2oqoPhCitFVP
uGbXBqMdUPS8V2j2JqcRMj+8j3j9I6fc1peoyWGoWGpLXnbSKJAD8TCMio9gYzx+/MbVR4MgkOrv
/Z/MM+klhPOO3wPL7bfV/wCX+pKzCIMGRxRSOhDfEp/XmWC6GUSDRZ2TihrFWsVVLT/euH/jIv6x
irwj/nNQ/wDKG/8Aby/7FMVZd/ziv/ygNj8rr/qKOKvbsVdirsVdiqH1L/jnXX/GGT/iJxV80/8A
OFBr/jL/ALdv/Y3ir6MmP71/9Y/rxVZirWKtE4q0TirWKtYq0TirROKtYq1irROKtYq1irWKqc0M
MyGOVA6HsRXFWMa/5B0jVIXR4kdXFDHKKinhy6/fXAQDzZwySgbiaLxjzh+QZiZ5tKZrdzUiB94y
dzsf6H6Mxp6UHk7vS9uTjtkHEO/q8r1vy75k0ovb39rII0IZpgvJaLVVJelQKdA2Y8xMCjydxpZ6
aczkx0Jy59D8R+l7H+T2vNNo9i3KsttW2fsAYqGP/hOOZmnlcXnO18PBnPdLf8fF73HIskayL9lw
GX5EVy51jeKtYqqWh/0uH/jIv6xirwf/AJzXNP8ABv8A28v+xTFWX/8AOKv/AJL+x+V3/wBRRxV7
firsVdirsVQ+pf8AHOuv+MMn/ETir5o/5wmNf8Z/9u3/ALG8VfRs396/+sf14qp4q0TirROKtYq1
irROKtE4q1irWKtE4q1irWKtYq0TirWKtYqskRJFKuoZT1UioxVI9V8o6ZfIQEUH+VxyX6O6/Rir
EW8gNpk0k1lEYjI4kbiOalhtUkfF274AAGc8kpVZJpnukpLHYRLIQSBVSO6ncdfnhYIvFWicVVbT
/euD/jIv/Ehirwb/AJzZNP8ABn/by/7FMVZf/wA4qf8AkvrD5Xf/AFFHFXuGKuxV2KuxVD6l/wAc
66/4wyf8ROKvmb/nCQ/8pn/27P8AsbxV9HTf3z/6x/XiqmTirROKtYq1irROKtE4q1irWKtE4q1i
rWKtYq0TirWKtYq1irROKtYq1irWKtE4q1iqrZ/71wf8ZF/4kMVeC/8AObZ/5Qz/ALef/YpirMP+
cUv/ACXth8rv/qKOKvccVdirsVdiqH1L/jnXX/GGT/iJxV8y/wDOER/5TT/t2f8AY3ir6OnP75/9
Y/rxVTJxVrFWsVaJxVonFWsVaxVonFWsVaxVrFWicVaxVrFWsVaJxVrFWsVaxVonFWsVaxVVs/8A
eyD/AIyL/wASGKvBf+c3T/yhf/bz/wCxTFWY/wDOKH/kvLD5Xf8A1FHFXuOKuxV2KuxVD6l/xzrr
/jDJ/wAROKvmP/nB81/xp/27P+xvFX0fOf30n+sf14qp4q1irROKtE4q1irWKtE4q1irWKtYq0Ti
rWKtYq1irROKtYq1irWKtE4q1irWKtYqq2Z/0yD/AIyJ/wASGKvBP+c4DT/Bf/bz/wCxTFWZf84n
/wDku9P+V3/1FHFXuWKuxV2KuxVD6l/xzrr/AIwyf8ROKvmD/nCCRUn86W7njORpzCM7NRDdBtvY
sK4q+kbiomkr/Mf14qp4q0TirROKtYq1irROKtYq1irWKtE4q1irWKtYq0TirWKtYq1irROKtYq1
irWKtE4qrWIJvIABU81P3GuKvAP+c4ZozL5MiDAyIupOydwrG1Cn6eJxVm3/ADieGH5dafUEHjdn
fwN0SMVe5Yq7FXYq7FVskayRtG32XBVvkRTFXxjrN7rf5Efnjca1FbNP5e1ZpDLAtFWW2mcPLGld
g8MlGT2p2JxV9U+U/PHknzvp8d/5f1SG8DrV4UcLcRnussJ+NCPcfLbFU8/R0X8zfhirv0bF/M34
Yq1+jIv52/DFXfoyL+dvwxV36Lh/nb8MVa/RUP8AO34Yq79FQ/zt+H9MVa/RMP8AO34Yq79Ew/zt
+GKu/REH87fh/TFWv0PB/O34f0xV36Hg/nb8P6Yq79DQfzt+H9MVa/QsH87fh/TFXfoWD/fj/h/T
FWv0Jb/78f8AD+mKu/Qdv/vx/wAP6Yq1+g7f/fj/AIf0xV36Ct/9+P8Ah/TFXfoK3/34/wCH9MVa
/QNv/vx/w/pirv0Bbf78f8P6Yqk3mfzh5E8iWEuoa9qcNpxUlIpHDXEngsUK/G5PsPntir4i/MXz
tr35wfmQtxa27Rxy8bTSbImvo2yEtykI2qas7n6OgGKvsf8AJ7y5HoWhW1jAP3NpbpEGIoWJp8R9
24VPzxV6FirsVdirsVdirE/zG/Lfy/560OTTNViUvSsE9KsjjoR3+7FXyP5v/wCcW/Nuk3rpYTLL
ASfTMwYrx9pIw1fpQYqx3/oXzz942v8AwU//AFSxV3/Qvnn7xtf+Cn/6pYq7/oXzz942v/BT/wDV
LFXf9C+efvG1/wCCn/6pYq7/AKF88/eNr/wU/wD1SxV3/Qvnn7xtf+Cn/wCqWKu/6F88/eNr/wAF
P/1SxV3/AEL55+8bX/gp/wDqlirv+hfPP3ja/wDBT/8AVLFXf9C+efvG1/4Kf/qlirv+hfPP3ja/
8FP/ANUsVd/0L55+8bX/AIKf/qlirv8AoXzz942v/BT/APVLFXf9C+efvG1/4Kf/AKpYq7/oXzz9
42v/AAU//VLFXf8AQvnn7xtf+Cn/AOqWKu/6F88/eNr/AMFP/wBUsVd/0L55+8bX/gp/+qWKu/6F
88/eNr/wU/8A1SxV3/Qvnn7xtf8Agp/+qWKu/wChfPP3ja/8FP8A9UsVd/0L55+8bX/gp/8Aqliq
L0z/AJxz85XFwEu54IIu7xiWRv8AgWWP9eKvevys/JPTPLg/0WEz3sgHr3UtC5HWjECiJ/kjr3xV
7vpthHY2qwpuert4se+KorFXYq7FXYq7FXYqtkijlUpIgdD1VgCPxxVCnRtLJ/3mT7sVd+htL/5Z
k/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/
AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+ht
L/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+
htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXDRtLB/3mT7sVRUcUcShI0CIOiqAB+GKrsVdirsV
f//Z</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xapMM:DocumentID>
uuid:4ee3f24b-6ed2-4a2e-8f7a-50b762c8da8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
mime.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
<cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title></dc:title></cc:Work></rdf:RDF></metadata></x:xmpmeta>
<xpacket
id="xpacket79199">end='w' </xpacket>
</metadata>
<path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path713"
d="m 44,15.5 c -9.374,0 -17,7.626 -17,17 v 200 c 0,9.374 7.626,17 17,17 h 176 c 9.375,0 17,-7.626 17,-17 v -200 c 0,-9.374 -7.625,-17 -17,-17 H 44 z" /><path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path714"
d="m 42,13.5 c -9.374,0 -17,7.626 -17,17 v 200 c 0,9.374 7.626,17 17,17 h 176 c 9.375,0 17,-7.626 17,-17 v -200 c 0,-9.374 -7.625,-17 -17,-17 H 42 z" /><path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path715"
d="m 40,12.5 c -9.374,0 -17,7.626 -17,17 v 200 c 0,9.374 7.626,17 17,17 h 176 c 9.375,0 17,-7.626 17,-17 v -200 c 0,-9.374 -7.625,-17 -17,-17 H 40 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80089)"
id="path722"
d="m 41,11 c -9.374,0 -17,7.626 -17,17 v 200 c 0,9.374 7.626,17 17,17 h 176 c 9.375,0 17,-7.626 17,-17 V 28 c 0,-9.374 -7.625,-17 -17,-17 H 41 z" /><path
style="fill:#ffffff"
inkscape:connector-curvature="0"
id="path723"
d="m 28,228 c 0,6.627 5.373,12 12,12 h 176 c 6.627,0 12,-5.373 12,-12 V 28 c 0,-6.627 -5.373,-12 -12,-12 H 40 c -6.627,0 -12,5.373 -12,12 v 200 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80085)"
id="path730"
d="m 40,21 c -3.86,0 -7,3.14 -7,7 v 200 c 0,3.859 3.14,7 7,7 h 176 c 3.859,0 7,-3.141 7,-7 V 28 c 0,-3.86 -3.141,-7 -7,-7 H 40 z" /><path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path731"
d="m 191.924,170.38398 c -11.613,-36.12699 -13.717,-42.66999 -14.859,-44.06399 0.119,0.076 0.289,0.178 0.289,0.178 L 98.804,39.042999 c -4.195,-4.65 -14.005,0.356 -21.355,6.976 -7.283,6.542 -13.32,15.772999 -9.37,20.563999 l 78.944,87.542982 0.533,0.094 37.768,17.602 7.688,2.365 -1.088,-3.803 z" /><path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path732"
d="m 193.557,167.91598 c -11.611,-36.12499 -13.713,-42.66999 -14.855,-44.06399 0.117,0.072 0.287,0.178 0.287,0.178 L 100.444,36.574999 c -4.199,-4.651 -14.015,0.355 -21.361,6.975 -7.281,6.545 -13.32,15.772999 -9.368,20.565999 l 78.945,87.538982 0.533,0.1 37.77,17.598 7.682,2.367 -1.088,-3.804 z" /><path
style="opacity:0.2"
inkscape:connector-curvature="0"
id="path733"
d="M 186.773,165.44898 C 175.16,129.32199 173.06,122.77699 171.91,121.38099 c 0.121,0.074 0.295,0.18 0.295,0.18 L 93.653,34.103999 c -4.192,-4.65 -14.009,0.359 -21.354,6.978 -7.283,6.542 -13.321,15.770999 -9.369,20.564999 l 78.942,87.540982 0.535,0.096 37.768,17.598 7.686,2.367 -1.088,-3.8 z" /><path
style="fill:#ffffff"
inkscape:connector-curvature="0"
id="path734"
d="m 186.43,163.75498 c -11.613,-36.12499 -13.713,-42.66599 -14.863,-44.06099 0.123,0.072 0.293,0.18 0.293,0.18 L 93.314,32.415999 c -4.199,-4.651 -14.015,0.357 -21.359,6.977 -7.283,6.543 -13.322,15.773999 -9.37,20.565999 l 78.941,87.540982 0.535,0.098 37.771,17.598 7.686,2.363 -1.088,-3.804 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80078)"
id="path741"
d="m 186.43,163.75498 c -11.613,-36.12499 -13.713,-42.66599 -14.863,-44.06099 0.123,0.072 0.293,0.18 0.293,0.18 L 93.314,32.415999 c -4.199,-4.651 -14.015,0.357 -21.359,6.977 -7.283,6.543 -13.322,15.773999 -9.37,20.565999 l 78.941,87.540982 0.535,0.098 37.771,17.598 7.686,2.363 -1.088,-3.804 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80075)"
id="path748"
d="m 166.969,122.16199 13.723,38.12899 -36.371,-17.90199 0.168,-0.152 c -0.25,-0.08 -0.496,-0.178 -0.701,-0.316 l -0.125,0.121 -75.303,-83.569992 0.123,-0.104 c -2.246,-2.49 1.032,-9.093999 7.308,-14.751999 6.28,-5.652 13.18,-8.219 15.425,-5.733 l 75.292,83.564991 0.461,0.714 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80072)"
id="path758"
d="m 148.652,144.52098 c 2.076,-0.369 4.635,-1.479 7.252,-3.13899 1.617,-1.018 3.279,-2.283 4.898,-3.744 1.455,-1.303 2.736,-2.666 3.84,-4.01 2.076,-2.531 3.322,-5.213 3.781,-7.424 l -1.455,-4.043 -0.463,-0.715 -74.798,-83.017991 c 0.608,2.24 -0.962,5.938 -4.063,9.74 -1.134,1.389 -2.441,2.789 -3.945,4.141 -1.574,1.418999 -3.195,2.651999 -4.767,3.653999 -4.493,2.871 -8.628,3.928 -10.548,2.486 l -0.025,0.021 75.303,83.569992 0.125,-0.121 c 0.205,0.139 0.451,0.236 0.701,0.316 l -0.168,0.152 4.332,2.13399 z" /><path
style="fill:#ffffff"
inkscape:connector-curvature="0"
id="path759"
d="m 68.083,57.809998 c 1.732,1.772 5.994,0.776 10.643,-2.194 1.541,-0.982 3.132,-2.193 4.677,-3.585999 1.476,-1.325 2.759,-2.701 3.872,-4.063 3.578,-4.388 5.091,-8.642 3.477,-10.584 l 0.023,-0.024 75.817,84.118991 c 0.635,2.262 -0.588,6.498 -3.754,10.357 -1.082,1.318 -2.34,2.656 -3.77,3.934 -1.588,1.434 -3.219,2.676 -4.807,3.676 -4.74,3.006 -9.303,4.19899 -11.016,2.301 -0.393,-0.439 -2.098,-2.336 -2.145,-2.406 l -73.255,-81.313992 0.238,-0.216 z" /><path
style="fill:#ffffff"
inkscape:connector-curvature="0"
id="path760"
d="m 75.79,43.614999 c 6.28,-5.652 13.18,-8.219 15.425,-5.733 l 16.961,18.827999 1.152,26.49 -17.973,0.784 -22.996,-25.513 0.123,-0.104 c -2.246,-2.49 1.032,-9.092999 7.308,-14.751999 z" /><path
style="fill:#ffffff"
inkscape:connector-curvature="0"
id="path761"
d="m 68.083,57.809998 c 1.732,1.772 5.994,0.776 10.643,-2.194 1.541,-0.982 3.132,-2.193 4.677,-3.585999 1.476,-1.325 2.759,-2.701 3.872,-4.063 3.578,-4.388 5.091,-8.642 3.477,-10.584 l 0.023,-0.024 75.817,84.118991 c 0.635,2.262 -0.588,6.498 -3.754,10.357 -1.082,1.318 -2.34,2.656 -3.77,3.934 -1.588,1.434 -3.219,2.676 -4.807,3.676 -4.74,3.006 -9.303,4.19899 -11.016,2.301 -0.393,-0.439 -2.098,-2.336 -2.145,-2.406 l -73.255,-81.313992 0.238,-0.216 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80066)"
id="path768"
d="m 75.79,43.614999 c 6.28,-5.652 13.18,-8.219 15.425,-5.733 l 16.961,18.827999 1.152,26.49 -17.973,0.784 -22.996,-25.513 0.123,-0.104 c -2.246,-2.49 1.032,-9.092999 7.308,-14.751999 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80063)"
id="path778"
d="m 68.083,57.809998 c 1.732,1.772 5.994,0.776 10.643,-2.194 1.541,-0.982 3.132,-2.193 4.677,-3.585999 1.476,-1.325 2.759,-2.701 3.872,-4.063 3.578,-4.388 5.091,-8.642 3.477,-10.584 l 0.023,-0.024 75.817,84.118991 c 0.635,2.262 -0.588,6.498 -3.754,10.357 -1.082,1.318 -2.34,2.656 -3.77,3.934 -1.588,1.434 -3.219,2.676 -4.807,3.676 -4.74,3.006 -9.303,4.19899 -11.016,2.301 -0.393,-0.439 -2.098,-2.336 -2.145,-2.406 l -73.255,-81.313992 0.238,-0.216 z" /><path
inkscape:connector-curvature="0"
style="fill:url(#linearGradient80060)"
id="path790"
d="m 74.357,65.112998 c 0,0 6.036,-0.212 10.685,-3.182 1.542,-0.983 3.132,-2.193 4.677,-3.586 1.477,-1.326 2.76,-2.701 3.873,-4.064 2.928,-3.588999 4.469,-7.087999 4.049,-9.306999 l -6.865,-7.617 -0.023,0.024 c 1.614,1.942 0.102,6.196 -3.477,10.584 -1.113,1.362 -2.396,2.738 -3.872,4.063 -1.545,1.392999 -3.136,2.603999 -4.677,3.585999 -4.648,2.971 -8.91,3.967 -10.643,2.194 l -0.238,0.217 73.256,81.310992 c 0.047,0.07 1.752,1.967 2.145,2.406 0.342,0.377 0.799,0.627 1.344,0.771 L 74.357,65.112998 z" /><path
style="fill:#003333"
inkscape:connector-curvature="0"
id="path791"
d="m 172.035,149.75398 c -1.635,1.477 -3.307,2.764 -4.949,3.84 l 13.605,6.697 -5.096,-14.156 c -1.058,1.218 -2.243,2.441 -3.56,3.619 z" /><path
style="opacity:0.5;fill:#ffffff"
inkscape:connector-curvature="0"
id="path792"
d="M 163.121,131.45299 86.968,48.329999 c 0.1,-0.12 0.213,-0.242 0.307,-0.364 1.428,-1.752 2.52,-3.49 3.225,-5.058 l 75.768,82.706991 c -0.553,1.824 -1.6,3.867 -3.147,5.838 z" /><path
style="opacity:0.5;fill:#ffffff"
inkscape:connector-curvature="0"
id="path793"
d="m 87.275,47.965999 c 0.634,-0.774 1.189,-1.548 1.694,-2.3 l 76.015,82.973991 c -0.578,1.063 -1.283,2.146 -2.146,3.193 -0.744,0.896 -1.566,1.805 -2.465,2.697 L 84.152,51.331999 c 1.164,-1.108 2.209,-2.24 3.123,-3.366 z" /><rect
style="fill:none"
y="0"
x="0"
height="256"
width="256"
id="_x3C_Slice_x3E_" />
<rect
style="fill:#ffffff;fill-opacity:1;stroke:#000000;stroke-width:4.26666689;stroke-opacity:1"
id="rect79256"
width="150.77966"
height="48.813557"
x="9.313406"
y="170.86343"
ry="0" /><text
xml:space="preserve"
style="font-size:42.66666794px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:justify;line-height:125%;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;font-family:Linux Libertine O C;-inkscape-font-specification:Linux Libertine O C"
x="24.554667"
y="207.10201"
id="text80094"
sodipodi:linespacing="125%"><tspan
sodipodi:role="line"
id="tspan80096"
x="24.554667"
y="207.10201"
style="font-style:italic;font-weight:bold;-inkscape-font-specification:Linux Libertine O C Bold Italic">Labels</tspan></text>
</svg>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:i="http://ns.adobe.com/AdobeIllustrator/10.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://web.resource.org/cc/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:sodipodi="http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
version="1.0"
width="48pt"
height="48pt"
viewBox="0 0 256 256"
id="svg2"
xml:space="preserve"
sodipodi:version="0.32"
inkscape:version="0.42+devel"
sodipodi:docname="gtk-open2.svg"
sodipodi:docbase="/home/cschalle/gnome/gnome-themes-extras/Nuvola/icons/scalable/stock"><metadata
id="metadata85"><rdf:RDF><cc:Work
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><sodipodi:namedview
inkscape:cy="417.84947"
inkscape:cx="305.25953"
inkscape:zoom="0.43415836"
inkscape:window-height="563"
inkscape:window-width="822"
inkscape:pageshadow="2"
inkscape:pageopacity="0.0"
borderopacity="1.0"
bordercolor="#666666"
pagecolor="#ffffff"
id="base"
inkscape:window-x="0"
inkscape:window-y="30"
inkscape:current-layer="svg2" /><defs
id="defs151" />
<g
id="switch6">
<foreignObject
id="foreignObject8"
height="1"
width="1"
y="0"
x="0"
requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/">
<i:pgfRef
xlink:href="#adobe_illustrator_pgf">
</i:pgfRef>
</foreignObject>
<g
id="g10">
<g
id="Layer_1">
<rect
width="256"
height="256"
x="0"
y="0"
style="fill:none"
id="rect13" />
</g>
<g
id="Layer_2">
<linearGradient
x1="98.551804"
y1="41.2593"
x2="98.551804"
y2="214.72549"
id="XMLID_14_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#c9e6ff;stop-opacity:1"
offset="0"
id="stop17" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="0.55620003"
id="stop19" />
<stop
style="stop-color:#0035ed;stop-opacity:1"
offset="1"
id="stop21" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0.5" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5562" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#0035ED"
offset="1" />
</linearGradient>
<path
d="M 17.219,51.266 C 16.115,51.266 15.219,52.163 15.219,53.266 L 15.219,202.735 C 15.219,203.838 16.115,204.735 17.219,204.735 L 179.885,204.735 C 180.989,204.735 181.885,203.838 181.885,202.735 L 181.885,75.933 C 181.885,74.83 180.989,73.933 179.885,73.933 L 100.552,73.933 L 100.552,53.266 C 100.552,52.163 99.656,51.266 98.552,51.266 L 17.219,51.266 z "
style="fill:url(#XMLID_14_)"
id="path23" />
<linearGradient
x1="98.551804"
y1="41.258801"
x2="98.551804"
y2="214.7274"
id="XMLID_15_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#dcf0ff;stop-opacity:1"
offset="0"
id="stop26" />
<stop
style="stop-color:#428aff;stop-opacity:1"
offset="0.58990002"
id="stop28" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="0.85949999"
id="stop30" />
<stop
style="stop-color:#0035ed;stop-opacity:1"
offset="1"
id="stop32" />
<a:midPointStop
style="stop-color:#DCF0FF"
offset="0" />
<a:midPointStop
style="stop-color:#DCF0FF"
offset="0.5" />
<a:midPointStop
style="stop-color:#428AFF"
offset="0.5899" />
<a:midPointStop
style="stop-color:#428AFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.8595" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#0035ED"
offset="1" />
</linearGradient>
<path
d="M 20.219,56.266 C 20.219,61.91 20.219,194.091 20.219,199.735 C 25.891,199.735 171.213,199.735 176.885,199.735 C 176.885,194.154 176.885,84.514 176.885,78.933 C 171.33,78.933 95.552,78.933 95.552,78.933 C 95.552,78.933 95.552,60.651 95.552,56.266 C 90.2,56.266 25.572,56.266 20.219,56.266 z "
style="fill:url(#XMLID_15_)"
id="path34" />
<linearGradient
x1="98.551804"
y1="41.2593"
x2="98.551804"
y2="214.72549"
id="XMLID_16_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#ffffff;stop-opacity:1"
offset="0"
id="stop37" />
<stop
style="stop-color:#e9f2ff;stop-opacity:1"
offset="0.1147"
id="stop39" />
<stop
style="stop-color:#b0d2ff;stop-opacity:1"
offset="0.35389999"
id="stop41" />
<stop
style="stop-color:#579fff;stop-opacity:1"
offset="0.6936"
id="stop43" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="1"
id="stop45" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0.5424" />
<a:midPointStop
style="stop-color:#006DFF"
offset="1" />
</linearGradient>
<path
d="M 179.885,73.933 L 100.552,73.933 L 100.552,53.266 C 100.552,52.163 99.656,51.266 98.552,51.266 L 17.219,51.266 C 16.115,51.266 15.219,52.163 15.219,53.266 L 15.219,57.266 L 91.552,57.266 C 92.656,57.266 93.552,58.163 93.552,59.266 L 93.552,79.933 L 172.885,79.933 C 173.989,79.933 174.885,80.83 174.885,81.933 L 174.885,204.735 L 179.885,204.735 C 180.989,204.735 181.885,203.838 181.885,202.735 L 181.885,75.933 C 181.885,74.83 180.988,73.933 179.885,73.933 z "
style="fill:url(#XMLID_16_)"
id="path47" />
<linearGradient
x1="106.9839"
y1="98.599098"
x2="106.9839"
y2="206.73489"
id="XMLID_17_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#0099ff;stop-opacity:1"
offset="0"
id="stop50" />
<stop
style="stop-color:#0089e5;stop-opacity:1"
offset="0.0937"
id="stop52" />
<stop
style="stop-color:#00406b;stop-opacity:1"
offset="0.54689997"
id="stop54" />
<stop
style="stop-color:#00121e;stop-opacity:1"
offset="0.85769999"
id="stop56" />
<stop
style="stop-color:#000000;stop-opacity:1"
offset="1"
id="stop58" />
<a:midPointStop
style="stop-color:#0099FF"
offset="0" />
<a:midPointStop
style="stop-color:#0099FF"
offset="0.4689" />
<a:midPointStop
style="stop-color:#000000"
offset="1" />
</linearGradient>
<path
d="M 32.083,106.599 L 32.083,206.734 L 42.083,206.734 C 42.083,180.445 42.083,111.718 42.083,108.599 C 45.222,108.599 143.57,108.599 181.884,108.599 L 181.884,98.599 L 40.083,98.599 C 35.665,98.599 32.083,102.181 32.083,106.599 z "
style="opacity:0.3;fill:url(#XMLID_17_)"
id="path60" />
<linearGradient
x1="6.3671999"
y1="47.148399"
x2="179.4046"
y2="220.1859"
id="XMLID_18_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#0053bd;stop-opacity:1"
offset="0"
id="stop63" />
<stop
style="stop-color:#00008d;stop-opacity:1"
offset="1"
id="stop65" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0.5" />
<a:midPointStop
style="stop-color:#00008D"
offset="1" />
</linearGradient>
<path
d="M 179.885,63.933 L 110.552,63.933 L 110.552,53.266 C 110.552,46.639 105.18,41.266 98.552,41.266 L 17.219,41.266 C 10.591,41.266 5.219,46.639 5.219,53.266 L 5.219,75.933 L 5.219,202.735 C 5.219,209.362 10.591,214.735 17.219,214.735 L 98.552,214.735 L 179.885,214.735 C 186.512,214.735 191.885,209.362 191.885,202.735 L 191.885,75.933 C 191.885,69.305 186.512,63.933 179.885,63.933 z M 181.885,202.734 C 181.885,203.837 180.989,204.734 179.885,204.734 L 17.219,204.734 C 16.115,204.734 15.219,203.837 15.219,202.734 L 15.219,53.266 C 15.219,52.163 16.115,51.266 17.219,51.266 L 98.552,51.266 C 99.656,51.266 100.552,52.163 100.552,53.266 L 100.552,73.933 L 179.885,73.933 C 180.989,73.933 181.885,74.83 181.885,75.933 L 181.885,202.734 z "
style="fill:url(#XMLID_18_)"
id="path67" />
<linearGradient
x1="128.48441"
y1="86.066902"
x2="128.48441"
y2="228.0708"
id="XMLID_19_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#c9e6ff;stop-opacity:1"
offset="0"
id="stop70" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="0.55620003"
id="stop72" />
<stop
style="stop-color:#0035ed;stop-opacity:1"
offset="1"
id="stop74" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0.5" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5562" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#0035ED"
offset="1" />
</linearGradient>
<path
d="M 51.083,96.599 C 51.083,100.388 51.083,200.946 51.083,204.734 C 54.933,204.734 202.035,204.734 205.884,204.734 C 205.884,200.946 205.884,100.387 205.884,96.599 C 202.035,96.599 54.933,96.599 51.083,96.599 z "
style="fill:url(#XMLID_19_)"
id="path76" />
<linearGradient
x1="128.48441"
y1="86.064499"
x2="128.48441"
y2="228.06689"
id="XMLID_20_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#dcf0ff;stop-opacity:1"
offset="0"
id="stop79" />
<stop
style="stop-color:#428aff;stop-opacity:1"
offset="0.6742"
id="stop81" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="1"
id="stop83" />
<a:midPointStop
style="stop-color:#DCF0FF"
offset="0" />
<a:midPointStop
style="stop-color:#DCF0FF"
offset="0.5" />
<a:midPointStop
style="stop-color:#428AFF"
offset="0.6742" />
<a:midPointStop
style="stop-color:#428AFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#006DFF"
offset="1" />
</linearGradient>
<path
d="M 56.083,101.599 C 56.083,110.255 56.083,191.079 56.083,199.734 C 65.135,199.734 191.833,199.734 200.884,199.734 C 200.884,191.079 200.884,110.255 200.884,101.599 C 191.834,101.599 65.135,101.599 56.083,101.599 z "
style="fill:url(#XMLID_20_)"
id="path85" />
<linearGradient
x1="54.491199"
y1="76.673798"
x2="217.155"
y2="239.3376"
id="XMLID_21_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#0053bd;stop-opacity:1"
offset="0"
id="stop88" />
<stop
style="stop-color:#00008d;stop-opacity:1"
offset="1"
id="stop90" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0.5" />
<a:midPointStop
style="stop-color:#00008D"
offset="1" />
</linearGradient>
<path
d="M 207.885,86.599 L 49.083,86.599 C 44.664,86.599 41.083,90.181 41.083,94.599 L 41.083,206.734 C 41.083,211.152 44.664,214.734 49.083,214.734 L 207.884,214.734 C 212.302,214.734 215.884,211.152 215.884,206.734 L 215.884,94.599 C 215.885,90.181 212.303,86.599 207.885,86.599 z M 205.885,204.734 C 202.035,204.734 54.933,204.734 51.084,204.734 C 51.084,200.946 51.084,100.387 51.084,96.599 C 54.934,96.599 202.036,96.599 205.885,96.599 C 205.885,100.388 205.885,200.946 205.885,204.734 z "
style="fill:url(#XMLID_21_)"
id="path92" />
<linearGradient
x1="128.48441"
y1="86.066902"
x2="128.48441"
y2="228.0708"
id="XMLID_22_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#ffffff;stop-opacity:1"
offset="0"
id="stop95" />
<stop
style="stop-color:#f7fbff;stop-opacity:1"
offset="0.0862"
id="stop97" />
<stop
style="stop-color:#e2eeff;stop-opacity:1"
offset="0.2177"
id="stop99" />
<stop
style="stop-color:#c0dbff;stop-opacity:1"
offset="0.3779"
id="stop101" />
<stop
style="stop-color:#8fbfff;stop-opacity:1"
offset="0.56089997"
id="stop103" />
<stop
style="stop-color:#529cff;stop-opacity:1"
offset="0.76310003"
id="stop105" />
<stop
style="stop-color:#0871ff;stop-opacity:1"
offset="0.97839999"
id="stop107" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="1"
id="stop109" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0.6158" />
<a:midPointStop
style="stop-color:#006DFF"
offset="1" />
</linearGradient>
<path
d="M 51.083,96.599 C 51.083,97.141 51.083,99.667 51.083,103.599 C 82.419,103.599 194.529,103.599 197.884,103.599 C 197.884,106.846 197.884,181.163 197.884,204.734 C 202.511,204.734 205.39,204.734 205.884,204.734 C 205.884,200.946 205.884,100.387 205.884,96.599 C 202.035,96.599 54.933,96.599 51.083,96.599 z "
style="fill:url(#XMLID_22_)"
id="path111" />
<path
d="M 132.455,30.044 C 126.885,30.044 122.355,34.574 122.355,40.143 L 122.355,158.953 C 122.355,164.521 126.885,169.053 132.455,169.053 L 237.008,169.053 C 242.576,169.053 247.108,164.522 247.108,158.953 L 247.108,40.143 C 247.108,34.574 242.577,30.044 237.008,30.044 L 132.455,30.044 z "
style="fill:#003366"
id="path113" />
<linearGradient
x1="158.8916"
y1="73.708504"
x2="299.68201"
y2="214.4994"
id="XMLID_23_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#ffffff;stop-opacity:1"
offset="0"
id="stop116" />
<stop
style="stop-color:#99ccff;stop-opacity:1"
offset="1"
id="stop118" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0" />
<a:midPointStop
style="stop-color:#FFFFFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#99CCFF"
offset="1" />
</linearGradient>
<path
d="M 132.455,35.984 C 130.162,35.984 128.295,37.85 128.295,40.143 L 128.295,158.953 C 128.295,161.246 130.162,163.111 132.455,163.111 L 237.008,163.111 C 239.301,163.111 241.166,161.246 241.166,158.953 L 241.166,40.143 C 241.166,37.85 239.301,35.984 237.008,35.984 L 132.455,35.984 z "
style="fill:url(#XMLID_23_)"
id="path120" />
<path
d="M 205.523,86.479 C 216.566,76.124 229.841,71.031 244.136,68.5 L 244.136,40.143 C 244.136,36.206 240.943,33.014 237.007,33.014 L 132.455,33.014 C 128.517,33.014 125.326,36.206 125.326,40.143 L 125.326,125.251 C 154.779,127.473 182.639,106.979 205.523,86.479 z "
style="opacity:0.4;fill:#ffffff"
id="path122" />
<linearGradient
x1="141.7061"
y1="66.528297"
x2="239.2188"
y2="164.041"
id="XMLID_24_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#0053bd;stop-opacity:1"
offset="0"
id="stop125" />
<stop
style="stop-color:#00008d;stop-opacity:1"
offset="1"
id="stop127" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0.5" />
<a:midPointStop
style="stop-color:#00008D"
offset="1" />
</linearGradient>
<path
d="M 207.885,86.599 L 122.355,86.599 L 122.355,96.599 C 162.027,96.599 203.855,96.599 205.885,96.599 C 205.885,98.946 205.885,138.441 205.885,169.053 L 215.885,169.053 L 215.885,94.599 C 215.885,90.181 212.303,86.599 207.885,86.599 z "
style="opacity:0.2;fill:url(#XMLID_24_)"
id="path129" />
<linearGradient
x1="164.1201"
y1="89.542"
x2="164.1201"
y2="184.68871"
id="XMLID_25_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#c9e6ff;stop-opacity:1"
offset="0"
id="stop132" />
<stop
style="stop-color:#006dff;stop-opacity:1"
offset="0.55620003"
id="stop134" />
<stop
style="stop-color:#0035ed;stop-opacity:1"
offset="1"
id="stop136" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0" />
<a:midPointStop
style="stop-color:#C9E6FF"
offset="0.5" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5562" />
<a:midPointStop
style="stop-color:#006DFF"
offset="0.5" />
<a:midPointStop
style="stop-color:#0035ED"
offset="1" />
</linearGradient>
<path
d="M 122.355,158.953 C 122.355,164.521 126.885,169.053 132.455,169.053 L 205.885,169.053 C 205.885,138.442 205.885,98.947 205.885,96.599 C 203.856,96.599 162.028,96.599 122.355,96.599 L 122.355,158.953 L 122.355,158.953 z "
style="opacity:0.2;fill:url(#XMLID_25_)"
id="path138" />
<linearGradient
x1="185.8848"
y1="86.066902"
x2="185.8848"
y2="228.0708"
id="XMLID_26_"
gradientUnits="userSpaceOnUse">
<stop
style="stop-color:#0053bd;stop-opacity:1"
offset="0"
id="stop141" />
<stop
style="stop-color:#00008d;stop-opacity:1"
offset="1"
id="stop143" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0" />
<a:midPointStop
style="stop-color:#0053BD"
offset="0.5" />
<a:midPointStop
style="stop-color:#00008D"
offset="1" />
</linearGradient>
<path
d="M 181.885,96.599 L 181.885,202.734 C 181.885,203.837 180.989,204.734 179.885,204.734 C 184.268,204.734 188.244,204.734 191.705,204.734 C 191.814,204.083 191.885,203.417 191.885,202.734 L 191.885,96.599 C 188.916,96.599 185.557,96.599 181.885,96.599 z "
style="opacity:0.3;fill:url(#XMLID_26_)"
id="path145" />
<path
d="M 122.355,96.599 L 122.355,103.599 C 159.458,103.599 195.991,103.599 197.885,103.599 C 197.885,105.771 197.885,139.741 197.885,169.053 L 205.885,169.053 C 205.885,138.442 205.885,98.947 205.885,96.599 C 203.855,96.599 162.027,96.599 122.355,96.599 z "
style="opacity:0.2;fill:#ffffff"
id="path147" />
<rect
width="256"
height="256"
x="0"
y="0"
style="fill:none"
id="_x3C_Slice_x3E_" />
</g>
</g>
</g>
</svg>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
width="48pt"
height="48pt"
viewBox="0 0 48 48"
style="overflow:visible;enable-background:new 0 0 48 48"
xml:space="preserve"
id="svg589"
sodipodi:version="0.32"
sodipodi:docname="/home/david/Desktop/action/filesaveas.svg"
sodipodi:docbase="/home/david/Desktop/action"
xmlns="http://www.w3.org/2000/svg"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:xlink="http://www.w3.org/1999/xlink">
<defs
id="defs677">
<defs
id="defs796" />
<sodipodi:namedview
id="namedview726" />
<metadata
id="metadata711">
<sfw>
<slices>
<slice
x="0"
y="0"
width="256"
height="256"
sliceID="124333141" />
</slices>
<sliceSourceBounds
x="0"
y="0"
width="256"
height="256"
bottomLeftOrigin="true" />
<optimizationSettings>
<targetSettings
fileFormat="PNG24Format"
targetSettingsID="0">
<PNG24Format
transparency="true"
includeCaption="false"
interlaced="false"
noMatteColor="false"
matteColor="#FFFFFF"
filtered="false" />
</targetSettings>
</optimizationSettings>
</sfw>
<xpacket>
begin='' id='W5M0MpCehiHzreSzNTczkc9d'</xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xap:CreateDate>
2004-01-26T11:58:28+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-28T20:41:40Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-16T23:58:32+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqlvmDzFo
3l7TJdT1e5W1tItuTbszHoiKN2Y+AxV4j5g/5ydvTcMnl/SYlgU0Se/LOzDxMcTIF/4M4qk//QzP
nv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8
sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5F
XH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/so
xV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hm
fPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5FXH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A
5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/
8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxVFad/zk75oS4B1HSbG4t+
6W/qwP8A8E7zj/hcVeyeRfzJ8tec7Vn0yUx3kQBuLCaizJ25AAkMlf2l+mmKsqxV2KuxV2KuxV2K
vm/XDqf5ufmk+j287Q+XtJLqJF3VIY2CSzAHYvM9AvtTwOKvePLfk/y35bs0tdHsYrZVFGlCgyuf
GSQ/Ex+ZxVOK4q6oxVrkMVdyGKu5jFWvUGKu9RffFWvVX3xV3rL74q71l8DirXrp4HFXfWE8DirX
1hPA4q76yngcVd9Zj8D+GKtfWo/A/hirvrcfgfw/rirvrcfgfw/rirX1yLwb8P64q765F4N+H9cV
d9di8G/D+uKtfXovBvw/riqVa/5X8r+abR7TV7GO55CiyMoWZP8AKjkHxKR7HFXzB5n0XXfys8/R
NZXBJgIudOujsJYGJUpIB8ijj+oxV9VeWtfs/MGhWWsWf9xexLKErUoxHxI3up2OKplirsVdirsV
Q+oMy2Fyy/aWJyvzCnFXhP8AziwqvL5nmYcpQLIBz1oxuC2/uVGKvficVaxVrFWicVaJxVrFWsVa
JxVonFWsVaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVdCSJkp/MP14q8V/5ypRBJ5ZkCjm
wvVZu5CmAgfRyOKsn/5x3vJX8lwWzElQZmSvbjMR/wAbYq9XxV2KuxV2KofUv+Oddf8AGGT/AIic
VeE/84pn/lKP+jD/ALGcVe+nFWsVaJxVonFWsVaxVonFWicVaxVrFWsVaJxVrFWsVaJxVonFWsVa
xVonFWicVaxVrFWicVXQ/wB9H/rD9eKvFv8AnKw/8ov/ANH/AP2LYqn/APzjn/yisHyuP+T4xV6/
irsVdirsVQ+pf8c66/4wyf8AETirwf8A5xRNf8U/9GH/AGM4q9+PXFWicVaJxVrFWsVaJxVonFWs
VaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVonFWicVXQ/30f8ArD9eKvFf+crjT/C3/R//
ANi2Ksg/5xy/5RS3+Vx/yfGKvYMVdirsVdiqH1L/AI511/xhk/4icVeDf84nmv8Ain/ow/7GcVe/
HrirROKtYq1irROKtE4q1irWKtYq0TirWKtYq0TirROKtYq1irROKtE4q1irWKtE4q0TirWKroP7
+P8A1h+vFXiv/OWBp/hb/o//AOxbFWQf844f8onb/K4/5PjFXsOKuxV2KuxVD6l/xzrr/jDJ/wAR
OKvBP+cTD/ylX/Rh/wBjOKvf2O5xVrFWsVaJxVonFXln5ofnxoPk9pNM05V1XX1qrwK1IYD/AMXO
v7X+Qu/iRmNm1IhsNy7vs7sWef1S9MPtPu/W+fdS81/mp5+uWaS6urm3ZivoQH6vZoaV4mhSKtP5
zXNXn1dbzlT1uDQ6fAPTEX8z+tX8r+Z/Pf5Xa5azXMUo0+evrac8oe3njGz8GQugkWoNRuNq7GhO
m1Q5xNhhrNHh1cDH+Ideo/Y+q/KfnXRfM+nw3umyVinXkgPXbZlPgynqM3UJiQsPAajTzwzMJiiE
+yTS1irROKtE4q1irWKtE4q0TirWKtYq0TirROKtYq1iq6A/v4/9Zf14q8U/5yzP/KK/9H//AGLY
qyH/AJxv/wCUSt/lcf8AJ/FXsWKuxV2KuxVD6l/xzrr/AIwyf8ROKvAv+cSj/wApV/0Yf9jOKvoB
upxVrFWicVaJxV4h+fH50yaCJPK/l2amsSLTUL1DvbI4qET/AItYGtf2R79MPU6jh9I5vSdi9keL
+9yD0dB3/s+95B5J/L5tQC6rrQZ4JgJLe2JPKXlv6krdeJ6qK1br0+1zGu7S8P0w3l937Xryeg5P
W7GwRESONFSNAFjjQBVVR0CqKAD2GaCUpTNyNlxpzA5Jlr3ky01XQTYapDytrj4gw2kikH2HQkfC
wH8QdiRncdk9ncOmqW0pG/c8jqe1JQ1PHjO0dvIvF/L+u6/+Vvm19PvuUmnyMryqlaPGTRLiCtPi
FKHxoVPTaeHMcciO40XoNTpsfaGATjtLp+o/jzfVXlnzJY67psN3bSrKJUEiOvR1P7Q/iOxzbRkC
LDw2XHKEjGQqQTgnCwaJxVrFWsVaJxVonFWsVaxVonFWicVaxVrFWicVXwf38f8ArL+vFXiX/OWp
/wCUV/6P/wDsWxVkX/ONv/KI23yuf+T+KvY8VdirsVdiqH1L/jnXX/GGT/iJxV4D/wA4kGv+K/8A
t3/9jOKvoFvtH54qtJxVonFWMfmT5vXyj5M1LWwA1xDGEs4z0aeUhI6juAzcm9gcryz4YkuZ2fpf
HzRh0PP3PkvyBob+ZPMFzqWpt9aS3YT3Pq0czTzMSvME7glWZutaUPXOY7R1RxQ2+qX4t9GkBECI
2H6HtlraEmp3J3JOcsBbjZMjItDtrU3a+oQWT4lQ9GI7Z1HY/YxmRlyD0dB3/s+/3PM9p9p1cIHf
qe5mUsMV5CSAC1KMh751s5iIsvOAW87/ADA8gadr+mtY3i8WXk1hegVkglI/FTQc16MPAgEeXajX
ZtNq5ZpbwyHcfo946PXdn5/DiBHp073j/kXzlrX5ceZZNB1rktgJfiZakRM2wnjJA5RuPtDw361B
7fQ62MoiUTcJOX2n2fHVw8SH94Pt8i+qNH1i11SzS4gdW5KGPA8lIYVDKR1U9jm5BeHlEg0eaOxQ
1irROKtE4q1irWKtE4q0TirWKtYq0TirROKr4P7+P/XX9eKvEv8AnLc0/wAKf9vD/sWxVkf/ADjX
/wAofbfK5/5P4q9jxV2KuxV2KofUv+Oddf8AGGT/AIicVfP/APziMa/4r/7d/wD2M4q+gm+0fniq
0nFWsVedfn15Y1LzF+Xlzb6chlurOaO8WAbtIsQZWVffi5I+WUamBlDZ2vYupjh1AMuRFPn78qPM
lrYm40e4iIuJpDNCxNAxChWjpTZhxqPHfw35/P2fHUyAMuCvK/1PXdpZp4o+JEcUevf7/c9Xt9Qk
moFURr4Dc/fm30Xs/gwnil65efL5frt43Vdq5cuw9I8v1ptbB6rwryG4I7ZstXq8WngZ5JCMR3/j
d1+PHKZqIssu0fUGZQrn9+o+LwYZwp9pBq8hEPTGPIHr5/s6O1/I+HHfcpndWsN3CSBWv2l/z75b
qtNDUQJq+8fjqxx5DAvKfzN/LO08x2fAkQapbqTp98QeJHUxTUqSh+9TuO6tzej1U+z8vBPfDL8X
7+96HR6wjccuoed/lX+Y+p+TtZPlrzCWtoIpDHE02wt3O5R/GJ67GtB16bj0PSaoUN7ieRYdr9mD
PHxsX1df6X7Q+oLC/hvbdZoj7MvcHwzaPGognFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVX2/wDv
RF/rr+vFXiP/ADlyaf4U/wC3h/2LYqyT/nGr/lDrb5XP/URir2TFXYq7FXYqh9S/4511/wAYZP8A
iJxV8+/84hn/AJSz/t3/APYzir6Dc/Efniq3FWsVWnf5Yq+d/wA+PydeGWTzf5ahKnl6mpWkIPIP
Wvrx07/zU+fXrg6nT/xB6rsTtblhynb+E/o/V8kF+VXnTStfC6bqf7rW0X4BXilyqipZAOjgCrL9
K7VC6HtjtPXYcXFhIqPPaz79/wBSdb2Ljxz4gPQfs8vd3fLuvqaRJGKIoUe2ebavX5tRLiyzMz5/
o7lx44wFRFLlLIwZTRhuCMx4TMSCNiGZF7FP9M1H1BXpIPtr4+4zs+yu0+Mf0hzH6XW6jBXuRd9Z
Q3UJIFVO5p1B8R75s9do4ajGSOR/FtGHKYF41+bP5W/p+3N3Yqkeu2y/umPwrcxiv7pmNArfyMfk
djVdJ2br5aLJ4OX+7PI937O/uei0WsEf6v3Md/Jr81b3S75PLGvM0c0bfV7V56q3JW4/VpeW6sDs
len2fDPQ9LqOh+Dhds9lgjxsXvIH3j9PzfSFtdQ3MCzRGqt94Pgcz3lVTFWsVaJxVonFWsVaxVon
FWicVaxVrFV9uf8ASIv9df14q8Q/5y8P/KJ/9vD/ALFsVZL/AM40f8oba/K5/wCojFXsuKuxV2Ku
xVD6l/xzrr/jDJ/xE4q+fP8AnEE/8pZ/27/+xnFX0G/2j8ziq3FWsVaJxVZIiOjI6hkYEMp3BB6g
4q+Yvzr/ACku/K+of4r8sq8enGQSzRw1DWsla81p+wT93yzXanT16hyex7H7UGWPg5dz0vr5Hz+9
l35Z/mFaeatMEM7LHrVqg+t2/Tmo29aPxUnr/Kdj1Unzbt3sbwScuMfuzzHd+z7vcy1OnOGVfwnk
f0Hz+/5s0IzmGm243eNw6GjL0OW4ssschKPMLIAiiyDTtQWReQ6/7sTw9xnb9l9piYsfEOrz4KVd
R0+K5hLDodwR2PjmV2l2fDPCxy+78dWGDMYF4X+cX5Wzamr61pMBOs261ubeMfFdRrQBkp1kQDYd
WGw3AB13ZHaUsE/y+fl/Cf0e7u7uT0mi1YGx+k/Yu/JL83pLgx6Hq8pa+ReMMjH/AHoRR3J/3ao/
4Ie+eg6fPfpPN0/bPZXhk5cY9HUd37Pue+xTRzRrLGwZGFVYZlvOricVaJxVrFWsVaJxVonFWsVa
xVonFV9v/vRF/rr+vFXiH/OXx/5RP/t4f9i2Ksl/5xn/AOUMtflc/wDURir2bFXYq7FXYqh9S/45
11/xhk/4icVfPX/OH5r/AIt/7d//AGNYq+hH+23zOKrcVaJxVrFWsVUbq2t7u3ktrmNZYJlKSxuK
qynqCMUgkGw+VPzW/LbV/wAvNfj8xeXnkj0ppfUt7iPrbSMT+6bqCjVoK7EfCffVarTAXtcS9r2X
2jHVQ8LL9f8AuvP3/wBoeofl/wCeLHzboy3KFY9QgAS/tQd0c9CK78XpVfu6g55j232OdNLjh/dH
7PL3d32+dObFLFPhPwPf+3vZORmga7XQyyQyB0NCPxHgcvwZ5YpCUeaJREhRZDYXySIGH2T9te4O
d32b2jGcbHLqO51ebCQWtT02OePkvzVvD+zB2r2ZHLGx8D3fsTp85iXz3+cn5aTQyzea9EjMN3A3
ranBF8P2fiN0lKUYUq9Ov2v5iYdi9rSEvy+baY+k9/l+rvek0epBHAd4nl+r8e5lP5L/AJuLrFuN
M1RwupQj96NgJVH+7Y18R+2o+Y8B3eDPxCjzed7W7MOCXHD+7P2fjo9oV1ZQykFWFQR0IOZLpXYq
1irROKtE4q1irWKtE4q1iq+2/wB6Iv8AXX9eKvD/APnMA0/wl/28P+xXFWTf84y/8oXafK5/6iMV
ez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+eP+cPTX/Fv/bu/wCxrFX0K/22+ZxVaTirWKtYq0TirROK
oPVdLsNV0+fT7+Fbi0uFKSxOAQQfngIvYsoTMSJRNEPlHzr5S8yflN5ui1TSJGbTJWItJ2+JHQ7t
bzgEV6fxBBFc0+r0kSDGQuEnuNFrIa3Fwz+sc/8Aih+PseyeTvOOneaNFi1K0+BvsXNsTVopQAWQ
mgqN9jTcfdnmHa/ZEtLOxvjPI/oP43+biZMRhLhlz+8d/wCOSfBlOaWmFK1vO8EgdOn7Q7EZk6XV
Swz4o/HzYTgJCiyGyvI5Iwa1jbqD2Pvne9n6+M4f0D9jq8uIg+ahqmmCQB02cfYb+BzF7W7L4xxR
+ocj+j9TZp9RWxfNv5qfl1deWb//ABb5YBtIYZBJd28VB9WlJp6kQ6ekxNCnRe3wmi5XYnbByfus
m2aP21+nv+b0mnzxyx8Oe4P2/j8bvTfyh/Naz8xaeLe6ZYb+EAXNvX7J6eqlf91sf+BP3ntsOYTH
m8r2n2dLTz23geR/Q9TrXfLnWNE4q0TirWKtYq0TirWKtYqvtv8AemL/AF1/Xirw7/nMI0/wl/28
f+xXFWUf84x/8oVafK5/6iMVez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+d/wDnDo/8pd/27v8AsaxV
9CyH42+ZxVbirWKtE4q0TirWKtYqlXmXy5pXmPR7jSdThE1rcLxNeqnsynsR45GURIUW3DmlimJx
NEPlbU9P80flB5zPEG4024+yGNI7q3B6EgfDInZqbHxBIOk1uijOJhMXEvb6fPj12K+U4/Yf1F7Z
5e8yabrulQ6np0hktph0YUdHH2o5F3oy9/vFQQc8x7T7MnpcnCd4nke/9rimBBMZfUPx8k2SfNWY
sTBF2d8YJOQ3U/aXxzK0erlgnY5dQ0ZcPEGSWl1HLGBXlG3Q+Htne6LWRyQA5wLqcuMg+aB1nSI5
43BRXDqVZGAKupFCrA7GozWdrdmSvxMe0xyP469zkabUVsXzJ598j6r+XutxeZfLbOulep9glmNs
7HeCWpq8T9FY7/stvRm2/YnbH5gVL05o8x3+f63ooThqIHHk3v7fP3vbPyu/MnT/ADPpMZDenMlE
mgY7xSU+yT3U/sN/mOwxZRMW8frtFLTz4Ty6HvegE5Y4TWKtYq0TirWKtYq1iq+2P+kxf66/rxV4
d/zmKf8AlEf+3j/2K4qyj/nGL/lCbT5XX/URir2jFXYq7FXYqh9S/wCOddf8YZP+InFXzr/zhwf+
Uv8A+3d/2NYq+hpPtt8ziq3FWicVaJxVrFWsVaJxVonFWP8AnbyZpHm7QptK1JNm+KCcfbikH2WU
5CcBIUXI0upngmJw5vmCxuvMX5T+b59M1SJptOmI+sInSWIfZnhJ25rXpX2PY5oNfoI5YnHMbfjc
PbRnDV4xOG0x9nkfL+17fp2q2V/Zw31jOtxZ3C84Jk6MvTvuCCKEHcHY755rrtDPT5DCXwPeGiO/
MURzCNSf3zBMUGCP0/U2t3od4m+0v8RmZodYcEv6B5/rcXNp+IebKbW6jmjCkhkYfA2d1pdRHJHh
O4PIumyYzE2lXmLQLW+tZ7e4hWaC4Ro54W6SIwoRt3pmk7T7PniyDNi2nHf3/j7XK02or8cnzF5l
8va/+VvmmPVtKLTaJcMVgkapVlO7W1xTo4pVT+0ByG4YL0fY3a8dRDiG0x9Q/HR38hDVYzCfP8bh
9C/l9580zzPpENxby8uXw0enNXHWOQfzD8RvnUwmJCw8ZqtLPBMwl/ay7JuM0TirWKtYq1irROKq
lt/vTF/rr+vFXhn/ADmOf+UQ/wC3j/2K4qyn/nGD/lB7P5XX/UTir2nFXYq7FXYqh9S/4511/wAY
ZP8AiJxV85/84bGv+L/+3d/2NYq+iJP7xvmcVWE4q0TirWKtYq0TirROKtYq1irEPzJ/LzS/Ouhv
Z3AEV9EC1jd03jkp38VPcZXlxiYouZodbPTz4o8uo73zh5W17Vvy68y3Pl7zDG8envJ/pCgEiNzR
VuYtqspAo1Oo9xTOd7R7OjngYT59D3PZkxzwGXFz+/8Aon8be57ZFco6JJG6yRSKHilQhkdGFVZW
GxBG4Oec6nSzwzMJjcMIESFhXSf3zFMUGCaaXqxt34SGsLf8KfHNhoNacJ4ZfQfscPUabiFjmy23
uUnjEbmtRVG8c7fDljljwy+BdJPGYmwx7zZ5asdU0+5sr2AT2lyvG4hP7QrUMpHRlIrUdDnPa3SZ
NNl8fD9Q5+Y/HP8AW52l1HL7HzS6+Yfym83ru1zpF38SOPhS4hU9uoWaLluO1f5WFet7K7TjngJw
+I7vx0dxqMENXjo7SH2fsL6X8n+btO8xaXBdWswlWVOSOOrAdQR2dejDOhjISFh4rNhlikYyFEMg
yTU1irWKtE4q1iqpa/70xf66/rxV4X/zmSaf4Q/7eP8A2K4qyr/nF/8A5Qaz+V1/1E4q9qxV2Kux
V2KofUv+Oddf8YZP+InFXzl/zhoa/wCMP+3d/wBjWKvoiT+8b5n9eKrCcVaxVrFWicVaJxVrFWsV
aJxVonFWAfm1+V1j510gtEFh1u1UmzuSOvcxvTs2U5sQmPN2PZ3aEtPO+cDzDwbyD5vv/K2qyeVv
MnK2s1kKIZtvqkxJJ3/31ITv2B+IftV5rtPs2OojR2mOR/HR6+dSAy4975+Y/WP2e7sPqMjFW2Iz
gM2CWORjIVIMokSFjkqpP75QYoME40fWfQYQzN+6J+Fv5T/TNp2drvDPBL6fucDVaXi3HNmEMyXM
fpuaOPsnxzsYSGaPDLm6KUDA2OTCfzD8nWes6Df2VzErRtG8kZYf3M6IxjmSm/wnw6io6EjNHDSZ
NNqRPH9Mj6h5d7tdFqLIHX8bPA/yY8z3eh+Y59HuGeOK4LERmtY7mHqQOx4g8vGgzuNLOjXe2du6
cTxDIOcfuL6k0fU0v7USbeotA9Ohr0I+ebB5FHYq0TirWKtYqqWv+9UP+uv68VeF/wDOZZp/g/8A
7eP/AGK4qyr/AJxd/wCUFs/ldf8AUTir2vFXYq7FXYqh9S/4511/xhk/4icVfOH/ADhia/4w/wC3
b/2NYq+iZT+8b5n9eKrMVaxVonFWicVaxVrFWicVaJxVrFWsVeWfnR+Ulv5ssG1XTI1j1+1QlSBT
6wij+7b3/lOY+fDxCxzdt2X2kcEuGX92fs83kv5c+e7m1nTyr5hYxGFvQ0+5m2eJwaC2lr+xXZCf
s9Ps048x2p2YM8bG2SP2+RerkBH95DeJ5/8AFD9Pf7+fT+boxVgQymhB6gjOGnjMSQRRDkCpCxyK
qk+VmLEwT/Q9c9Nlt5noP91SE9D4H2zb9na4xIhI+4us1mkv1D4ppqdy+tXUGiwL3EmoTDokSmvH
5tnWwHjECveXCwQGnic0vdEd5/Y+b/zp0N/J/wCa0moWqFLW9dNTtlGwJdv3yV95Fb6DmzPplYc7
QZBqNNwy84l7d+Xmrxy8FR+UMyj02HQq45Ic2gNi3jJwMZGJ5hn5OFi1irWKtYqqWp/0qH/XX9Yx
V4V/zmcaf4P/AO3l/wBiuKsr/wCcXP8AlBLL5XX/AFE4q9sxV2KuxV2KofUv+Oddf8YZP+InFXzf
/wA4Xmv+Mf8At2/9jWKvomX+8f5n9eKrMVaJxVonFWsVaxVonFWicVaxVrFWicVaJxV4t+eP5PLr
UMnmPQYQNWiWt5bIAPrCj9r/AFwPvzFz4OLcc3edk9p+EfDmfQfs/Ywv8tvzA/SSxeXtaYrq0Q9O
xu3/AN3hf90yk9JV/ZY/a6H4qcuU7W7L8YccP7wfb+3u+Xc9IR4J4h/dnn/R8x5d/dz72frG7EhQ
aru3sPE+GcfHHKRoCy5RkEdpunXd7MI7YBiDR5m/uk+n9o/575vdB2OSbn8unxcXU6mGIXL5dT+p
6JoOmWmmWxiiq8kh5Tzt9uRvE/wzstPjjAUHkdZqp5pWeQ5DueX/APOT3lb9I+TbbXYUrcaNMPVY
Df6vcEI3Twk4H78syDZzexM/DkMDyl94Yb+TmvPLpFoC/wC9tHNsxP8Ak0eL8CBmVppXH3ON21g4
M5PSW76DhmWaFJV+y6hh9IzIdSuxVrFWicVVLX/eqH/XX9YxV4V/zmgaf4O/7eX/AGK4qyz/AJxa
/wCUDsvldf8AUScVe2Yq7FXYq7FUPqX/ABzrr/jDJ/xE4q+bf+cLTX/GP/bt/wCxrFX0VL/ev/rH
9eKrCcVaJxVrFWsVaJxVonFWsVaxVonFWicVaxVo74q8F/Or8k5by5fzF5ZhUTSVa/sRRQTSvqJ2
BP7Vdu+YmfT3vF6DsvtcYxwZPp6Hu/Y8z078w/O3lu9S31pJNQiiP+8uoF2ald/Tlrypttuy+2az
Jpo3uKL0UTHJD93Kr6int3kj85vJmuCO09UaTemgW0ueKKT4RyD4G9gaE+GARMXn9XoMsSZH1eb0
yC498thN1UosQ/OLz35a0DyZfWWrD61catby21rpyMBJJzUqXrvwVK15U69N8zcOM5Nujjz1XgET
/iB2fOf5VambLX7jTy443KcomFfikhPJSvzQscGnPDMxL0na4GbTxyx8j8JfgPqjytei50xd907e
zbj8a5nPLJvirROKtYqqWv8AvVD/AK6/rGKvCf8AnNI0/wAHf9vL/sVxVlv/ADix/wAoFY/K6/6i
Tir23FXYq7FXYqh9S/4511/xhk/4icVfNf8AzhWf+Uy/7dv/AGN4q+i5T+9f/WP68VWE4q1irWKt
E4q0TirWKtYq0TirROKtYq1irROKtHFWGeavy30fW0k9S3jkVqt6bAAhj3Unb78jKIPNtw554zcC
QXiHm38h720keTSXIpU/Vpq9P8k7n/iWYs9L/Nd/pe3jyyj4j9SRaL+Yv5leRD9RmZ3tACkdregy
xrtt6T1qvH+UNTxGYksfCdw7GeDBqomUCL7x+kMO1rVNX1/UpdS1C8e/vpz8bSbP2oqoPhCitFVP
uGbXBqMdUPS8V2j2JqcRMj+8j3j9I6fc1peoyWGoWGpLXnbSKJAD8TCMio9gYzx+/MbVR4MgkOrv
/Z/MM+klhPOO3wPL7bfV/wCX+pKzCIMGRxRSOhDfEp/XmWC6GUSDRZ2TihrFWsVVLT/euH/jIv6x
irwj/nNQ/wDKG/8Aby/7FMVZd/ziv/ygNj8rr/qKOKvbsVdirsVdiqH1L/jnXX/GGT/iJxV80/8A
OFBr/jL/ALdv/Y3ir6MmP71/9Y/rxVZirWKtE4q0TirWKtYq0TirROKtYq1irROKtYq1irWKqc0M
MyGOVA6HsRXFWMa/5B0jVIXR4kdXFDHKKinhy6/fXAQDzZwySgbiaLxjzh+QZiZ5tKZrdzUiB94y
dzsf6H6Mxp6UHk7vS9uTjtkHEO/q8r1vy75k0ovb39rII0IZpgvJaLVVJelQKdA2Y8xMCjydxpZ6
aczkx0Jy59D8R+l7H+T2vNNo9i3KsttW2fsAYqGP/hOOZmnlcXnO18PBnPdLf8fF73HIskayL9lw
GX5EVy51jeKtYqqWh/0uH/jIv6xirwf/AJzXNP8ABv8A28v+xTFWX/8AOKv/AJL+x+V3/wBRRxV7
firsVdirsVQ+pf8AHOuv+MMn/ETir5o/5wmNf8Z/9u3/ALG8VfRs396/+sf14qp4q0TirROKtYq1
irROKtE4q1irWKtE4q1irWKtYq0TirWKtYqskRJFKuoZT1UioxVI9V8o6ZfIQEUH+VxyX6O6/Rir
EW8gNpk0k1lEYjI4kbiOalhtUkfF274AAGc8kpVZJpnukpLHYRLIQSBVSO6ncdfnhYIvFWicVVbT
/euD/jIv/Ehirwb/AJzZNP8ABn/by/7FMVZf/wA4qf8AkvrD5Xf/AFFHFXuGKuxV2KuxVD6l/wAc
66/4wyf8ROKvmb/nCQ/8pn/27P8AsbxV9HTf3z/6x/XiqmTirROKtYq1irROKtE4q1irWKtE4q1i
rWKtYq0TirWKtYq1irROKtYq1irWKtE4q1iqrZ/71wf8ZF/4kMVeC/8AObZ/5Qz/ALef/YpirMP+
cUv/ACXth8rv/qKOKvccVdirsVdiqH1L/jnXX/GGT/iJxV8y/wDOER/5TT/t2f8AY3ir6OnP75/9
Y/rxVTJxVrFWsVaJxVonFWsVaxVonFWsVaxVrFWicVaxVrFWsVaJxVrFWsVaxVonFWsVaxVVs/8A
eyD/AIyL/wASGKvBf+c3T/yhf/bz/wCxTFWY/wDOKH/kvLD5Xf8A1FHFXuOKuxV2KuxVD6l/xzrr
/jDJ/wAROKvmP/nB81/xp/27P+xvFX0fOf30n+sf14qp4q1irROKtE4q1irWKtE4q1irWKtYq0Ti
rWKtYq1irROKtYq1irWKtE4q1irWKtYqq2Z/0yD/AIyJ/wASGKvBP+c4DT/Bf/bz/wCxTFWZf84n
/wDku9P+V3/1FHFXuWKuxV2KuxVD6l/xzrr/AIwyf8ROKvmD/nCCRUn86W7njORpzCM7NRDdBtvY
sK4q+kbiomkr/Mf14qp4q0TirROKtYq1irROKtYq1irWKtE4q1irWKtYq0TirWKtYq1irROKtYq1
irWKtE4qrWIJvIABU81P3GuKvAP+c4ZozL5MiDAyIupOydwrG1Cn6eJxVm3/ADieGH5dafUEHjdn
fwN0SMVe5Yq7FXYq7FVskayRtG32XBVvkRTFXxjrN7rf5Efnjca1FbNP5e1ZpDLAtFWW2mcPLGld
g8MlGT2p2JxV9U+U/PHknzvp8d/5f1SG8DrV4UcLcRnussJ+NCPcfLbFU8/R0X8zfhirv0bF/M34
Yq1+jIv52/DFXfoyL+dvwxV36Lh/nb8MVa/RUP8AO34Yq79FQ/zt+H9MVa/RMP8AO34Yq79Ew/zt
+GKu/REH87fh/TFWv0PB/O34f0xV36Hg/nb8P6Yq79DQfzt+H9MVa/QsH87fh/TFXfoWD/fj/h/T
FWv0Jb/78f8AD+mKu/Qdv/vx/wAP6Yq1+g7f/fj/AIf0xV36Ct/9+P8Ah/TFXfoK3/34/wCH9MVa
/QNv/vx/w/pirv0Bbf78f8P6Yqk3mfzh5E8iWEuoa9qcNpxUlIpHDXEngsUK/G5PsPntir4i/MXz
tr35wfmQtxa27Rxy8bTSbImvo2yEtykI2qas7n6OgGKvsf8AJ7y5HoWhW1jAP3NpbpEGIoWJp8R9
24VPzxV6FirsVdirsVdirE/zG/Lfy/560OTTNViUvSsE9KsjjoR3+7FXyP5v/wCcW/Nuk3rpYTLL
ASfTMwYrx9pIw1fpQYqx3/oXzz942v8AwU//AFSxV3/Qvnn7xtf+Cn/6pYq7/oXzz942v/BT/wDV
LFXf9C+efvG1/wCCn/6pYq7/AKF88/eNr/wU/wD1SxV3/Qvnn7xtf+Cn/wCqWKu/6F88/eNr/wAF
P/1SxV3/AEL55+8bX/gp/wDqlirv+hfPP3ja/wDBT/8AVLFXf9C+efvG1/4Kf/qlirv+hfPP3ja/
8FP/ANUsVd/0L55+8bX/AIKf/qlirv8AoXzz942v/BT/APVLFXf9C+efvG1/4Kf/AKpYq7/oXzz9
42v/AAU//VLFXf8AQvnn7xtf+Cn/AOqWKu/6F88/eNr/AMFP/wBUsVd/0L55+8bX/gp/+qWKu/6F
88/eNr/wU/8A1SxV3/Qvnn7xtf8Agp/+qWKu/wChfPP3ja/8FP8A9UsVd/0L55+8bX/gp/8Aqliq
L0z/AJxz85XFwEu54IIu7xiWRv8AgWWP9eKvevys/JPTPLg/0WEz3sgHr3UtC5HWjECiJ/kjr3xV
7vpthHY2qwpuert4se+KorFXYq7FXYq7FXYqtkijlUpIgdD1VgCPxxVCnRtLJ/3mT7sVd+htL/5Z
k/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/
AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+ht
L/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+
htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXDRtLB/3mT7sVRUcUcShI0CIOiqAB+GKrsVdirsV
f//Z</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xapMM:DocumentID>
uuid:4ee3f24b-6ed2-4a2e-8f7a-50b762c8da8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
mime.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>
end='w'</xpacket>
</metadata>
<linearGradient
id="XMLID_9_"
gradientUnits="userSpaceOnUse"
x1="128.9995"
y1="11"
x2="128.9995"
y2="245.0005">
<stop
offset="0"
style="stop-color:#494949"
id="stop717" />
<stop
offset="1"
style="stop-color:#000000"
id="stop718" />
<a:midPointStop
offset="0"
style="stop-color:#494949"
id="midPointStop719" />
<a:midPointStop
offset="0.5"
style="stop-color:#494949"
id="midPointStop720" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop721" />
</linearGradient>
<linearGradient
id="XMLID_10_"
gradientUnits="userSpaceOnUse"
x1="29.0532"
y1="29.0532"
x2="226.9471"
y2="226.9471">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop725" />
<stop
offset="1"
style="stop-color:#DADADA"
id="stop726" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop727" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop728" />
<a:midPointStop
offset="1"
style="stop-color:#DADADA"
id="midPointStop729" />
</linearGradient>
<linearGradient
id="XMLID_11_"
gradientUnits="userSpaceOnUse"
x1="-481.7007"
y1="-94.4194"
x2="-360.2456"
y2="-164.2214"
gradientTransform="matrix(0.1991 0.98 -0.98 0.1991 91.6944 573.5653)">
<stop
offset="0"
style="stop-color:#990000"
id="stop736" />
<stop
offset="1"
style="stop-color:#7C0000"
id="stop737" />
<a:midPointStop
offset="0"
style="stop-color:#990000"
id="midPointStop738" />
<a:midPointStop
offset="0.5"
style="stop-color:#990000"
id="midPointStop739" />
<a:midPointStop
offset="1"
style="stop-color:#7C0000"
id="midPointStop740" />
</linearGradient>
<linearGradient
id="XMLID_12_"
gradientUnits="userSpaceOnUse"
x1="-1375.9844"
y1="685.3809"
x2="-1355.0455"
y2="706.3217"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#F8F1DC"
id="stop743" />
<stop
offset="1"
style="stop-color:#D6A84A"
id="stop744" />
<a:midPointStop
offset="0"
style="stop-color:#F8F1DC"
id="midPointStop745" />
<a:midPointStop
offset="0.5"
style="stop-color:#F8F1DC"
id="midPointStop746" />
<a:midPointStop
offset="1"
style="stop-color:#D6A84A"
id="midPointStop747" />
</linearGradient>
<linearGradient
id="XMLID_13_"
gradientUnits="userSpaceOnUse"
x1="65.0947"
y1="-0.7954"
x2="137.6021"
y2="160.1823">
<stop
offset="0"
style="stop-color:#FFA700"
id="stop750" />
<stop
offset="0.7753"
style="stop-color:#FFD700"
id="stop751" />
<stop
offset="1"
style="stop-color:#FF794B"
id="stop752" />
<a:midPointStop
offset="0"
style="stop-color:#FFA700"
id="midPointStop753" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFA700"
id="midPointStop754" />
<a:midPointStop
offset="0.7753"
style="stop-color:#FFD700"
id="midPointStop755" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFD700"
id="midPointStop756" />
<a:midPointStop
offset="1"
style="stop-color:#FF794B"
id="midPointStop757" />
</linearGradient>
<linearGradient
id="XMLID_14_"
gradientUnits="userSpaceOnUse"
x1="-1336.4497"
y1="635.7949"
x2="-1325.3219"
y2="622.5333"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#FFC957"
id="stop763" />
<stop
offset="1"
style="stop-color:#FF6D00"
id="stop764" />
<a:midPointStop
offset="0"
style="stop-color:#FFC957"
id="midPointStop765" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFC957"
id="midPointStop766" />
<a:midPointStop
offset="1"
style="stop-color:#FF6D00"
id="midPointStop767" />
</linearGradient>
<linearGradient
id="XMLID_15_"
gradientUnits="userSpaceOnUse"
x1="-1401.459"
y1="595.6309"
x2="-1354.6851"
y2="699.4763"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#FFA700"
id="stop770" />
<stop
offset="0.7753"
style="stop-color:#FFD700"
id="stop771" />
<stop
offset="1"
style="stop-color:#FF9200"
id="stop772" />
<a:midPointStop
offset="0"
style="stop-color:#FFA700"
id="midPointStop773" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFA700"
id="midPointStop774" />
<a:midPointStop
offset="0.7753"
style="stop-color:#FFD700"
id="midPointStop775" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFD700"
id="midPointStop776" />
<a:midPointStop
offset="1"
style="stop-color:#FF9200"
id="midPointStop777" />
</linearGradient>
<linearGradient
id="XMLID_16_"
gradientUnits="userSpaceOnUse"
x1="67.8452"
y1="115.5361"
x2="144.5898"
y2="115.5361">
<stop
offset="0"
style="stop-color:#7D7D99"
id="stop780" />
<stop
offset="0.1798"
style="stop-color:#B1B1C5"
id="stop781" />
<stop
offset="0.3727"
style="stop-color:#BCBCC8"
id="stop782" />
<stop
offset="0.6825"
style="stop-color:#C8C8CB"
id="stop783" />
<stop
offset="1"
style="stop-color:#CCCCCC"
id="stop784" />
<a:midPointStop
offset="0"
style="stop-color:#7D7D99"
id="midPointStop785" />
<a:midPointStop
offset="0.5"
style="stop-color:#7D7D99"
id="midPointStop786" />
<a:midPointStop
offset="0.1798"
style="stop-color:#B1B1C5"
id="midPointStop787" />
<a:midPointStop
offset="0.2881"
style="stop-color:#B1B1C5"
id="midPointStop788" />
<a:midPointStop
offset="1"
style="stop-color:#CCCCCC"
id="midPointStop789" />
</linearGradient>
</defs>
<sodipodi:namedview
id="base" />
<metadata
id="metadata590">
<xpacket>
begin='' id='W5M0MpCehiHzreSzNTczkc9d'</xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xap:CreateDate>
2004-02-04T02:08:51+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-29T09:20:16Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-29T14:54:28+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXzd+b/wDzlWum3k+h+QxFc3EJMdzrkoEkKuNiLZPsyU/nb4fAEb50vZ/YXEBPLsP5v62meXue
A3v5mfmprl080vmLVriXdjHBcTIi17rFCVRfoXOghocEBQhH5NJmepUf8Tfmj/1dtb/6SLv/AJqy
f5fD/Nj8gjxPN3+JvzR/6u2t/wDSRd/81Y/l8P8ANj8gviebv8Tfmj/1dtb/AOki7/5qx/L4f5sf
kF8Tzd/ib80f+rtrf/SRd/8ANWP5fD/Nj8gviebv8Tfmj/1dtb/6SLv/AJqx/L4f5sfkF8Tzd/ib
80f+rtrf/SRd/wDNWP5fD/Nj8gviebv8Tfmj/wBXbW/+ki7/AOasfy+H+bH5BfE83f4m/NH/AKu2
t/8ASRd/81Y/l8P82PyC+J5u/wATfmj/ANXbW/8ApIu/+asfy+H+bH5BfE83f4m/NH/q7a3/ANJF
3/zVj+Xw/wA2PyC+J5u/xN+aP/V21v8A6SLv/mrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/wA1Y/l8
P82PyC+J5u/xN+aP/V21v/pIu/8AmrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/AM1Y/l8P82PyC+J5
u/xN+aP/AFdtb/6SLv8A5qx/L4f5sfkF8Tzd/ib80f8Aq7a3/wBJF3/zVj+Xw/zY/IL4nm7/ABN+
aP8A1dtb/wCki7/5qx/L4f5sfkF8Tzd/ib80f+rtrf8A0kXf/NWP5fD/ADY/IL4nm7/E35o/9XbW
/wDpIu/+asfy+H+bH5BfE82j5t/M+Aes2ta3EI/i9U3N2vGnfly2x/LYT/DH5BePzZ15C/5yh/Mb
y7cxRaxcHzDpQIEsF2f9IC9zHc058v8AX5D9ea/VdiYcg9I4JeXL5NkchD688jeefLvnby/DrmhT
+rayEpLE4CywygAtFKtTxYV+RG4qDnH6nTTwT4JjdyIytkGY6XYq7FXYq7FXYq7FXjX/ADlH+YV1
5W8hppunymHU/MMj2qSqaMltGoNwynxPNE/2WbrsPSDLl4pfTDf49GvJKg+VPy+8lP5ivecqM9rG
4jWFaqZpTvw57cVUULGvcfMdtYFk7Ac3Ua3VHGAI/XLk+jNK/LfSLS0SK4JYqDSGCkUCV3PBVAPX
vtXwzWT7TlfoAA+11f5Xi3mTIo608meV/wBL2lnLbSSLcc/92sB8Kk70IOU5+0s4xSmCPT5NuDRY
pZBEjmyu2/KnydcFgliF4ip5TT/wY5ov5f1f877B+p2/8kaf+b9pVv8AlT3lL/lkT/kdcf1w/wAv
az+d9kf1I/kjTfzftLR/J/yl/wAsif8AI65/rj/L2s/nfZH9S/yRpv5v2lafyg8p/wDLKn/I65/r
h/l3Wfzvsj+pf5J03837S0fyh8p/8sqf8jrn+uP8u6z+d9kf1L/JOm/m/aWj+UXlP/llj/5HXP8A
XH+XdZ/O+yP6l/knTfzftLX/ACqPyn/yzR/8jrn+uH+XNb/O+yP6l/knTd32lr/lUflX/lmj/wCR
1z/XB/Lmt/nfZH9S/wAk6bu+0u/5VD5W/wCWaP8A5HXP9cf5d1n877I/qX+SdN/N+0u/5VB5Y/5Z
ov8Akdc/1x/l3Wfzvsj+pf5J03837S7/AJU/5a/5Zov+R1z/AFx/l3Wfzvsj+pf5J03837S7/lT3
lv8A5Zov+R1z/XB/L2s/nfZH9S/yRpv5v2l3/KnfLv8AyzRf8jrn+uP8vaz+d9kf1L/JGm/m/aXf
8qc8v/8ALNF/yOuf64/y9rP532R/Uv8AJGm/m/aXf8qb0H/lmh/5HXP9cf5f1n877I/qX+SNN/N+
0u/5U1oP/LND/wAjrn+uD+X9Z/O+wfqT/JGn/m/aVk/5P6BDBJM1rEVjUswE1xWg8KnH/RBq/wCd
9g/Uv8kaf+b9pYp5i8oeXLOGBoLQo0j8SRJIe3+Uxza9ldq6jNKQnLkO4Ov1/Z2HGAYj7SkreXdK
IoEZD/Mrmo+Vaj8M3I1eR1fgRee/mD+W8NxE91ZIPrhq0UygL6rbt6ctNubfssevy6XwmJjbYjo5
ml1csUhGRuB+xJP+cfvzGvfJvny1T1T+iNXdLTUbcn4SWNIpPZkduvgTmq7Z0gy4Sf4obj9L0WOV
F93xSJLGsiGqOAyn2O+cK5K7FXYq7FXYq7FXYq+R/wDnM65lbzjoFsT+6i05pEG/2pJ2VvbpGM6/
2cH7uR/pfocfNzb/ACCs7caXZzBAJPQuJS3fn9ZMXL/gNs2uvkRirvl+h0GffUm+kfx972EnNKyU
LXfzNpZ/4y/8QOOo/wAWn8PvbdN/fRei6SPjl/1R+vOWDvyjyMsQsIwoWkYVWEYULSMKFhGSVrFV
wOBVwOBVwOBK4HFVwOBK4HAq4HAlcDgVQ1I/7jrn/jE36siUh5X5uH+j23tL/DN52F9U/c6vtX6Q
x0nOidEgNZodNmBAP2aE9jzG4+jL9P8AWGrL9JfNGuSmDzPqEsICGK9maNRsF4ykgCnhmRKArhel
08iccT5B+iHk+4afQbcsalBx+8Bv+Ns8wdknWKuxV2KuxV2KuxV8hf8AOZn/ACneif8AbLH/AFES
52Hs7/dS/rfoDj5uaO/IUf7gbI/8ulx/1GnNlr/7v/O/Q6DN/jEv6v6nqxOahksshXzJpv8Az0/4
gcjqf8Xn8PvbdL/exei6SPjk/wBUfrzlw9AmBGTYrSMKrCMKFpGFVhGFC0jChYRklaxVcDgVcDgV
cDgSuBxVcDgSuBwKuBwJUdRP+4+5/wCMTfqyJSHlvmwf6Lb+0n8M3XYX1S9zq+1fpDwzzXoX1nzD
eT8a82U1/wBgBm1y6fikS6qGfhFJt5T076lomoJSnOSM/dTMzQYuCTj6rJxh4h5k/wCUi1T/AJjJ
/wDk62bM83fab+6j/VH3P0N8jf8AHBj+Y/5NpnlztGQYq7FXYq7FXYq7FXyF/wA5mf8AKd6J/wBs
sf8AURLnYezv91L+t+gOPm5ph+Q4/wCddsj/AMutx/1Gtmx1/wBH+d+h0Gb/ABiX9X9T1InNUl2n
b+Y9P/56f8QOQ1X+Lz+H3t+l/vYvRtJH7yT/AFR+vOWDv0xIySFhGSQtIwqsIwoWkYVWEYULSMKF
hGSVrFVwOBVwOBVwOBK4HFVwOBK4HAqjf/8AHPuf+MTfqyEkh5j5rH+iQ/65/Uc3XYf1y9zre1Pp
DDpbGzkcu8QZ26k50weeMQoXVvDDZyrEgQNQkD5jLMX1BhMbPmrzN/ykmrf8xlx/ydbMp6XTf3cf
6o+5+hnkb/jgx/Mf8m0zy52bIMVdirsVdirsVdir5C/5zM/5TvRP+2WP+oiXOw9nf7qX9b9AcfNz
TL8iR/zrFif+Xa4/6jWzYa76f879Doc/9/L3fqenE5rEL9KFfMNh85P+IHK9X/cT+H3uRpP72L0f
SR+8k/1f45yzv0xIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4FXA4FXA4ErgcVXA4EqV
9/vBc/8AGJv1ZCXJIea+ah/ocfsx/wCInNx2H9cvcHW9qfQGIE507z6HvN7dx8v1jLMfNhPk+Z/N
H/KTav8A8xtx/wAnWzJek0/93H+qPufoX5G/44MfzH/JtM8vdmyDFXYq7FXYq7FXYq+Qv+czP+U7
0T/tlj/qIlzsPZ3+6l/W/QHHzc0z/Isf86nYH/l3uP8AqNbM/W8v879Doc/9/L3fqelk5rkK2j76
/ZfN/wDiBynWf3Evx1cjSf3oej6UP3r/AOr/ABzl3fpliq0jCq0jChYRkkLSMKrCMKFpGFVhGFC0
jChYRklaxVcDgVcDgVcDgSuBxVTvP94rn/jE36shPkyDzjzUP9BX5n/iJzbdifXL4Ou7U+gfFhhO
dS86pXG8TD5frycebGXJ8z+av+Un1j/mNuf+TrZkh6TT/wB3H+qPufoV5G/44MfzH/JtM8vdmyDF
XYq7FXYq7FXYq+Qv+czP+U70T/tlj/qIlzsPZ3+6l/W/QHHzc01/I0f86fp5/wCKLj/qNbM7W8v8
79Dos/8AfH3fqejE5gMEVoe+u2fzf/iByjW/3Evx1cnR/wB4Ho+l/wB4/wAv45y7v0xxV2KrSMKr
SMKFhGSQtIwqsIwoWkYVWEYULSMKFhGSVrFVwOBVwOBVwOBKy6P+h3H/ABib9WQnySHnnmkf6APY
t/xE5texPrPwdf2n9A+LByc6t5xTfcEZIIL5p82f8pTrP/Mdc/8AJ5syRyek0/8Adx9w+5+hPkb/
AI4MfzH/ACbTPL3ZsgxV2KuxV2KuxV2KvkL/AJzM/wCU70T/ALZY/wCoiXOw9nf7qX9b9AcfNzTf
8jx/zpWnH/im4/6jHzO1n6f0Oi1H98fd+p6ETmE1o3y/vrdr82/4gcxtd/cycrR/3gej6b/eP8v4
5y7v0wxV2KuxVaRhVaRhQsIySFpGFVhGFC0jCqwjChaRhQsIyStYquBwKuBwKtuT/olx/wAYm/Vk
J8mUXn/mkf7jj/sv+InNp2L/AHh+Dr+0/oHxYGTnWvONDdgMUPmnzb/yletf8x9z/wAnmzIjyelw
f3cfcH6EeRv+ODH8x/ybTPMHZMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0Bx8
3NOPyRH/ADo2mn/im4/6jHzN1fP4/odHqP70+5n5OYjUmHlzfWrb5t/xA5ia7+5k5Wi/vA9H07+8
f5fxzmHfo/FXYq7FXYqtIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4Fan/3luP8AjE36
shk5MosD80D/AHGt8m/4gc2XY394fg4Haf0fN56TnXvNLod5VHz/AFYJclD5p83/APKWa3/zH3X/
ACebMiPIPS4P7uPuD9CPI3/HBj+Y/wCTaZ5g7JkGKuxV2KuxV2KuxV8hf85mf8p3on/bLH/URLnY
ezv91L+t+gOPm5p1+SYp5B0w/wDFVx/1GPmZq/q+P6HR6n+9PuZ0TmM0pr5Y31iD5t/xA5h6/wDu
i5mi/vA9G0/7b/LOYd8jsVdirsVdirsVWkYVWkYULCMkhaRhVYRhQtIwqsIwoWkYULCMkrWKul/3
mn/4xt+rK8nJMebB/NA/3Fyf6r/8QObHsb+8Pw+9we0/o+bzgnOxeZVLXe4QfP8AUcjPkmPN81ec
f+Uu1z/toXX/ACebL4fSHpcH0R9wfoP5G/44MfzH/JtM8xdkyDFXYq7FXYq7FXYq+Qv+czP+U70T
/tlj/qIlzsPZ3+6l/W/QHHzc08/JUf8AIPNLP/Fdx/1GSZl6r6z7/wBDpNT/AHh9zNicocdOPKu+
rQ/M/wDEGzB7Q/ui5uh+sPRbEhXappt3zmXfI3mn8w+/FXeon8w+/FWvUj/mH3jFXepH/MPvGKu9
WP8AnH3jFXepF/Ov3jFVpeP+dfvGG1Wl4/51+8YbQtLJ/Mv3jDa0tJT+ZfvGHiCKWnj/ADL/AMEP
64eILS08f5l/4If1w8QRS0qP5l/4If1w8YWlpUfzL/wS/wBceMIorCn+Uv8AwS/1w8YXhKyai289
WXeNgPiB3I+eRnIEJiGFeZx/uKm/1H/4gc2PY/8AefL73B7S+j5vNCc7N5dWsN7uMfP/AIichl+k
so83zX5z/wCUw13/ALaF1/yffL8f0j3PS4foj7g/QbyN/wAcGP5j/k2meYuyZBirsVdirsVdirsV
fIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmnv5Lj/AJBxpZ/yLj/qMkzK1X1n3/odJqv7
w+5mZOVOOmvly5jtrwTyAlIzuFpXdSO9Mw9bjM4cI6uVpJiMrLK/8T2H++5fuX/mrNL/ACdk7x+P
g7b85DuLX+JbD/fcv3L/AM1Y/wAnZO8fj4L+ch3Fr/Elj/vuX7l/5qx/k7J3j8fBfzkO4tf4jsf9
9y/cv/NWP8nZO8fj4L+ch3Fo+YrH/fcv3L/zVj/J2TvH4+C/nIdxW/4hsv5JPuX/AJqx/k7J3j8f
BfzkO4tfp+y/kk+5f+asf5Oyd4/HwX85DuLX6es/5JPuX/mrH+TsnePx8F/OQ7i1+nbP+ST7l/5q
x/k7J3j8fBfzkO4tfpy0/kk+5f64/wAnZO8fj4L+ch3Fr9N2n8kn3L/XH+TsnePx8F/OQ7i0datf
5JPuX+uP8nZO8fj4L+ch3Fb+mLX+R/uH9cf5Oyd4/HwX85DuLX6Xtv5H+4f1x/k7J3j8fBfzkO4t
fpa2/lf7h/XH+TsnePx8F/OQ7i0dVt/5X+4f1x/k7J3j8fBfzkO4tHVLf+V/uH9cf5Oyd4/HwX85
DuKW6/dxz6XcKgYFY5DvT+Q++bDs7TSx5Bdbkfe4etzicNvN5sTnWPOojTN7+If63/ETleb6Cyhz
fNnnX/lMte/7aN3/AMn3y/H9I9z02H6B7g/QXyN/xwY/mP8Ak2meYuxZBirsVdirsVdirsVfIX/O
Zn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5uaf/kyP+QZ6Uf8m4/6jJMytT/eH8dHS6r6z7mXk5W4rSyy
JXgxWvWhIxMQVEiOTjdXH+/X/wCCOPAO5eM9603Vz/v1/wDgjh4I9y8Z71pu7n/fz/8ABHDwR7kc
Z71pu7r/AH8//BH+uHw49y8cu9aby6/39J/wR/rh8OPcEccu9ab27/3/ACf8E39cPhx7gjjl3rTe
3f8Av+T/AINv64fDj3BfEl3rTfXn+/5P+Db+uHw49wR4ku8rTfXv/LRJ/wAG39cPhR7gviS7ytN/
e/8ALRJ/wbf1w+FHuCPEl3ladQvv+WiX/g2/rh8KPcEeJLvK06hff8tMv/Bt/XD4Ue4L4ku8rTqN
/wD8tMv/AAbf1w+FDuCPEl3ladRv/wDlpl/4Nv64fBh3D5L4ku8rTqWof8tUv/Bt/XD4MO4fJHiy
7ytOp6h/y1Tf8jG/rh8GHcPkjxZd5aOp6j/y1Tf8jG/rh8GHcPkviy7ypvqN+6lWuZWVhRlLsQQe
xFcIwwHQfJByS7yhScta0Xo++pQj/W/4icq1H0Fnj+p82+d/+Uz1/wD7aN3/AMn3y7F9I9z02H6B
7g/QTyN/xwY/mP8Ak2meZOxZBirsVdirsVdirsVfIX/OZn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5ub
IfybH/ILtJPtcf8AUZLmTqP70/jo6XVfWWVE5FxFpOFVpOFDCLz82fLtrdz2slteGSCRonKpFQlC
VNKyDbbLRjLLgKgfzh8tf8s17/wEX/VXD4ZXwytP5weWv+Wa9/4CL/qrjwFHhlo/m95b/wCWa8/4
CL/qrh4Cvhlo/m75b/5Zrz/gIv8Aqrh4V8Mrf+Vt+XD/AMe15/wEX/VXCIFHhF3/ACtjy6f+Pa8/
4CL/AKqZMYijwy1/ytXy8f8Aj3u/+Ai/6qZYNPJHhl3/ACtPy+f+Pe7/AOAj/wCqmTGll5I8Mtf8
rQ0A/wDHvd/8BH/1UywaKfkjwy7/AJWboR/497r/AICP/qpkx2fPvCOAtf8AKytDP+6Lr/gI/wDq
pkx2bk7x+PgjgLY/MXRT0guf+Bj/AOa8P8nZO8fj4LwFseftIPSG4/4FP+a8f5Pn3j8fBHAUTY+b
dOvbqO2iimWSQkKXVQNhXejHwyGTSSiLNIMSE4JzGYLCcKFpOFCN0PfVYB/rf8QOU6n+7LZi+oPm
7zx/ymvmD/tpXn/J98uxfQPcHpsX0D3B+gfkb/jgx/Mf8m0zzJ2LIMVdirsVdirsVdir5C/5zM/5
TvRP+2WP+oiXOw9nf7qX9b9AcfNzZF+To/5BVpB9rj/qMlzI1H98fx0dNq/qLJycXDWk4ULScKEq
/IbT7OTVvMty0S/Wm1BoRPQcxHVmKqT0BPXNL25M3EdKd52bEUS9s/RNv/O/3j+maC3Zu/RNv/O/
3j+mNq79E2/87/eP6Y2rv0Tb/wA7/eP6Y2rv0Tb/AM7/AHj+mNq79E2/87/eP6Y2rv0Tb/zv94/p
jau/RNv/ADv94/pjau/RNv8Azv8AeP6Y2rv0Tb/zv94/pjau/RNv/O/3j+mNq80/PXTbMeUJmaMP
LbyQvBKwBZC8gRqEU6qc6L2YyyjqwAdpA38nA7RiDiJ7nzykeekEvOpz5cSmsWx9z/xE5jak+gsZ
cmeE5qWhaThQtJwqj/L2+sW4/wBf/iDZRq/7s/jq2YfqD5v89f8AKb+Yf+2nef8AUQ+W4foHuD02
L6R7n6BeRv8Ajgx/Mf8AJtM8zdiyDFXYq7FXYq7FXYq+Qv8AnMz/AJTvRP8Atlj/AKiJc7D2d/up
f1v0Bx83Nkn5Pj/kEujn/mI/6jJcvz/35/HR02r+osjJyThLScKFhOSQgvyCamo+YR46o3/G2aHt
z6o+533Zv0l7pmhdk7FXYq7FXYq7FXYq7FXYq7FXYq8w/PPfytdr7wf8nRm/9m/8bj7pfc4PaP8A
cn4PntI89IJebTXQUpqlufc/8ROY+c+gsZcmZk5rWhaThVaThQmPlrfW7Yf6/wDybbMfWf3R/HVt
wfWHzh58/wCU58xf9tO8/wCoh8twfRH3B6fH9I9z9AfI3/HBj+Y/5NpnmbsGQYq7FXYq7FXYq7FX
yF/zmZ/yneif9ssf9REudh7O/wB1L+t+gOPm5sm/KEf8gh0Y+9x/1GTZdm/vz+OgdPrOZT8nLHAW
E5JC0nCqX/kO9NT8wf8AbUb/AI2zQ9ufVH3O+7N+kvdPUzQ07Jg/5n+a7ny3o9zq0CGY20cREHMx
hvUnEfUA9OVemZmh03jZRC6u/utpz5eCBl3PIv8AoY3V/wDq1j/pKf8A5ozoR7NxP8f2ftdf/KR/
m/ay/wDLf81dQ826lcW0tsbQWypJyWZpOXJuNKELmu7U7JGliJCXFZ7nJ0ur8UkVVPZvUzR05rvU
xpXepjSu9TGld6mNK71MaV3qY0rzP8625eXrlf8AjB/ydGb32c/xuPul9zg9o/3J+DwdI89FJebT
PRkpqEJ9z+o5RmPpLCXJlJOYLStJwoWE4UJp5V31+1H/ABk/5NtmNrf7o/D727T/AFh84efv+U68
x/8AbUvf+oh8swf3cfcHp8f0j3P0B8jf8cGP5j/k2meaOwZBirsVdirsVdirsVfIX/OZn/Kd6J/2
yx/1ES52Hs7/AHUv636A4+bmyf8AKMf8gc0U/wCVcf8AUZNl2b/GD+OgdPrOZTsnLnXrScKrScKE
s/I1qanr3/bTb/jbND22PVH3O/7N+kvb/UzROyeYfny9fJmoj/iu2/6i0zbdiD/CofH/AHJcTW/3
R+H3vmQDPQ4wefep/kEeOuah/wAYov8Ak5nOe1Eaxw/rH7nZdmfUfc+l/UziXcu9TFXepirvUxV3
qYq71MVd6mKvOPzhblolwPaH/k5m79nv8aj7j9zgdo/3J+DxdI89BJebTDTEpeRH3P6jlOQ7MZck
/JzFaFhOFC0nCqbeUd/MVoP+Mn/Jpsxdf/cy+H3hu031h84/mB/ynnmT/tqXv/UQ+Waf+7j/AFR9
z0+P6R7n6AeRv+ODH8x/ybTPNHYMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0B
x83NlP5TD/kC+iH/AC7n/qMmy3L/AIzL8dA6jWcym5OZDrlpOFC0nChKfyUbjqmue+pN/wAbZpO3
h6of1Xf9m/SXtXqZz9Oyeafnm9fKOoD/AIrt/wDqKXNz2CP8Lh/nf7kuJrv7o/D73zaFz0mMHnre
nfkWeOt33/GKP/k5nMe1kaxQ/rH7nZ9l/Ufc+j/UzhKdy71MaV3qY0rvUxpXepjSu9TGld6mNK8/
/NduWlzL7Rf8nM3XYH+NR+P3OD2l/cn4PJEjzvSXmkbYpS4Q/wCfTKpnZjLkmpOUtC0nCq0nJITj
ybv5lsx/xk/5NPmH2h/cy+H3hv0394Hzl+YP/KfeZf8Atq3v/US+Waf+7j/VH3PTw+kPv/yN/wAc
GP5j/k2meaOwZBirsVdirsVdirsVfIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmyv8qB/
yBPRD/xZc/8AUZNlmT/GpfjoHUa1MycynWrScKFhOFUn/JxuOqa1/wBtJv8AjbNR7QD1Q/qu+7M+
kvZfUznKdm83/Ox+XlW/H/Fdv/1Erm69nh/hkP8AO/3JcTXf3J+H3vncLnp8YvOPSvyUHDWL0+Mc
f/E85P2u/uof1j9ztOy/qPufQ3qZwVO6d6mNK71MaV3qY0rvUxpXepjSu9TGlYJ+ZjcrGUe0X/E8
3HYX+Mx+P3OB2l/cn4PNEjzuSXmkVbpSRTlZLGXJFk5FpWk5JC0nChOvJG/miyH/ABl/5MvmF2l/
cS+H3hyNL/eD8dHzn+Yf/Kf+Zv8AtrX3/US+T0391H+qPueoh9Iff3kb/jgx/Mf8m0zzVz2QYq7F
XYq7FXYq7FXyF/zmZ/yneif9ssf9REudh7O/3Uv636A4+bmyz8qv/JHaGf8Aiy5/6jJ8nk/xuXu/
QHUa1MCczHWLCcKrScKEk/KN+Gqaz/20W/42zV+0Y3x/1Xfdl/SXr31gZzVO0Yv520E+YLSSwbms
EyIHkjKhgUk9Tbl8hmXodXLTZRliATG+fmKas2IZImJ6sFH5J2Q/3ddffF/TOh/0W5/5kPt/W4P8
lw7ynvlX8v18vXbz25mkMoVX9QpQBWrtxAzV9pdsZNXERkAOHutyNPpI4iSDzei/WBmnpy3fWBjS
u+sDGld9YGNK76wMaV31gY0rvrAxpWGfmA4kt5B/kx/8Tzbdi/4wPj9zgdpf3J+DAkjztCXmldEp
vkbYy5Licm0LScKFhOFU98ib+a7H/nr/AMmXzB7T/wAXl8PvDkaT+8H46PnT8xf/ACYPmf8A7a19
/wBRL5PTf3Uf6o+56iHIPv3yN/xwY/mP+TaZ5q57IMVdirsVdirsVdir5C/5zMB/x1oh7fosf9RE
udh7O/3Uv636A4+bmyz8qv8AyRuh07S3Ffb/AEyfJz/xuXu/QHUa3kjSczXWLScKFpOFDH/ywfhq
OsH/AJf2/W2a72lG+P8AqO+7L+kvT/rXvnMU7R31r3xpXfWvfGld9a98aV31r3xpXfWvfGld9a98
aV31r3xpXfWvfGld9a98aV31r3xpWM+bpPUiYeyf8Szadj/4wPj9zg9pf3J+DFUjzsCXmVVkpGTg
id2MuSHJy9oWE4VWk4UJ95CqfNljQbD1a/8AIl8wO1P8Xl8PvDkaP+8H46PnX8xf/Jg+Z/8AtrX3
/US+T0v91H+qPuephyD798jf8cGP5j/k2meaueyDFXYq7FXYq7FXYq+b/wDnMvyrcXGj6F5ngQtH
YSSWV6QK8VuOLxMfBQ8bLXxYZ0vs7nAlLGeu4+DTmHVif/OOXm+xvdGvfImoTiO5LvdaSXbZlIDS
RINt0ZfUp1ILeGbPtDGYTGUfF12pxcQZ/fafeWUhjuIytDQPT4W+Ry3FljMWC6acDHmhCcta1hOF
Uo/KW39fzBf2/X1dQYU/4LNf7UHfH/Ud92V9Je4/4U/yPwzkuN2tO/wp/kfhjxrTv8Kf5H4Y8a07
/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GP
GtO/wp/kfhjxrTz78wrH6lf/AFelKxI1Pmx/pm27GN5x8fucDtP+5PwYmkedcS8wuuEpbufb+OMD
6mMuSWE5ltK0nChyJJK4jjUu7bKqgkk+wGJIAsqBfJldi1p5F0G982+Yf3BjjMdlZsQsskjbqig/
tvxoB2FSds0Wu1H5iQxY9+8u20OlINl82eV7HUPNvny1WWs1zqF4bm8cDqC5lmb2rvT3zK1mUYMB
PdGh9wd/AWafoD5TtzBo6L2LEj5ABf8AjXPPHLTjFXYq7FXYq7FXYql/mDQdL8waLeaLqsIuNPv4
mhuIj3Vu4PZlO6nsd8sxZZY5CUeYQRb4V/NL8oPNv5a656pEs2kiX1NL1uDko+FqpzZf7qVdtvHd
Sc7vQ9o49TGuUusfxzDjTgQmOjf85K/mRp1klrMbLUymy3F5C5loBQAtDJCG+ZFfE4z7KxSN7j3O
OcUSj/8Aoaf8wf8Aq36T/wAibn/soyH8kYu+X2fqR4Ad/wBDT/mD/wBW/Sf+RNz/ANlGP8kYu+X2
fqXwAoN/zkl5puryK6v9OtRJACIHsXmtXUk9SzvcfgBlObsSEuUiPfv+puxejkjP+hnPMn++bz/u
JS/9U8xv9Dw/n/7H9rd4rv8AoZzzJ/vm8/7iUv8A1Tx/0PD+f/sf2r4rv+hnPMn++bz/ALiUv/VP
H/Q8P5/+x/aviu/6Gc8yf75vP+4lL/1Tx/0PD+f/ALH9q+K7/oZzzJ/vm8/7iUv/AFTx/wBDw/n/
AOx/aviu/wChnPMn++bz/uJS/wDVPH/Q8P5/+x/aviu/6Gc8yf75vP8AuJS/9U8f9Dw/n/7H9q+K
7/oZzzJ/vm8/7iUv/VPH/Q8P5/8Asf2r4rv+hnPMn++bz/uJS/8AVPH/AEPD+f8A7H9q+K7/AKGc
8yf75vP+4lL/ANU8f9Dw/n/7H9q+K7/oZzzJ/vm8/wC4lL/1Tx/0PD+f/sf2r4qEm/5yR8yi8jvr
awikvEBQyahNLdjgRSg4mBh1/mPyy7D2FCJ3kT7hX62vJLjFK3/Q0/5g/wDVv0n/AJE3P/ZRmT/J
GLvl9n6nH8AO/wChp/zB/wCrfpP/ACJuf+yjH+SMXfL7P1L4Ad/0NP8AmD/1b9J/5E3P/ZRj/JGL
vl9n6l8AO/6Gn/MH/q36T/yJuf8Asox/kjF3y+z9S+AGj/zlP+YJH/HP0ke/o3P/AGUY/wAkYu+X
2fqXwQwPXvM/nfz/AKxF9emm1O7qRa2cS0jiDHf040AVR0qx32+I5lxhi08L2iO9tjCtg+ifyJ/J
ubQF+u36q+tXajmRusEXXiD+vxNPAE8f2r2l+YlUfoH2+f6nKhCn0XBCkEKQxiiRgKv0ZqGxfirs
VdirsVdirsVdiqhfWFlf2slpewpcW0o4yQyKGVh7g4QSNwryzXP+cZ/yy1G4a4i0xIGY1McTyQrX
5RMo/wCFzYY+1tTAUJn40fvYHGEp/wChVPy+/wCWAf8ASXdf1yf8tar+f9kf1L4cXf8AQqn5ff8A
LAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/
rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n
/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF
3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff
8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r
+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+
f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4c
Xf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cW1/5xW/L
9WDCwWo33urkj7icT2zqv5/2R/UvhxZl5Z/KLy9oKcLG1t7RduRgT42p4sQN/c5g5tRkym5yMmQA
DNrOytrSL04E4j9o9ST7nKUq+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku
xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV//2Q==</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xapMM:DocumentID>
uuid:f3c53255-be8a-4b04-817b-695bf2c54c8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
filesave.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>
end='w'</xpacket>
</metadata>
<g
id="Layer_1">
<path
style="opacity:0.2;"
d="M9.416,5.208c-2.047,0-3.712,1.693-3.712,3.775V39.15c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.983c0-2.082-1.665-3.775-3.712-3.775H9.416z"
id="path592" />
<path
style="opacity:0.2;"
d="M9.041,4.833c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.608c0-2.082-1.665-3.775-3.712-3.775H9.041z"
id="path593" />
<path
style="fill:#00008D;"
d="M8.854,4.646c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.42c0-2.082-1.665-3.775-3.712-3.775H8.854z"
id="path594" />
<path
style="fill:#00008D;"
d="M8.854,5.021c-1.84,0-3.337,1.525-3.337,3.4v30.167c0,1.875,1.497,3.4,3.337,3.4h29.401 c1.84,0,3.337-1.525,3.337-3.4V8.42c0-1.875-1.497-3.4-3.337-3.4H8.854z"
id="path595" />
<path
id="path166_1_"
style="fill:#FFFFFF;"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<linearGradient
id="path166_2_"
gradientUnits="userSpaceOnUse"
x1="-149.0464"
y1="251.1436"
x2="-149.0464"
y2="436.303"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#B4E2FF"
id="stop598" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop599" />
<a:midPointStop
offset="0"
style="stop-color:#B4E2FF"
id="midPointStop600" />
<a:midPointStop
offset="0.5"
style="stop-color:#B4E2FF"
id="midPointStop601" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop602" />
</linearGradient>
<path
id="path166"
style="fill:url(#path166_2_);"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<path
style="fill:#FFFFFF;"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path604" />
<linearGradient
id="XMLID_1_"
gradientUnits="userSpaceOnUse"
x1="7.3057"
y1="7.2559"
x2="50.7728"
y2="50.7231">
<stop
offset="0"
style="stop-color:#94CAFF"
id="stop606" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop607" />
<a:midPointStop
offset="0"
style="stop-color:#94CAFF"
id="midPointStop608" />
<a:midPointStop
offset="0.5"
style="stop-color:#94CAFF"
id="midPointStop609" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop610" />
</linearGradient>
<path
style="fill:url(#XMLID_1_);"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path611" />
<linearGradient
id="XMLID_2_"
gradientUnits="userSpaceOnUse"
x1="23.5039"
y1="2.187"
x2="23.5039"
y2="34.4368">
<stop
offset="0"
style="stop-color:#428AFF"
id="stop613" />
<stop
offset="1"
style="stop-color:#C9E6FF"
id="stop614" />
<a:midPointStop
offset="0"
style="stop-color:#428AFF"
id="midPointStop615" />
<a:midPointStop
offset="0.5"
style="stop-color:#428AFF"
id="midPointStop616" />
<a:midPointStop
offset="1"
style="stop-color:#C9E6FF"
id="midPointStop617" />
</linearGradient>
<path
style="fill:url(#XMLID_2_);"
d="M36.626,6.861c0,0-26.184,0-26.914,0c0,0.704,0,16.59,0,17.294c0.721,0,26.864,0,27.583,0 c0-0.704,0-16.59,0-17.294C36.988,6.861,36.626,6.861,36.626,6.861z"
id="path618" />
<polygon
id="path186_1_"
style="fill:#FFFFFF;"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<linearGradient
id="path186_2_"
gradientUnits="userSpaceOnUse"
x1="-104.5933"
y1="411.6699"
x2="-206.815"
y2="309.4482"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#CCCCCC"
id="stop621" />
<stop
offset="1"
style="stop-color:#F0F0F0"
id="stop622" />
<a:midPointStop
offset="0"
style="stop-color:#CCCCCC"
id="midPointStop623" />
<a:midPointStop
offset="0.5"
style="stop-color:#CCCCCC"
id="midPointStop624" />
<a:midPointStop
offset="1"
style="stop-color:#F0F0F0"
id="midPointStop625" />
</linearGradient>
<polygon
id="path186"
style="fill:url(#path186_2_);"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<path
style="fill:#FFFFFF;stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path627" />
<linearGradient
id="XMLID_3_"
gradientUnits="userSpaceOnUse"
x1="34.5967"
y1="3.5967"
x2="18.4087"
y2="19.7847">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop629" />
<stop
offset="0.5506"
style="stop-color:#E6EDFF"
id="stop630" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop631" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop632" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop633" />
<a:midPointStop
offset="0.5506"
style="stop-color:#E6EDFF"
id="midPointStop634" />
<a:midPointStop
offset="0.5"
style="stop-color:#E6EDFF"
id="midPointStop635" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop636" />
</linearGradient>
<path
style="fill:url(#XMLID_3_);stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path637" />
<linearGradient
id="path205_1_"
gradientUnits="userSpaceOnUse"
x1="-174.4409"
y1="300.0908"
x2="-108.8787"
y2="210.2074"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#003399"
id="stop639" />
<stop
offset="0.2697"
style="stop-color:#0035ED"
id="stop640" />
<stop
offset="1"
style="stop-color:#57ADFF"
id="stop641" />
<a:midPointStop
offset="0"
style="stop-color:#003399"
id="midPointStop642" />
<a:midPointStop
offset="0.5"
style="stop-color:#003399"
id="midPointStop643" />
<a:midPointStop
offset="0.2697"
style="stop-color:#0035ED"
id="midPointStop644" />
<a:midPointStop
offset="0.5"
style="stop-color:#0035ED"
id="midPointStop645" />
<a:midPointStop
offset="1"
style="stop-color:#57ADFF"
id="midPointStop646" />
</linearGradient>
<rect
id="path205"
x="12.154"
y="26.479"
style="fill:url(#path205_1_);"
width="22.007"
height="13.978" />
<linearGradient
id="XMLID_4_"
gradientUnits="userSpaceOnUse"
x1="21.8687"
y1="25.1875"
x2="21.8687"
y2="44.6251">
<stop
offset="0"
style="stop-color:#DFDFDF"
id="stop649" />
<stop
offset="1"
style="stop-color:#7D7D99"
id="stop650" />
<a:midPointStop
offset="0"
style="stop-color:#DFDFDF"
id="midPointStop651" />
<a:midPointStop
offset="0.5"
style="stop-color:#DFDFDF"
id="midPointStop652" />
<a:midPointStop
offset="1"
style="stop-color:#7D7D99"
id="midPointStop653" />
</linearGradient>
<path
style="fill:url(#XMLID_4_);"
d="M13.244,27.021c-0.311,0-0.563,0.252-0.563,0.563v13.104c0,0.312,0.252,0.563,0.563,0.563h17.249 c0.311,0,0.563-0.251,0.563-0.563V27.583c0-0.311-0.252-0.563-0.563-0.563H13.244z M18.85,30.697c0,0.871,0,5.078,0,5.949 c-0.683,0-2.075,0-2.759,0c0-0.871,0-5.078,0-5.949C16.775,30.697,18.167,30.697,18.85,30.697z"
id="path654" />
<linearGradient
id="XMLID_5_"
gradientUnits="userSpaceOnUse"
x1="-158.0337"
y1="288.0684"
x2="-158.0337"
y2="231.3219"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#F0F0F0"
id="stop656" />
<stop
offset="0.6348"
style="stop-color:#CECEDB"
id="stop657" />
<stop
offset="0.8595"
style="stop-color:#B1B1C5"
id="stop658" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop659" />
<a:midPointStop
offset="0"
style="stop-color:#F0F0F0"
id="midPointStop660" />
<a:midPointStop
offset="0.5"
style="stop-color:#F0F0F0"
id="midPointStop661" />
<a:midPointStop
offset="0.6348"
style="stop-color:#CECEDB"
id="midPointStop662" />
<a:midPointStop
offset="0.5"
style="stop-color:#CECEDB"
id="midPointStop663" />
<a:midPointStop
offset="0.8595"
style="stop-color:#B1B1C5"
id="midPointStop664" />
<a:midPointStop
offset="0.5"
style="stop-color:#B1B1C5"
id="midPointStop665" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop666" />
</linearGradient>
<path
style="fill:url(#XMLID_5_);"
d="M13.244,27.583v13.104h17.249V27.583H13.244z M19.413,37.209h-3.884v-7.074h3.884V37.209z"
id="path667" />
<linearGradient
id="path228_1_"
gradientUnits="userSpaceOnUse"
x1="-68.1494"
y1="388.4561"
x2="-68.1494"
y2="404.6693"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#3399FF"
id="stop669" />
<stop
offset="1"
style="stop-color:#000000"
id="stop670" />
<a:midPointStop
offset="0"
style="stop-color:#3399FF"
id="midPointStop671" />
<a:midPointStop
offset="0.5"
style="stop-color:#3399FF"
id="midPointStop672" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop673" />
</linearGradient>
<rect
id="path228"
x="37.83"
y="9.031"
style="fill:url(#path228_1_);"
width="1.784"
height="1.785" />
<polyline
id="_x3C_Slice_x3E_"
style="fill:none;"
points="0,48 0,0 48,0 48,48 " />
</g>
<rect
id="rect810"
fill="none"
width="256"
height="256"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:none;" />
<g
id="g979"
transform="matrix(0.207200,1.691268,-1.691268,0.207200,86.28419,53.75496)">
<path
opacity="0.2"
d="M191.924,195.984c-11.613-36.127-13.717-42.67-14.859-44.064c0.119,0.076,0.289,0.178,0.289,0.178 l-78.55-87.455c-4.195-4.65-14.005,0.356-21.355,6.976c-7.283,6.542-13.32,15.773-9.37,20.564l78.944,87.543l0.533,0.094 l37.768,17.602l7.688,2.365L191.924,195.984z"
id="path731"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
opacity="0.2"
d="M193.557,193.516c-11.611-36.125-13.713-42.67-14.855-44.064c0.117,0.072,0.287,0.178,0.287,0.178 l-78.545-87.455c-4.199-4.651-14.015,0.355-21.361,6.975c-7.281,6.545-13.32,15.773-9.368,20.566l78.945,87.539l0.533,0.1 l37.77,17.598l7.682,2.367L193.557,193.516z"
id="path732"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
opacity="0.2"
d="M186.773,191.049c-11.613-36.127-13.713-42.672-14.863-44.068c0.121,0.074,0.295,0.18,0.295,0.18 L93.653,59.704c-4.192-4.65-14.009,0.359-21.354,6.978c-7.283,6.542-13.321,15.771-9.369,20.565l78.942,87.541l0.535,0.096 l37.768,17.598l7.686,2.367L186.773,191.049z"
id="path733"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
fill="#FFFFFF"
d="M186.43,189.355c-11.613-36.125-13.713-42.666-14.863-44.061c0.123,0.072,0.293,0.18,0.293,0.18 L93.314,58.016c-4.199-4.651-14.015,0.357-21.359,6.977c-7.283,6.543-13.322,15.774-9.37,20.566l78.941,87.541l0.535,0.098 l37.771,17.598l7.686,2.363L186.43,189.355z"
id="path734"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="url(#XMLID_11_)"
d="M186.43,189.355c-11.613-36.125-13.713-42.666-14.863-44.061c0.123,0.072,0.293,0.18,0.293,0.18 L93.314,58.016c-4.199-4.651-14.015,0.357-21.359,6.977c-7.283,6.543-13.322,15.774-9.37,20.566l78.941,87.541l0.535,0.098 l37.771,17.598l7.686,2.363L186.43,189.355z"
id="path741"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_11_);" />
<path
fill="url(#XMLID_12_)"
d="M166.969,147.762l13.723,38.129l-36.371-17.902l0.168-0.152c-0.25-0.08-0.496-0.178-0.701-0.316 l-0.125,0.121l-75.303-83.57l0.123-0.104c-2.246-2.49,1.032-9.094,7.308-14.752c6.28-5.652,13.18-8.219,15.425-5.733 l75.292,83.565L166.969,147.762z"
id="path748"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_12_);" />
<path
fill="url(#XMLID_13_)"
d="M148.652,170.121c2.076-0.369,4.635-1.479,7.252-3.139c1.617-1.018,3.279-2.283,4.898-3.744 c1.455-1.303,2.736-2.666,3.84-4.01c2.076-2.531,3.322-5.213,3.781-7.424l-1.455-4.043l-0.463-0.715L91.707,64.028 c0.608,2.24-0.962,5.938-4.063,9.74c-1.134,1.389-2.441,2.789-3.945,4.141c-1.574,1.419-3.195,2.652-4.767,3.654 c-4.493,2.871-8.628,3.928-10.548,2.486l-0.025,0.021l75.303,83.57l0.125-0.121c0.205,0.139,0.451,0.236,0.701,0.316 l-0.168,0.152L148.652,170.121z"
id="path758"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_13_);" />
<path
fill="#FFFFFF"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path759"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="#FFFFFF"
d="M75.79,69.215c6.28-5.652,13.18-8.219,15.425-5.733l16.961,18.828l1.152,26.49l-17.973,0.784 L68.359,84.071l0.123-0.104C66.236,81.477,69.514,74.874,75.79,69.215z"
id="path760"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="#FFFFFF"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path761"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="url(#XMLID_14_)"
d="M75.79,69.215c6.28-5.652,13.18-8.219,15.425-5.733l16.961,18.828l1.152,26.49l-17.973,0.784 L68.359,84.071l0.123-0.104C66.236,81.477,69.514,74.874,75.79,69.215z"
id="path768"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_14_);" />
<path
fill="url(#XMLID_15_)"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path778"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_15_);" />
<path
fill="url(#XMLID_16_)"
d="M74.357,90.713c0,0,6.036-0.212,10.685-3.182c1.542-0.983,3.132-2.193,4.677-3.586 c1.477-1.326,2.76-2.701,3.873-4.064c2.928-3.589,4.469-7.088,4.049-9.307l-6.865-7.617l-0.023,0.024 c1.614,1.942,0.102,6.196-3.477,10.584c-1.113,1.362-2.396,2.738-3.872,4.063c-1.545,1.393-3.136,2.604-4.677,3.586 c-4.648,2.971-8.91,3.967-10.643,2.194l-0.238,0.217l73.256,81.311c0.047,0.07,1.752,1.967,2.145,2.406 c0.342,0.377,0.799,0.627,1.344,0.771L74.357,90.713z"
id="path790"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_16_);" />
<path
fill="#003333"
d="M172.035,175.354c-1.635,1.477-3.307,2.764-4.949,3.84l13.605,6.697l-5.096-14.156 C174.537,172.953,173.352,174.176,172.035,175.354z"
id="path791"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#003333;" />
<path
opacity="0.5"
fill="#FFFFFF"
d="M163.121,157.053L86.968,73.93c0.1-0.12,0.213-0.242,0.307-0.364 c1.428-1.752,2.52-3.49,3.225-5.058l75.768,82.707C165.715,153.039,164.668,155.082,163.121,157.053z"
id="path792"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.5;fill:#ffffff;" />
<path
opacity="0.5"
fill="#FFFFFF"
d="M87.275,73.566c0.634-0.774,1.189-1.548,1.694-2.3l76.015,82.974 c-0.578,1.063-1.283,2.146-2.146,3.193c-0.744,0.896-1.566,1.805-2.465,2.697L84.152,76.932 C85.316,75.824,86.361,74.692,87.275,73.566z"
id="path793"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.5;fill:#ffffff;" />
</g>
</svg>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
width="48pt"
height="48pt"
viewBox="0 0 48 48"
style="overflow:visible;enable-background:new 0 0 48 48"
xml:space="preserve"
xmlns="http://www.w3.org/2000/svg"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:xlink="http://www.w3.org/1999/xlink"
id="svg589"
sodipodi:version="0.32"
sodipodi:docname="/home/david/Desktop/temp/devices/gnome-dev-floppy.svg"
sodipodi:docbase="/home/david/Desktop/temp/devices/">
<defs
id="defs677" />
<sodipodi:namedview
id="base" />
<metadata
id="metadata590">
<xpacket>begin='' id='W5M0MpCehiHzreSzNTczkc9d' </xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xap:CreateDate>
2004-02-04T02:08:51+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-29T09:20:16Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-29T14:54:28+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXzd+b/wDzlWum3k+h+QxFc3EJMdzrkoEkKuNiLZPsyU/nb4fAEb50vZ/YXEBPLsP5v62meXue
A3v5mfmprl080vmLVriXdjHBcTIi17rFCVRfoXOghocEBQhH5NJmepUf8Tfmj/1dtb/6SLv/AJqy
f5fD/Nj8gjxPN3+JvzR/6u2t/wDSRd/81Y/l8P8ANj8gviebv8Tfmj/1dtb/AOki7/5qx/L4f5sf
kF8Tzd/ib80f+rtrf/SRd/8ANWP5fD/Nj8gviebv8Tfmj/1dtb/6SLv/AJqx/L4f5sfkF8Tzd/ib
80f+rtrf/SRd/wDNWP5fD/Nj8gviebv8Tfmj/wBXbW/+ki7/AOasfy+H+bH5BfE83f4m/NH/AKu2
t/8ASRd/81Y/l8P82PyC+J5u/wATfmj/ANXbW/8ApIu/+asfy+H+bH5BfE83f4m/NH/q7a3/ANJF
3/zVj+Xw/wA2PyC+J5u/xN+aP/V21v8A6SLv/mrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/wA1Y/l8
P82PyC+J5u/xN+aP/V21v/pIu/8AmrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/AM1Y/l8P82PyC+J5
u/xN+aP/AFdtb/6SLv8A5qx/L4f5sfkF8Tzd/ib80f8Aq7a3/wBJF3/zVj+Xw/zY/IL4nm7/ABN+
aP8A1dtb/wCki7/5qx/L4f5sfkF8Tzd/ib80f+rtrf8A0kXf/NWP5fD/ADY/IL4nm7/E35o/9XbW
/wDpIu/+asfy+H+bH5BfE82j5t/M+Aes2ta3EI/i9U3N2vGnfly2x/LYT/DH5BePzZ15C/5yh/Mb
y7cxRaxcHzDpQIEsF2f9IC9zHc058v8AX5D9ea/VdiYcg9I4JeXL5NkchD688jeefLvnby/DrmhT
+rayEpLE4CywygAtFKtTxYV+RG4qDnH6nTTwT4JjdyIytkGY6XYq7FXYq7FXYq7FXjX/ADlH+YV1
5W8hppunymHU/MMj2qSqaMltGoNwynxPNE/2WbrsPSDLl4pfTDf49GvJKg+VPy+8lP5ivecqM9rG
4jWFaqZpTvw57cVUULGvcfMdtYFk7Ac3Ua3VHGAI/XLk+jNK/LfSLS0SK4JYqDSGCkUCV3PBVAPX
vtXwzWT7TlfoAA+11f5Xi3mTIo608meV/wBL2lnLbSSLcc/92sB8Kk70IOU5+0s4xSmCPT5NuDRY
pZBEjmyu2/KnydcFgliF4ip5TT/wY5ov5f1f877B+p2/8kaf+b9pVv8AlT3lL/lkT/kdcf1w/wAv
az+d9kf1I/kjTfzftLR/J/yl/wAsif8AI65/rj/L2s/nfZH9S/yRpv5v2lafyg8p/wDLKn/I65/r
h/l3Wfzvsj+pf5J03837S0fyh8p/8sqf8jrn+uP8u6z+d9kf1L/JOm/m/aWj+UXlP/llj/5HXP8A
XH+XdZ/O+yP6l/knTfzftLX/ACqPyn/yzR/8jrn+uH+XNb/O+yP6l/knTd32lr/lUflX/lmj/wCR
1z/XB/Lmt/nfZH9S/wAk6bu+0u/5VD5W/wCWaP8A5HXP9cf5d1n877I/qX+SdN/N+0u/5VB5Y/5Z
ov8Akdc/1x/l3Wfzvsj+pf5J03837S7/AJU/5a/5Zov+R1z/AFx/l3Wfzvsj+pf5J03837S7/lT3
lv8A5Zov+R1z/XB/L2s/nfZH9S/yRpv5v2l3/KnfLv8AyzRf8jrn+uP8vaz+d9kf1L/JGm/m/aXf
8qc8v/8ALNF/yOuf64/y9rP532R/Uv8AJGm/m/aXf8qb0H/lmh/5HXP9cf5f1n877I/qX+SNN/N+
0u/5U1oP/LND/wAjrn+uD+X9Z/O+wfqT/JGn/m/aVk/5P6BDBJM1rEVjUswE1xWg8KnH/RBq/wCd
9g/Uv8kaf+b9pYp5i8oeXLOGBoLQo0j8SRJIe3+Uxza9ldq6jNKQnLkO4Ov1/Z2HGAYj7SkreXdK
IoEZD/Mrmo+Vaj8M3I1eR1fgRee/mD+W8NxE91ZIPrhq0UygL6rbt6ctNubfssevy6XwmJjbYjo5
ml1csUhGRuB+xJP+cfvzGvfJvny1T1T+iNXdLTUbcn4SWNIpPZkduvgTmq7Z0gy4Sf4obj9L0WOV
F93xSJLGsiGqOAyn2O+cK5K7FXYq7FXYq7FXYq+R/wDnM65lbzjoFsT+6i05pEG/2pJ2VvbpGM6/
2cH7uR/pfocfNzb/ACCs7caXZzBAJPQuJS3fn9ZMXL/gNs2uvkRirvl+h0GffUm+kfx972EnNKyU
LXfzNpZ/4y/8QOOo/wAWn8PvbdN/fRei6SPjl/1R+vOWDvyjyMsQsIwoWkYVWEYULSMKFhGSVrFV
wOBVwOBVwOBK4HFVwOBK4HAq4HAlcDgVQ1I/7jrn/jE36siUh5X5uH+j23tL/DN52F9U/c6vtX6Q
x0nOidEgNZodNmBAP2aE9jzG4+jL9P8AWGrL9JfNGuSmDzPqEsICGK9maNRsF4ykgCnhmRKArhel
08iccT5B+iHk+4afQbcsalBx+8Bv+Ns8wdknWKuxV2KuxV2KuxV8hf8AOZn/ACneif8AbLH/AFES
52Hs7/dS/rfoDj5uaO/IUf7gbI/8ulx/1GnNlr/7v/O/Q6DN/jEv6v6nqxOahksshXzJpv8Az0/4
gcjqf8Xn8PvbdL/exei6SPjk/wBUfrzlw9AmBGTYrSMKrCMKFpGFVhGFC0jChYRklaxVcDgVcDgV
cDgSuBxVcDgSuBwKuBwJUdRP+4+5/wCMTfqyJSHlvmwf6Lb+0n8M3XYX1S9zq+1fpDwzzXoX1nzD
eT8a82U1/wBgBm1y6fikS6qGfhFJt5T076lomoJSnOSM/dTMzQYuCTj6rJxh4h5k/wCUi1T/AJjJ
/wDk62bM83fab+6j/VH3P0N8jf8AHBj+Y/5NpnlztGQYq7FXYq7FXYq7FXyF/wA5mf8AKd6J/wBs
sf8AURLnYezv91L+t+gOPm5ph+Q4/wCddsj/AMutx/1Gtmx1/wBH+d+h0Gb/ABiX9X9T1InNUl2n
b+Y9P/56f8QOQ1X+Lz+H3t+l/vYvRtJH7yT/AFR+vOWDv0xIySFhGSQtIwqsIwoWkYVWEYULSMKF
hGSVrFVwOBVwOBVwOBK4HFVwOBK4HAqjf/8AHPuf+MTfqyEkh5j5rH+iQ/65/Uc3XYf1y9zre1Pp
DDpbGzkcu8QZ26k50weeMQoXVvDDZyrEgQNQkD5jLMX1BhMbPmrzN/ykmrf8xlx/ydbMp6XTf3cf
6o+5+hnkb/jgx/Mf8m0zy52bIMVdirsVdirsVdir5C/5zM/5TvRP+2WP+oiXOw9nf7qX9b9AcfNz
TL8iR/zrFif+Xa4/6jWzYa76f879Doc/9/L3fqenE5rEL9KFfMNh85P+IHK9X/cT+H3uRpP72L0f
SR+8k/1f45yzv0xIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4FXA4FXA4ErgcVXA4EqV
9/vBc/8AGJv1ZCXJIea+ah/ocfsx/wCInNx2H9cvcHW9qfQGIE507z6HvN7dx8v1jLMfNhPk+Z/N
H/KTav8A8xtx/wAnWzJek0/93H+qPufoX5G/44MfzH/JtM8vdmyDFXYq7FXYq7FXYq+Qv+czP+U7
0T/tlj/qIlzsPZ3+6l/W/QHHzc0z/Isf86nYH/l3uP8AqNbM/W8v879Doc/9/L3fqelk5rkK2j76
/ZfN/wDiBynWf3Evx1cjSf3oej6UP3r/AOr/ABzl3fpliq0jCq0jChYRkkLSMKrCMKFpGFVhGFC0
jChYRklaxVcDgVcDgVcDgSuBxVTvP94rn/jE36shPkyDzjzUP9BX5n/iJzbdifXL4Ou7U+gfFhhO
dS86pXG8TD5frycebGXJ8z+av+Un1j/mNuf+TrZkh6TT/wB3H+qPufoV5G/44MfzH/JtM8vdmyDF
XYq7FXYq7FXYq+Qv+czP+U70T/tlj/qIlzsPZ3+6l/W/QHHzc01/I0f86fp5/wCKLj/qNbM7W8v8
79Dos/8AfH3fqejE5gMEVoe+u2fzf/iByjW/3Evx1cnR/wB4Ho+l/wB4/wAv45y7v0xxV2KrSMKr
SMKFhGSQtIwqsIwoWkYVWEYULSMKFhGSVrFVwOBVwOBVwOBKy6P+h3H/ABib9WQnySHnnmkf6APY
t/xE5texPrPwdf2n9A+LByc6t5xTfcEZIIL5p82f8pTrP/Mdc/8AJ5syRyek0/8Adx9w+5+hPkb/
AI4MfzH/ACbTPL3ZsgxV2KuxV2KuxV2KvkL/AJzM/wCU70T/ALZY/wCoiXOw9nf7qX9b9AcfNzTf
8jx/zpWnH/im4/6jHzO1n6f0Oi1H98fd+p6ETmE1o3y/vrdr82/4gcxtd/cycrR/3gej6b/eP8v4
5y7v0wxV2KuxVaRhVaRhQsIySFpGFVhGFC0jCqwjChaRhQsIyStYquBwKuBwKtuT/olx/wAYm/Vk
J8mUXn/mkf7jj/sv+InNp2L/AHh+Dr+0/oHxYGTnWvONDdgMUPmnzb/yletf8x9z/wAnmzIjyelw
f3cfcH6EeRv+ODH8x/ybTPMHZMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0Bx8
3NOPyRH/ADo2mn/im4/6jHzN1fP4/odHqP70+5n5OYjUmHlzfWrb5t/xA5ia7+5k5Wi/vA9H07+8
f5fxzmHfo/FXYq7FXYqtIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4Fan/3luP8AjE36
shk5MosD80D/AHGt8m/4gc2XY394fg4Haf0fN56TnXvNLod5VHz/AFYJclD5p83/APKWa3/zH3X/
ACebMiPIPS4P7uPuD9CPI3/HBj+Y/wCTaZ5g7JkGKuxV2KuxV2KuxV8hf85mf8p3on/bLH/URLnY
ezv91L+t+gOPm5p1+SYp5B0w/wDFVx/1GPmZq/q+P6HR6n+9PuZ0TmM0pr5Y31iD5t/xA5h6/wDu
i5mi/vA9G0/7b/LOYd8jsVdirsVdirsVWkYVWkYULCMkhaRhVYRhQtIwqsIwoWkYULCMkrWKul/3
mn/4xt+rK8nJMebB/NA/3Fyf6r/8QObHsb+8Pw+9we0/o+bzgnOxeZVLXe4QfP8AUcjPkmPN81ec
f+Uu1z/toXX/ACebL4fSHpcH0R9wfoP5G/44MfzH/JtM8xdkyDFXYq7FXYq7FXYq+Qv+czP+U70T
/tlj/qIlzsPZ3+6l/W/QHHzc08/JUf8AIPNLP/Fdx/1GSZl6r6z7/wBDpNT/AHh9zNicocdOPKu+
rQ/M/wDEGzB7Q/ui5uh+sPRbEhXappt3zmXfI3mn8w+/FXeon8w+/FWvUj/mH3jFXepH/MPvGKu9
WP8AnH3jFXepF/Ov3jFVpeP+dfvGG1Wl4/51+8YbQtLJ/Mv3jDa0tJT+ZfvGHiCKWnj/ADL/AMEP
64eILS08f5l/4If1w8QRS0qP5l/4If1w8YWlpUfzL/wS/wBceMIorCn+Uv8AwS/1w8YXhKyai289
WXeNgPiB3I+eRnIEJiGFeZx/uKm/1H/4gc2PY/8AefL73B7S+j5vNCc7N5dWsN7uMfP/AIichl+k
so83zX5z/wCUw13/ALaF1/yffL8f0j3PS4foj7g/QbyN/wAcGP5j/k2meYuyZBirsVdirsVdirsV
fIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmnv5Lj/AJBxpZ/yLj/qMkzK1X1n3/odJqv7
w+5mZOVOOmvly5jtrwTyAlIzuFpXdSO9Mw9bjM4cI6uVpJiMrLK/8T2H++5fuX/mrNL/ACdk7x+P
g7b85DuLX+JbD/fcv3L/AM1Y/wAnZO8fj4L+ch3Fr/Elj/vuX7l/5qx/k7J3j8fBfzkO4tf4jsf9
9y/cv/NWP8nZO8fj4L+ch3Fo+YrH/fcv3L/zVj/J2TvH4+C/nIdxW/4hsv5JPuX/AJqx/k7J3j8f
BfzkO4tfp+y/kk+5f+asf5Oyd4/HwX85DuLX6es/5JPuX/mrH+TsnePx8F/OQ7i1+nbP+ST7l/5q
x/k7J3j8fBfzkO4tfpy0/kk+5f64/wAnZO8fj4L+ch3Fr9N2n8kn3L/XH+TsnePx8F/OQ7i0datf
5JPuX+uP8nZO8fj4L+ch3Fb+mLX+R/uH9cf5Oyd4/HwX85DuLX6Xtv5H+4f1x/k7J3j8fBfzkO4t
fpa2/lf7h/XH+TsnePx8F/OQ7i0dVt/5X+4f1x/k7J3j8fBfzkO4tHVLf+V/uH9cf5Oyd4/HwX85
DuKW6/dxz6XcKgYFY5DvT+Q++bDs7TSx5Bdbkfe4etzicNvN5sTnWPOojTN7+If63/ETleb6Cyhz
fNnnX/lMte/7aN3/AMn3y/H9I9z02H6B7g/QXyN/xwY/mP8Ak2meYuxZBirsVdirsVdirsVfIX/O
Zn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5uaf/kyP+QZ6Uf8m4/6jJMytT/eH8dHS6r6z7mXk5W4rSyy
JXgxWvWhIxMQVEiOTjdXH+/X/wCCOPAO5eM9603Vz/v1/wDgjh4I9y8Z71pu7n/fz/8ABHDwR7kc
Z71pu7r/AH8//BH+uHw49y8cu9aby6/39J/wR/rh8OPcEccu9ab27/3/ACf8E39cPhx7gjjl3rTe
3f8Av+T/AINv64fDj3BfEl3rTfXn+/5P+Db+uHw49wR4ku8rTfXv/LRJ/wAG39cPhR7gviS7ytN/
e/8ALRJ/wbf1w+FHuCPEl3ladQvv+WiX/g2/rh8KPcEeJLvK06hff8tMv/Bt/XD4Ue4L4ku8rTqN
/wD8tMv/AAbf1w+FDuCPEl3ladRv/wDlpl/4Nv64fBh3D5L4ku8rTqWof8tUv/Bt/XD4MO4fJHiy
7ytOp6h/y1Tf8jG/rh8GHcPkjxZd5aOp6j/y1Tf8jG/rh8GHcPkviy7ypvqN+6lWuZWVhRlLsQQe
xFcIwwHQfJByS7yhScta0Xo++pQj/W/4icq1H0Fnj+p82+d/+Uz1/wD7aN3/AMn3y7F9I9z02H6B
7g/QTyN/xwY/mP8Ak2meZOxZBirsVdirsVdirsVfIX/OZn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5ub
IfybH/ILtJPtcf8AUZLmTqP70/jo6XVfWWVE5FxFpOFVpOFDCLz82fLtrdz2slteGSCRonKpFQlC
VNKyDbbLRjLLgKgfzh8tf8s17/wEX/VXD4ZXwytP5weWv+Wa9/4CL/qrjwFHhlo/m95b/wCWa8/4
CL/qrh4Cvhlo/m75b/5Zrz/gIv8Aqrh4V8Mrf+Vt+XD/AMe15/wEX/VXCIFHhF3/ACtjy6f+Pa8/
4CL/AKqZMYijwy1/ytXy8f8Aj3u/+Ai/6qZYNPJHhl3/ACtPy+f+Pe7/AOAj/wCqmTGll5I8Mtf8
rQ0A/wDHvd/8BH/1UywaKfkjwy7/AJWboR/497r/AICP/qpkx2fPvCOAtf8AKytDP+6Lr/gI/wDq
pkx2bk7x+PgjgLY/MXRT0guf+Bj/AOa8P8nZO8fj4LwFseftIPSG4/4FP+a8f5Pn3j8fBHAUTY+b
dOvbqO2iimWSQkKXVQNhXejHwyGTSSiLNIMSE4JzGYLCcKFpOFCN0PfVYB/rf8QOU6n+7LZi+oPm
7zx/ymvmD/tpXn/J98uxfQPcHpsX0D3B+gfkb/jgx/Mf8m0zzJ2LIMVdirsVdirsVdir5C/5zM/5
TvRP+2WP+oiXOw9nf7qX9b9AcfNzZF+To/5BVpB9rj/qMlzI1H98fx0dNq/qLJycXDWk4ULScKEq
/IbT7OTVvMty0S/Wm1BoRPQcxHVmKqT0BPXNL25M3EdKd52bEUS9s/RNv/O/3j+maC3Zu/RNv/O/
3j+mNq79E2/87/eP6Y2rv0Tb/wA7/eP6Y2rv0Tb/AM7/AHj+mNq79E2/87/eP6Y2rv0Tb/zv94/p
jau/RNv/ADv94/pjau/RNv8Azv8AeP6Y2rv0Tb/zv94/pjau/RNv/O/3j+mNq80/PXTbMeUJmaMP
LbyQvBKwBZC8gRqEU6qc6L2YyyjqwAdpA38nA7RiDiJ7nzykeekEvOpz5cSmsWx9z/xE5jak+gsZ
cmeE5qWhaThQtJwqj/L2+sW4/wBf/iDZRq/7s/jq2YfqD5v89f8AKb+Yf+2nef8AUQ+W4foHuD02
L6R7n6BeRv8Ajgx/Mf8AJtM8zdiyDFXYq7FXYq7FXYq+Qv8AnMz/AJTvRP8Atlj/AKiJc7D2d/up
f1v0Bx83Nkn5Pj/kEujn/mI/6jJcvz/35/HR02r+osjJyThLScKFhOSQgvyCamo+YR46o3/G2aHt
z6o+533Zv0l7pmhdk7FXYq7FXYq7FXYq7FXYq7FXYq8w/PPfytdr7wf8nRm/9m/8bj7pfc4PaP8A
cn4PntI89IJebTXQUpqlufc/8ROY+c+gsZcmZk5rWhaThVaThQmPlrfW7Yf6/wDybbMfWf3R/HVt
wfWHzh58/wCU58xf9tO8/wCoh8twfRH3B6fH9I9z9AfI3/HBj+Y/5NpnmbsGQYq7FXYq7FXYq7FX
yF/zmZ/yneif9ssf9REudh7O/wB1L+t+gOPm5sm/KEf8gh0Y+9x/1GTZdm/vz+OgdPrOZT8nLHAW
E5JC0nCqX/kO9NT8wf8AbUb/AI2zQ9ufVH3O+7N+kvdPUzQ07Jg/5n+a7ny3o9zq0CGY20cREHMx
hvUnEfUA9OVemZmh03jZRC6u/utpz5eCBl3PIv8AoY3V/wDq1j/pKf8A5ozoR7NxP8f2ftdf/KR/
m/ay/wDLf81dQ826lcW0tsbQWypJyWZpOXJuNKELmu7U7JGliJCXFZ7nJ0ur8UkVVPZvUzR05rvU
xpXepjSu9TGld6mNK71MaV3qY0rzP8625eXrlf8AjB/ydGb32c/xuPul9zg9o/3J+DwdI89FJebT
PRkpqEJ9z+o5RmPpLCXJlJOYLStJwoWE4UJp5V31+1H/ABk/5NtmNrf7o/D727T/AFh84efv+U68
x/8AbUvf+oh8swf3cfcHp8f0j3P0B8jf8cGP5j/k2meaOwZBirsVdirsVdirsVfIX/OZn/Kd6J/2
yx/1ES52Hs7/AHUv636A4+bmyf8AKMf8gc0U/wCVcf8AUZNl2b/GD+OgdPrOZTsnLnXrScKrScKE
s/I1qanr3/bTb/jbND22PVH3O/7N+kvb/UzROyeYfny9fJmoj/iu2/6i0zbdiD/CofH/AHJcTW/3
R+H3vmQDPQ4wefep/kEeOuah/wAYov8Ak5nOe1Eaxw/rH7nZdmfUfc+l/UziXcu9TFXepirvUxV3
qYq71MVd6mKvOPzhblolwPaH/k5m79nv8aj7j9zgdo/3J+DxdI89BJebTDTEpeRH3P6jlOQ7MZck
/JzFaFhOFC0nCqbeUd/MVoP+Mn/Jpsxdf/cy+H3hu031h84/mB/ynnmT/tqXv/UQ+Waf+7j/AFR9
z0+P6R7n6AeRv+ODH8x/ybTPNHYMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0B
x83NlP5TD/kC+iH/AC7n/qMmy3L/AIzL8dA6jWcym5OZDrlpOFC0nChKfyUbjqmue+pN/wAbZpO3
h6of1Xf9m/SXtXqZz9Oyeafnm9fKOoD/AIrt/wDqKXNz2CP8Lh/nf7kuJrv7o/D73zaFz0mMHnre
nfkWeOt33/GKP/k5nMe1kaxQ/rH7nZ9l/Ufc+j/UzhKdy71MaV3qY0rvUxpXepjSu9TGld6mNK8/
/NduWlzL7Rf8nM3XYH+NR+P3OD2l/cn4PJEjzvSXmkbYpS4Q/wCfTKpnZjLkmpOUtC0nCq0nJITj
ybv5lsx/xk/5NPmH2h/cy+H3hv0394Hzl+YP/KfeZf8Atq3v/US+Waf+7j/VH3PTw+kPv/yN/wAc
GP5j/k2meaOwZBirsVdirsVdirsVfIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmyv8qB/
yBPRD/xZc/8AUZNlmT/GpfjoHUa1MycynWrScKFhOFUn/JxuOqa1/wBtJv8AjbNR7QD1Q/qu+7M+
kvZfUznKdm83/Ox+XlW/H/Fdv/1Erm69nh/hkP8AO/3JcTXf3J+H3vncLnp8YvOPSvyUHDWL0+Mc
f/E85P2u/uof1j9ztOy/qPufQ3qZwVO6d6mNK71MaV3qY0rvUxpXepjSu9TGlYJ+ZjcrGUe0X/E8
3HYX+Mx+P3OB2l/cn4PNEjzuSXmkVbpSRTlZLGXJFk5FpWk5JC0nChOvJG/miyH/ABl/5MvmF2l/
cS+H3hyNL/eD8dHzn+Yf/Kf+Zv8AtrX3/US+T0391H+qPueoh9Iff3kb/jgx/Mf8m0zzVz2QYq7F
XYq7FXYq7FXyF/zmZ/yneif9ssf9REudh7O/3Uv636A4+bmyz8qv/JHaGf8Aiy5/6jJ8nk/xuXu/
QHUa1MCczHWLCcKrScKEk/KN+Gqaz/20W/42zV+0Y3x/1Xfdl/SXr31gZzVO0Yv520E+YLSSwbms
EyIHkjKhgUk9Tbl8hmXodXLTZRliATG+fmKas2IZImJ6sFH5J2Q/3ddffF/TOh/0W5/5kPt/W4P8
lw7ynvlX8v18vXbz25mkMoVX9QpQBWrtxAzV9pdsZNXERkAOHutyNPpI4iSDzei/WBmnpy3fWBjS
u+sDGld9YGNK76wMaV31gY0rvrAxpWGfmA4kt5B/kx/8Tzbdi/4wPj9zgdpf3J+DAkjztCXmldEp
vkbYy5Licm0LScKFhOFU98ib+a7H/nr/AMmXzB7T/wAXl8PvDkaT+8H46PnT8xf/ACYPmf8A7a19
/wBRL5PTf3Uf6o+56iHIPv3yN/xwY/mP+TaZ5q57IMVdirsVdirsVdir5C/5zMB/x1oh7fosf9RE
udh7O/3Uv636A4+bmyz8qv8AyRuh07S3Ffb/AEyfJz/xuXu/QHUa3kjSczXWLScKFpOFDH/ywfhq
OsH/AJf2/W2a72lG+P8AqO+7L+kvT/rXvnMU7R31r3xpXfWvfGld9a98aV31r3xpXfWvfGld9a98
aV31r3xpXfWvfGld9a98aV31r3xpWM+bpPUiYeyf8Szadj/4wPj9zg9pf3J+DFUjzsCXmVVkpGTg
id2MuSHJy9oWE4VWk4UJ95CqfNljQbD1a/8AIl8wO1P8Xl8PvDkaP+8H46PnX8xf/Jg+Z/8AtrX3
/US+T0v91H+qPuephyD798jf8cGP5j/k2meaueyDFXYq7FXYq7FXYq+b/wDnMvyrcXGj6F5ngQtH
YSSWV6QK8VuOLxMfBQ8bLXxYZ0vs7nAlLGeu4+DTmHVif/OOXm+xvdGvfImoTiO5LvdaSXbZlIDS
RINt0ZfUp1ILeGbPtDGYTGUfF12pxcQZ/fafeWUhjuIytDQPT4W+Ry3FljMWC6acDHmhCcta1hOF
Uo/KW39fzBf2/X1dQYU/4LNf7UHfH/Ud92V9Je4/4U/yPwzkuN2tO/wp/kfhjxrTv8Kf5H4Y8a07
/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GP
GtO/wp/kfhjxrTz78wrH6lf/AFelKxI1Pmx/pm27GN5x8fucDtP+5PwYmkedcS8wuuEpbufb+OMD
6mMuSWE5ltK0nChyJJK4jjUu7bKqgkk+wGJIAsqBfJldi1p5F0G982+Yf3BjjMdlZsQsskjbqig/
tvxoB2FSds0Wu1H5iQxY9+8u20OlINl82eV7HUPNvny1WWs1zqF4bm8cDqC5lmb2rvT3zK1mUYMB
PdGh9wd/AWafoD5TtzBo6L2LEj5ABf8AjXPPHLTjFXYq7FXYq7FXYql/mDQdL8waLeaLqsIuNPv4
mhuIj3Vu4PZlO6nsd8sxZZY5CUeYQRb4V/NL8oPNv5a656pEs2kiX1NL1uDko+FqpzZf7qVdtvHd
Sc7vQ9o49TGuUusfxzDjTgQmOjf85K/mRp1klrMbLUymy3F5C5loBQAtDJCG+ZFfE4z7KxSN7j3O
OcUSj/8Aoaf8wf8Aq36T/wAibn/soyH8kYu+X2fqR4Ad/wBDT/mD/wBW/Sf+RNz/ANlGP8kYu+X2
fqXwAoN/zkl5puryK6v9OtRJACIHsXmtXUk9SzvcfgBlObsSEuUiPfv+puxejkjP+hnPMn++bz/u
JS/9U8xv9Dw/n/7H9rd4rv8AoZzzJ/vm8/7iUv8A1Tx/0PD+f/sf2r4rv+hnPMn++bz/ALiUv/VP
H/Q8P5/+x/aviu/6Gc8yf75vP+4lL/1Tx/0PD+f/ALH9q+K7/oZzzJ/vm8/7iUv/AFTx/wBDw/n/
AOx/aviu/wChnPMn++bz/uJS/wDVPH/Q8P5/+x/aviu/6Gc8yf75vP8AuJS/9U8f9Dw/n/7H9q+K
7/oZzzJ/vm8/7iUv/VPH/Q8P5/8Asf2r4rv+hnPMn++bz/uJS/8AVPH/AEPD+f8A7H9q+K7/AKGc
8yf75vP+4lL/ANU8f9Dw/n/7H9q+K7/oZzzJ/vm8/wC4lL/1Tx/0PD+f/sf2r4qEm/5yR8yi8jvr
awikvEBQyahNLdjgRSg4mBh1/mPyy7D2FCJ3kT7hX62vJLjFK3/Q0/5g/wDVv0n/AJE3P/ZRmT/J
GLvl9n6nH8AO/wChp/zB/wCrfpP/ACJuf+yjH+SMXfL7P1L4Ad/0NP8AmD/1b9J/5E3P/ZRj/JGL
vl9n6l8AO/6Gn/MH/q36T/yJuf8Asox/kjF3y+z9S+AGj/zlP+YJH/HP0ke/o3P/AGUY/wAkYu+X
2fqXwQwPXvM/nfz/AKxF9emm1O7qRa2cS0jiDHf040AVR0qx32+I5lxhi08L2iO9tjCtg+ifyJ/J
ubQF+u36q+tXajmRusEXXiD+vxNPAE8f2r2l+YlUfoH2+f6nKhCn0XBCkEKQxiiRgKv0ZqGxfirs
VdirsVdirsVdiqhfWFlf2slpewpcW0o4yQyKGVh7g4QSNwryzXP+cZ/yy1G4a4i0xIGY1McTyQrX
5RMo/wCFzYY+1tTAUJn40fvYHGEp/wChVPy+/wCWAf8ASXdf1yf8tar+f9kf1L4cXf8AQqn5ff8A
LAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/
rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n
/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF
3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff
8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r
+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+
f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4c
Xf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cW1/5xW/L
9WDCwWo33urkj7icT2zqv5/2R/UvhxZl5Z/KLy9oKcLG1t7RduRgT42p4sQN/c5g5tRkym5yMmQA
DNrOytrSL04E4j9o9ST7nKUq+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku
xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV//2Q==</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xapMM:DocumentID>
uuid:f3c53255-be8a-4b04-817b-695bf2c54c8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
filesave.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>end='w' </xpacket>
</metadata>
<g
id="Layer_1">
<path
style="opacity:0.2;"
d="M9.416,5.208c-2.047,0-3.712,1.693-3.712,3.775V39.15c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.983c0-2.082-1.665-3.775-3.712-3.775H9.416z"
id="path592" />
<path
style="opacity:0.2;"
d="M9.041,4.833c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.608c0-2.082-1.665-3.775-3.712-3.775H9.041z"
id="path593" />
<path
style="fill:#00008D;"
d="M8.854,4.646c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.42c0-2.082-1.665-3.775-3.712-3.775H8.854z"
id="path594" />
<path
style="fill:#00008D;"
d="M8.854,5.021c-1.84,0-3.337,1.525-3.337,3.4v30.167c0,1.875,1.497,3.4,3.337,3.4h29.401 c1.84,0,3.337-1.525,3.337-3.4V8.42c0-1.875-1.497-3.4-3.337-3.4H8.854z"
id="path595" />
<path
id="path166_1_"
style="fill:#FFFFFF;"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<linearGradient
id="path166_2_"
gradientUnits="userSpaceOnUse"
x1="-149.0464"
y1="251.1436"
x2="-149.0464"
y2="436.303"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#B4E2FF"
id="stop598" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop599" />
<a:midPointStop
offset="0"
style="stop-color:#B4E2FF"
id="midPointStop600" />
<a:midPointStop
offset="0.5"
style="stop-color:#B4E2FF"
id="midPointStop601" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop602" />
</linearGradient>
<path
id="path166"
style="fill:url(#path166_2_);"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<path
style="fill:#FFFFFF;"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path604" />
<linearGradient
id="XMLID_1_"
gradientUnits="userSpaceOnUse"
x1="7.3057"
y1="7.2559"
x2="50.7728"
y2="50.7231">
<stop
offset="0"
style="stop-color:#94CAFF"
id="stop606" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop607" />
<a:midPointStop
offset="0"
style="stop-color:#94CAFF"
id="midPointStop608" />
<a:midPointStop
offset="0.5"
style="stop-color:#94CAFF"
id="midPointStop609" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop610" />
</linearGradient>
<path
style="fill:url(#XMLID_1_);"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path611" />
<linearGradient
id="XMLID_2_"
gradientUnits="userSpaceOnUse"
x1="23.5039"
y1="2.187"
x2="23.5039"
y2="34.4368">
<stop
offset="0"
style="stop-color:#428AFF"
id="stop613" />
<stop
offset="1"
style="stop-color:#C9E6FF"
id="stop614" />
<a:midPointStop
offset="0"
style="stop-color:#428AFF"
id="midPointStop615" />
<a:midPointStop
offset="0.5"
style="stop-color:#428AFF"
id="midPointStop616" />
<a:midPointStop
offset="1"
style="stop-color:#C9E6FF"
id="midPointStop617" />
</linearGradient>
<path
style="fill:url(#XMLID_2_);"
d="M36.626,6.861c0,0-26.184,0-26.914,0c0,0.704,0,16.59,0,17.294c0.721,0,26.864,0,27.583,0 c0-0.704,0-16.59,0-17.294C36.988,6.861,36.626,6.861,36.626,6.861z"
id="path618" />
<polygon
id="path186_1_"
style="fill:#FFFFFF;"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<linearGradient
id="path186_2_"
gradientUnits="userSpaceOnUse"
x1="-104.5933"
y1="411.6699"
x2="-206.815"
y2="309.4482"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#CCCCCC"
id="stop621" />
<stop
offset="1"
style="stop-color:#F0F0F0"
id="stop622" />
<a:midPointStop
offset="0"
style="stop-color:#CCCCCC"
id="midPointStop623" />
<a:midPointStop
offset="0.5"
style="stop-color:#CCCCCC"
id="midPointStop624" />
<a:midPointStop
offset="1"
style="stop-color:#F0F0F0"
id="midPointStop625" />
</linearGradient>
<polygon
id="path186"
style="fill:url(#path186_2_);"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<path
style="fill:#FFFFFF;stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path627" />
<linearGradient
id="XMLID_3_"
gradientUnits="userSpaceOnUse"
x1="34.5967"
y1="3.5967"
x2="18.4087"
y2="19.7847">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop629" />
<stop
offset="0.5506"
style="stop-color:#E6EDFF"
id="stop630" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop631" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop632" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop633" />
<a:midPointStop
offset="0.5506"
style="stop-color:#E6EDFF"
id="midPointStop634" />
<a:midPointStop
offset="0.5"
style="stop-color:#E6EDFF"
id="midPointStop635" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop636" />
</linearGradient>
<path
style="fill:url(#XMLID_3_);stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path637" />
<linearGradient
id="path205_1_"
gradientUnits="userSpaceOnUse"
x1="-174.4409"
y1="300.0908"
x2="-108.8787"
y2="210.2074"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#003399"
id="stop639" />
<stop
offset="0.2697"
style="stop-color:#0035ED"
id="stop640" />
<stop
offset="1"
style="stop-color:#57ADFF"
id="stop641" />
<a:midPointStop
offset="0"
style="stop-color:#003399"
id="midPointStop642" />
<a:midPointStop
offset="0.5"
style="stop-color:#003399"
id="midPointStop643" />
<a:midPointStop
offset="0.2697"
style="stop-color:#0035ED"
id="midPointStop644" />
<a:midPointStop
offset="0.5"
style="stop-color:#0035ED"
id="midPointStop645" />
<a:midPointStop
offset="1"
style="stop-color:#57ADFF"
id="midPointStop646" />
</linearGradient>
<rect
id="path205"
x="12.154"
y="26.479"
style="fill:url(#path205_1_);"
width="22.007"
height="13.978" />
<linearGradient
id="XMLID_4_"
gradientUnits="userSpaceOnUse"
x1="21.8687"
y1="25.1875"
x2="21.8687"
y2="44.6251">
<stop
offset="0"
style="stop-color:#DFDFDF"
id="stop649" />
<stop
offset="1"
style="stop-color:#7D7D99"
id="stop650" />
<a:midPointStop
offset="0"
style="stop-color:#DFDFDF"
id="midPointStop651" />
<a:midPointStop
offset="0.5"
style="stop-color:#DFDFDF"
id="midPointStop652" />
<a:midPointStop
offset="1"
style="stop-color:#7D7D99"
id="midPointStop653" />
</linearGradient>
<path
style="fill:url(#XMLID_4_);"
d="M13.244,27.021c-0.311,0-0.563,0.252-0.563,0.563v13.104c0,0.312,0.252,0.563,0.563,0.563h17.249 c0.311,0,0.563-0.251,0.563-0.563V27.583c0-0.311-0.252-0.563-0.563-0.563H13.244z M18.85,30.697c0,0.871,0,5.078,0,5.949 c-0.683,0-2.075,0-2.759,0c0-0.871,0-5.078,0-5.949C16.775,30.697,18.167,30.697,18.85,30.697z"
id="path654" />
<linearGradient
id="XMLID_5_"
gradientUnits="userSpaceOnUse"
x1="-158.0337"
y1="288.0684"
x2="-158.0337"
y2="231.3219"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#F0F0F0"
id="stop656" />
<stop
offset="0.6348"
style="stop-color:#CECEDB"
id="stop657" />
<stop
offset="0.8595"
style="stop-color:#B1B1C5"
id="stop658" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop659" />
<a:midPointStop
offset="0"
style="stop-color:#F0F0F0"
id="midPointStop660" />
<a:midPointStop
offset="0.5"
style="stop-color:#F0F0F0"
id="midPointStop661" />
<a:midPointStop
offset="0.6348"
style="stop-color:#CECEDB"
id="midPointStop662" />
<a:midPointStop
offset="0.5"
style="stop-color:#CECEDB"
id="midPointStop663" />
<a:midPointStop
offset="0.8595"
style="stop-color:#B1B1C5"
id="midPointStop664" />
<a:midPointStop
offset="0.5"
style="stop-color:#B1B1C5"
id="midPointStop665" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop666" />
</linearGradient>
<path
style="fill:url(#XMLID_5_);"
d="M13.244,27.583v13.104h17.249V27.583H13.244z M19.413,37.209h-3.884v-7.074h3.884V37.209z"
id="path667" />
<linearGradient
id="path228_1_"
gradientUnits="userSpaceOnUse"
x1="-68.1494"
y1="388.4561"
x2="-68.1494"
y2="404.6693"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#3399FF"
id="stop669" />
<stop
offset="1"
style="stop-color:#000000"
id="stop670" />
<a:midPointStop
offset="0"
style="stop-color:#3399FF"
id="midPointStop671" />
<a:midPointStop
offset="0.5"
style="stop-color:#3399FF"
id="midPointStop672" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop673" />
</linearGradient>
<rect
id="path228"
x="37.83"
y="9.031"
style="fill:url(#path228_1_);"
width="1.784"
height="1.785" />
<polyline
id="_x3C_Slice_x3E_"
style="fill:none;"
points="0,48 0,0 48,0 48,48 " />
</g>
</svg>
import base64
import io
import json
import os.path as osp
import PIL.Image
from labelme._version import __version__
from labelme.logger import logger
from labelme import PY2
from labelme import QT4
from labelme import utils
class LabelFileError(Exception):
pass
class LabelFile(object):
suffix = '.json'
def __init__(self, filename=None):
self.shapes = ()
self.imagePath = None
self.imageData = None
if filename is not None:
self.load(filename)
self.filename = filename
@staticmethod
def load_image_file(filename):
try:
image_pil = PIL.Image.open(filename)
except IOError:
logger.error('Failed opening image file: {}'.format(filename))
return
# apply orientation to image according to exif
image_pil = utils.apply_exif_orientation(image_pil)
with io.BytesIO() as f:
ext = osp.splitext(filename)[1].lower()
if PY2 and QT4:
format = 'PNG'
elif ext in ['.jpg', '.jpeg']:
format = 'JPEG'
else:
format = 'PNG'
image_pil.save(f, format=format)
f.seek(0)
return f.read()
def load(self, filename):
keys = [
'imageData',
'imagePath',
'lineColor',
'fillColor',
'shapes', # polygonal annotations
'flags', # image level flags
'imageHeight',
'imageWidth',
]
try:
with open(filename, 'rb' if PY2 else 'r') as f:
data = json.load(f)
if data['imageData'] is not None:
imageData = base64.b64decode(data['imageData'])
if PY2 and QT4:
imageData = utils.img_data_to_png_data(imageData)
else:
# relative path from label file to relative path from cwd
imagePath = osp.join(osp.dirname(filename), data['imagePath'])
imageData = self.load_image_file(imagePath)
flags = data.get('flags') or {}
imagePath = data['imagePath']
self._check_image_height_and_width(
base64.b64encode(imageData).decode('utf-8'),
data.get('imageHeight'),
data.get('imageWidth'),
)
lineColor = data['lineColor']
fillColor = data['fillColor']
shapes = (
(
s['label'],
s['points'],
s['line_color'],
s['fill_color'],
s.get('shape_type', 'polygon'),
s.get('flags', {}),
)
for s in data['shapes']
)
except Exception as e:
raise LabelFileError(e)
otherData = {}
for key, value in data.items():
if key not in keys:
otherData[key] = value
# Only replace data after everything is loaded.
self.flags = flags
self.shapes = shapes
self.imagePath = imagePath
self.imageData = imageData
self.lineColor = lineColor
self.fillColor = fillColor
self.filename = filename
self.otherData = otherData
@staticmethod
def _check_image_height_and_width(imageData, imageHeight, imageWidth):
img_arr = utils.img_b64_to_arr(imageData)
if imageHeight is not None and img_arr.shape[0] != imageHeight:
logger.error(
'imageHeight does not match with imageData or imagePath, '
'so getting imageHeight from actual image.'
)
imageHeight = img_arr.shape[0]
if imageWidth is not None and img_arr.shape[1] != imageWidth:
logger.error(
'imageWidth does not match with imageData or imagePath, '
'so getting imageWidth from actual image.'
)
imageWidth = img_arr.shape[1]
return imageHeight, imageWidth
def save(
self,
filename,
shapes,
imagePath,
imageHeight,
imageWidth,
imageData=None,
lineColor=None,
fillColor=None,
otherData=None,
flags=None,
):
if imageData is not None:
imageData = base64.b64encode(imageData).decode('utf-8')
imageHeight, imageWidth = self._check_image_height_and_width(
imageData, imageHeight, imageWidth
)
if otherData is None:
otherData = {}
if flags is None:
flags = {}
data = dict(
version=__version__,
flags=flags,
shapes=shapes,
lineColor=lineColor,
fillColor=fillColor,
imagePath=imagePath,
imageData=imageData,
imageHeight=imageHeight,
imageWidth=imageWidth,
)
for key, value in otherData.items():
data[key] = value
try:
with open(filename, 'wb' if PY2 else 'w') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
self.filename = filename
except Exception as e:
raise LabelFileError(e)
@staticmethod
def is_label_file(filename):
return osp.splitext(filename)[1].lower() == LabelFile.suffix
import logging
import termcolor
from . import __appname__
COLORS = {
'WARNING': 'yellow',
'INFO': 'white',
'DEBUG': 'blue',
'CRITICAL': 'red',
'ERROR': 'red',
}
class ColoredFormatter(logging.Formatter):
def __init__(self, msg, use_color=True):
logging.Formatter.__init__(self, msg)
self.use_color = use_color
def format(self, record):
levelname = record.levelname
if self.use_color and levelname in COLORS:
colored_levelname = termcolor.colored(
'[{}]'.format(levelname), color=COLORS[levelname]
)
record.levelname = colored_levelname
return logging.Formatter.format(self, record)
class ColoredLogger(logging.Logger):
fmt_filename = termcolor.colored('%(filename)s', attrs={'bold': True})
FORMAT = '%(levelname)s %(message)s ({}:%(lineno)d)'.format(fmt_filename)
def __init__(self, name):
logging.Logger.__init__(self, name, logging.INFO)
color_formatter = ColoredFormatter(self.FORMAT)
console = logging.StreamHandler()
console.setFormatter(color_formatter)
self.addHandler(console)
return
logging.setLoggerClass(ColoredLogger)
logger = logging.getLogger(__appname__)
import argparse
import codecs
import logging
import os
import sys
import yaml
from qtpy import QtWidgets
from labelme import __appname__
from labelme import __version__
from labelme.app import MainWindow
from labelme.config import get_config
from labelme.logger import logger
from labelme.utils import newIcon
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--version', '-V', action='store_true', help='show version'
)
parser.add_argument(
'--reset-config', action='store_true', help='reset qt config'
)
parser.add_argument(
'--logger-level',
default='info',
choices=['debug', 'info', 'warning', 'fatal', 'error'],
help='logger level',
)
parser.add_argument('filename', nargs='?', help='image or label filename')
parser.add_argument(
'--output',
'-O',
'-o',
help='output file or directory (if it ends with .json it is '
'recognized as file, else as directory)'
)
default_config_file = os.path.join(os.path.expanduser('~'), '.labelmerc')
parser.add_argument(
'--config',
dest='config_file',
help='config file (default: %s)' % default_config_file,
default=default_config_file,
)
# config for the gui
parser.add_argument(
'--nodata',
dest='store_data',
action='store_false',
help='stop storing image data to JSON file',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--autosave',
dest='auto_save',
action='store_true',
help='auto save',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--nosortlabels',
dest='sort_labels',
action='store_false',
help='stop sorting labels',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--flags',
help='comma separated list of flags OR file containing flags',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--labelflags',
dest='label_flags',
help='yaml string of label specific flags OR file containing json '
'string of label specific flags (ex. {person-\d+: [male, tall], '
'dog-\d+: [black, brown, white], .*: [occluded]})',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--labels',
help='comma separated list of labels OR file containing labels',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--validatelabel',
dest='validate_label',
choices=['exact', 'instance'],
help='label validation types',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--keep-prev',
action='store_true',
help='keep annotation of previous frame',
default=argparse.SUPPRESS,
)
parser.add_argument(
'--epsilon',
type=float,
help='epsilon to find nearest vertex on canvas',
default=argparse.SUPPRESS,
)
args = parser.parse_args()
if args.version:
print('{0} {1}'.format(__appname__, __version__))
sys.exit(0)
logger.setLevel(getattr(logging, args.logger_level.upper()))
if hasattr(args, 'flags'):
if os.path.isfile(args.flags):
with codecs.open(args.flags, 'r', encoding='utf-8') as f:
args.flags = [l.strip() for l in f if l.strip()]
else:
args.flags = [l for l in args.flags.split(',') if l]
if hasattr(args, 'labels'):
if os.path.isfile(args.labels):
with codecs.open(args.labels, 'r', encoding='utf-8') as f:
args.labels = [l.strip() for l in f if l.strip()]
else:
args.labels = [l for l in args.labels.split(',') if l]
if hasattr(args, 'label_flags'):
if os.path.isfile(args.label_flags):
with codecs.open(args.label_flags, 'r', encoding='utf-8') as f:
args.label_flags = yaml.load(f)
else:
args.label_flags = yaml.load(args.label_flags)
config_from_args = args.__dict__
config_from_args.pop('version')
reset_config = config_from_args.pop('reset_config')
filename = config_from_args.pop('filename')
output = config_from_args.pop('output')
config_file = config_from_args.pop('config_file')
config = get_config(config_from_args, config_file)
if not config['labels'] and config['validate_label']:
logger.error('--labels must be specified with --validatelabel or '
'validate_label: true in the config file '
'(ex. ~/.labelmerc).')
sys.exit(1)
output_file = None
output_dir = None
if output is not None:
if output.endswith('.json'):
output_file = output
else:
output_dir = output
app = QtWidgets.QApplication(sys.argv)
app.setApplicationName(__appname__)
app.setWindowIcon(newIcon('icon'))
win = MainWindow(
config=config,
filename=filename,
output_file=output_file,
output_dir=output_dir,
)
if reset_config:
logger.info('Resetting Qt config: %s' % win.settings.fileName())
win.settings.clear()
sys.exit(0)
win.show()
win.raise_()
sys.exit(app.exec_())
# this main block is required to generate executable by pyinstaller
if __name__ == '__main__':
main()
import copy
import math
from qtpy import QtCore
from qtpy import QtGui
import labelme.utils
# TODO(unknown):
# - [opt] Store paths instead of creating new ones at each paint.
DEFAULT_LINE_COLOR = QtGui.QColor(0, 255, 0, 128)
DEFAULT_FILL_COLOR = QtGui.QColor(255, 0, 0, 128)
DEFAULT_SELECT_LINE_COLOR = QtGui.QColor(255, 255, 255)
DEFAULT_SELECT_FILL_COLOR = QtGui.QColor(0, 128, 255, 155)
DEFAULT_VERTEX_FILL_COLOR = QtGui.QColor(0, 255, 0, 255)
DEFAULT_HVERTEX_FILL_COLOR = QtGui.QColor(255, 0, 0)
class Shape(object):
P_SQUARE, P_ROUND = 0, 1
MOVE_VERTEX, NEAR_VERTEX = 0, 1
# The following class variables influence the drawing of all shape objects.
line_color = DEFAULT_LINE_COLOR
fill_color = DEFAULT_FILL_COLOR
select_line_color = DEFAULT_SELECT_LINE_COLOR
select_fill_color = DEFAULT_SELECT_FILL_COLOR
vertex_fill_color = DEFAULT_VERTEX_FILL_COLOR
hvertex_fill_color = DEFAULT_HVERTEX_FILL_COLOR
point_type = P_ROUND
point_size = 8
scale = 1.0
def __init__(self, label=None, line_color=None, shape_type=None,
flags=None):
self.label = label
self.points = []
self.fill = False
self.selected = False
self.shape_type = shape_type
self.flags = flags
self._highlightIndex = None
self._highlightMode = self.NEAR_VERTEX
self._highlightSettings = {
self.NEAR_VERTEX: (4, self.P_ROUND),
self.MOVE_VERTEX: (1.5, self.P_SQUARE),
}
self._closed = False
if line_color is not None:
# Override the class line_color attribute
# with an object attribute. Currently this
# is used for drawing the pending line a different color.
self.line_color = line_color
self.shape_type = shape_type
@property
def shape_type(self):
return self._shape_type
@shape_type.setter
def shape_type(self, value):
if value is None:
value = 'polygon'
if value not in ['polygon', 'rectangle', 'point',
'line', 'circle', 'linestrip']:
raise ValueError('Unexpected shape_type: {}'.format(value))
self._shape_type = value
def close(self):
self._closed = True
def addPoint(self, point):
if self.points and point == self.points[0]:
self.close()
else:
self.points.append(point)
def popPoint(self):
if self.points:
return self.points.pop()
return None
def insertPoint(self, i, point):
self.points.insert(i, point)
def isClosed(self):
return self._closed
def setOpen(self):
self._closed = False
def getRectFromLine(self, pt1, pt2):
x1, y1 = pt1.x(), pt1.y()
x2, y2 = pt2.x(), pt2.y()
return QtCore.QRectF(x1, y1, x2 - x1, y2 - y1)
def paint(self, painter):
if self.points:
color = self.select_line_color \
if self.selected else self.line_color
pen = QtGui.QPen(color)
# Try using integer sizes for smoother drawing(?)
pen.setWidth(max(1, int(round(2.0 / self.scale))))
painter.setPen(pen)
line_path = QtGui.QPainterPath()
vrtx_path = QtGui.QPainterPath()
if self.shape_type == 'rectangle':
assert len(self.points) in [1, 2]
if len(self.points) == 2:
rectangle = self.getRectFromLine(*self.points)
line_path.addRect(rectangle)
for i in range(len(self.points)):
self.drawVertex(vrtx_path, i)
elif self.shape_type == "circle":
assert len(self.points) in [1, 2]
if len(self.points) == 2:
rectangle = self.getCircleRectFromLine(self.points)
line_path.addEllipse(rectangle)
for i in range(len(self.points)):
self.drawVertex(vrtx_path, i)
elif self.shape_type == "linestrip":
line_path.moveTo(self.points[0])
for i, p in enumerate(self.points):
line_path.lineTo(p)
self.drawVertex(vrtx_path, i)
else:
line_path.moveTo(self.points[0])
# Uncommenting the following line will draw 2 paths
# for the 1st vertex, and make it non-filled, which
# may be desirable.
# self.drawVertex(vrtx_path, 0)
for i, p in enumerate(self.points):
line_path.lineTo(p)
self.drawVertex(vrtx_path, i)
if self.isClosed():
line_path.lineTo(self.points[0])
painter.drawPath(line_path)
painter.drawPath(vrtx_path)
painter.fillPath(vrtx_path, self.vertex_fill_color)
if self.fill:
color = self.select_fill_color \
if self.selected else self.fill_color
painter.fillPath(line_path, color)
def drawVertex(self, path, i):
d = self.point_size / self.scale
shape = self.point_type
point = self.points[i]
if i == self._highlightIndex:
size, shape = self._highlightSettings[self._highlightMode]
d *= size
if self._highlightIndex is not None:
self.vertex_fill_color = self.hvertex_fill_color
else:
self.vertex_fill_color = Shape.vertex_fill_color
if shape == self.P_SQUARE:
path.addRect(point.x() - d / 2, point.y() - d / 2, d, d)
elif shape == self.P_ROUND:
path.addEllipse(point, d / 2.0, d / 2.0)
else:
assert False, "unsupported vertex shape"
def nearestVertex(self, point, epsilon):
min_distance = float('inf')
min_i = None
for i, p in enumerate(self.points):
dist = labelme.utils.distance(p - point)
if dist <= epsilon and dist < min_distance:
min_distance = dist
min_i = i
return min_i
def nearestEdge(self, point, epsilon):
min_distance = float('inf')
post_i = None
for i in range(len(self.points)):
line = [self.points[i - 1], self.points[i]]
dist = labelme.utils.distancetoline(point, line)
if dist <= epsilon and dist < min_distance:
min_distance = dist
post_i = i
return post_i
def containsPoint(self, point):
return self.makePath().contains(point)
def getCircleRectFromLine(self, line):
"""Computes parameters to draw with `QPainterPath::addEllipse`"""
if len(line) != 2:
return None
(c, point) = line
r = line[0] - line[1]
d = math.sqrt(math.pow(r.x(), 2) + math.pow(r.y(), 2))
rectangle = QtCore.QRectF(c.x() - d, c.y() - d, 2 * d, 2 * d)
return rectangle
def makePath(self):
if self.shape_type == 'rectangle':
path = QtGui.QPainterPath()
if len(self.points) == 2:
rectangle = self.getRectFromLine(*self.points)
path.addRect(rectangle)
elif self.shape_type == "circle":
path = QtGui.QPainterPath()
if len(self.points) == 2:
rectangle = self.getCircleRectFromLine(self.points)
path.addEllipse(rectangle)
else:
path = QtGui.QPainterPath(self.points[0])
for p in self.points[1:]:
path.lineTo(p)
return path
def boundingRect(self):
return self.makePath().boundingRect()
def moveBy(self, offset):
self.points = [p + offset for p in self.points]
def moveVertexBy(self, i, offset):
self.points[i] = self.points[i] + offset
def highlightVertex(self, i, action):
self._highlightIndex = i
self._highlightMode = action
def highlightClear(self):
self._highlightIndex = None
def copy(self):
return copy.deepcopy(self)
def __len__(self):
return len(self.points)
def __getitem__(self, key):
return self.points[key]
def __setitem__(self, key, value):
self.points[key] = value
import json
import os.path as osp
import labelme.utils
def assert_labelfile_sanity(filename):
assert osp.exists(filename)
data = json.load(open(filename))
assert 'imagePath' in data
imageData = data.get('imageData', None)
if imageData is None:
assert osp.exists(data['imagePath'])
img = labelme.utils.img_b64_to_arr(imageData)
H, W = img.shape[:2]
assert 'shapes' in data
for shape in data['shapes']:
assert 'label' in shape
assert 'points' in shape
for x, y in shape['points']:
assert 0 <= x <= W
assert 0 <= y <= H
# flake8: noqa
from ._io import lblsave
from .image import apply_exif_orientation
from .image import img_arr_to_b64
from .image import img_b64_to_arr
from .image import img_data_to_png_data
from .shape import labelme_shapes_to_label
from .shape import masks_to_bboxes
from .shape import polygons_to_mask
from .shape import shape_to_mask
from .shape import shapes_to_label
from .draw import draw_instances
from .draw import draw_label
from .draw import label_colormap
from .draw import label2rgb
from .qt import newIcon
from .qt import newButton
from .qt import newAction
from .qt import addActions
from .qt import labelValidator
from .qt import struct
from .qt import distance
from .qt import distancetoline
from .qt import fmtShortcut
import os.path as osp
import numpy as np
import PIL.Image
from labelme.utils.draw import label_colormap
def lblsave(filename, lbl):
if osp.splitext(filename)[1] != '.png':
filename += '.png'
# Assume label ranses [-1, 254] for int32,
# and [0, 255] for uint8 as VOC.
if lbl.min() >= -1 and lbl.max() < 255:
lbl_pil = PIL.Image.fromarray(lbl.astype(np.uint8), mode='P')
colormap = label_colormap(255)
lbl_pil.putpalette((colormap * 255).astype(np.uint8).flatten())
lbl_pil.save(filename)
else:
raise ValueError(
'[%s] Cannot save the pixel-wise class label as PNG. '
'Please consider using the .npy format.' % filename
)
import io
import os.path as osp
import numpy as np
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFont
def label_colormap(N=256):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
cmap = np.zeros((N, 3))
for i in range(0, N):
id = i
r, g, b = 0, 0, 0
for j in range(0, 8):
r = np.bitwise_or(r, (bitget(id, 0) << 7 - j))
g = np.bitwise_or(g, (bitget(id, 1) << 7 - j))
b = np.bitwise_or(b, (bitget(id, 2) << 7 - j))
id = (id >> 3)
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
cmap = cmap.astype(np.float32) / 255
return cmap
def _validate_colormap(colormap, n_labels):
if colormap is None:
colormap = label_colormap(n_labels)
else:
assert colormap.shape == (colormap.shape[0], 3), \
'colormap must be sequence of RGB values'
assert 0 <= colormap.min() and colormap.max() <= 1, \
'colormap must ranges 0 to 1'
return colormap
# similar function as skimage.color.label2rgb
def label2rgb(
lbl, img=None, n_labels=None, alpha=0.5, thresh_suppress=0, colormap=None,
):
if n_labels is None:
n_labels = len(np.unique(lbl))
colormap = _validate_colormap(colormap, n_labels)
colormap = (colormap * 255).astype(np.uint8)
lbl_viz = colormap[lbl]
lbl_viz[lbl == -1] = (0, 0, 0) # unlabeled
if img is not None:
img_gray = PIL.Image.fromarray(img).convert('LA')
img_gray = np.asarray(img_gray.convert('RGB'))
# img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# img_gray = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
lbl_viz = alpha * lbl_viz + (1 - alpha) * img_gray
lbl_viz = lbl_viz.astype(np.uint8)
return lbl_viz
def draw_label(label, img=None, label_names=None, colormap=None, **kwargs):
"""Draw pixel-wise label with colorization and label names.
label: ndarray, (H, W)
Pixel-wise labels to colorize.
img: ndarray, (H, W, 3), optional
Image on which the colorized label will be drawn.
label_names: iterable
List of label names.
"""
import matplotlib.pyplot as plt
backend_org = plt.rcParams['backend']
plt.switch_backend('agg')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
wspace=0, hspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
if label_names is None:
label_names = [str(l) for l in range(label.max() + 1)]
colormap = _validate_colormap(colormap, len(label_names))
label_viz = label2rgb(
label, img, n_labels=len(label_names), colormap=colormap, **kwargs
)
plt.imshow(label_viz)
plt.axis('off')
plt_handlers = []
plt_titles = []
for label_value, label_name in enumerate(label_names):
if label_value not in label:
continue
fc = colormap[label_value]
p = plt.Rectangle((0, 0), 1, 1, fc=fc)
plt_handlers.append(p)
plt_titles.append('{value}: {name}'
.format(value=label_value, name=label_name))
plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)
f = io.BytesIO()
plt.savefig(f, bbox_inches='tight', pad_inches=0)
plt.cla()
plt.close()
plt.switch_backend(backend_org)
out_size = (label_viz.shape[1], label_viz.shape[0])
out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB')
out = np.asarray(out)
return out
def draw_instances(
image=None,
bboxes=None,
labels=None,
masks=None,
captions=None,
):
import matplotlib
# TODO(wkentaro)
assert image is not None
assert bboxes is not None
assert labels is not None
assert masks is None
assert captions is not None
viz = PIL.Image.fromarray(image)
draw = PIL.ImageDraw.ImageDraw(viz)
font_path = osp.join(
osp.dirname(matplotlib.__file__),
'mpl-data/fonts/ttf/DejaVuSans.ttf'
)
font = PIL.ImageFont.truetype(font_path)
colormap = label_colormap(255)
for bbox, label, caption in zip(bboxes, labels, captions):
color = colormap[label]
color = tuple((color * 255).astype(np.uint8).tolist())
xmin, ymin, xmax, ymax = bbox
draw.rectangle((xmin, ymin, xmax, ymax), outline=color)
draw.text((xmin, ymin), caption, font=font)
return np.asarray(viz)
import base64
import io
import numpy as np
import PIL.ExifTags
import PIL.Image
import PIL.ImageOps
def img_b64_to_arr(img_b64):
f = io.BytesIO()
f.write(base64.b64decode(img_b64))
img_arr = np.array(PIL.Image.open(f))
return img_arr
def img_arr_to_b64(img_arr):
img_pil = PIL.Image.fromarray(img_arr)
f = io.BytesIO()
img_pil.save(f, format='PNG')
img_bin = f.getvalue()
if hasattr(base64, 'encodebytes'):
img_b64 = base64.encodebytes(img_bin)
else:
img_b64 = base64.encodestring(img_bin)
return img_b64
def img_data_to_png_data(img_data):
with io.BytesIO() as f:
f.write(img_data)
img = PIL.Image.open(f)
with io.BytesIO() as f:
img.save(f, 'PNG')
f.seek(0)
return f.read()
def apply_exif_orientation(image):
try:
exif = image._getexif()
except AttributeError:
exif = None
if exif is None:
return image
exif = {
PIL.ExifTags.TAGS[k]: v
for k, v in exif.items()
if k in PIL.ExifTags.TAGS
}
orientation = exif.get('Orientation', None)
if orientation == 1:
# do nothing
return image
elif orientation == 2:
# left-to-right mirror
return PIL.ImageOps.mirror(image)
elif orientation == 3:
# rotate 180
return image.transpose(PIL.Image.ROTATE_180)
elif orientation == 4:
# top-to-bottom mirror
return PIL.ImageOps.flip(image)
elif orientation == 5:
# top-to-left mirror
return PIL.ImageOps.mirror(image.transpose(PIL.Image.ROTATE_270))
elif orientation == 6:
# rotate 270
return image.transpose(PIL.Image.ROTATE_270)
elif orientation == 7:
# top-to-right mirror
return PIL.ImageOps.mirror(image.transpose(PIL.Image.ROTATE_90))
elif orientation == 8:
# rotate 90
return image.transpose(PIL.Image.ROTATE_90)
else:
return image
from math import sqrt
import os.path as osp
import numpy as np
from qtpy import QtCore
from qtpy import QtGui
from qtpy import QtWidgets
here = osp.dirname(osp.abspath(__file__))
def newIcon(icon):
icons_dir = osp.join(here, '../icons')
return QtGui.QIcon(osp.join(':/', icons_dir, '%s.png' % icon))
def newButton(text, icon=None, slot=None):
b = QtWidgets.QPushButton(text)
if icon is not None:
b.setIcon(newIcon(icon))
if slot is not None:
b.clicked.connect(slot)
return b
def newAction(parent, text, slot=None, shortcut=None, icon=None,
tip=None, checkable=False, enabled=True):
"""Create a new action and assign callbacks, shortcuts, etc."""
a = QtWidgets.QAction(text, parent)
if icon is not None:
a.setIconText(text.replace(' ', '\n'))
a.setIcon(newIcon(icon))
if shortcut is not None:
if isinstance(shortcut, (list, tuple)):
a.setShortcuts(shortcut)
else:
a.setShortcut(shortcut)
if tip is not None:
a.setToolTip(tip)
a.setStatusTip(tip)
if slot is not None:
a.triggered.connect(slot)
if checkable:
a.setCheckable(True)
a.setEnabled(enabled)
return a
def addActions(widget, actions):
for action in actions:
if action is None:
widget.addSeparator()
elif isinstance(action, QtWidgets.QMenu):
widget.addMenu(action)
else:
widget.addAction(action)
def labelValidator():
return QtGui.QRegExpValidator(QtCore.QRegExp(r'^[^ \t].+'), None)
class struct(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def distance(p):
return sqrt(p.x() * p.x() + p.y() * p.y())
def distancetoline(point, line):
p1, p2 = line
p1 = np.array([p1.x(), p1.y()])
p2 = np.array([p2.x(), p2.y()])
p3 = np.array([point.x(), point.y()])
if np.dot((p3 - p1), (p2 - p1)) < 0:
return np.linalg.norm(p3 - p1)
if np.dot((p3 - p2), (p1 - p2)) < 0:
return np.linalg.norm(p3 - p2)
return np.linalg.norm(np.cross(p2 - p1, p1 - p3)) / np.linalg.norm(p2 - p1)
def fmtShortcut(text):
mod, key = text.split('+', 1)
return '<b>%s</b>+<b>%s</b>' % (mod, key)
import math
import numpy as np
import PIL.Image
import PIL.ImageDraw
from labelme.logger import logger
def polygons_to_mask(img_shape, polygons, shape_type=None):
logger.warning(
"The 'polygons_to_mask' function is deprecated, "
"use 'shape_to_mask' instead."
)
return shape_to_mask(img_shape, points=polygons, shape_type=shape_type)
def shape_to_mask(img_shape, points, shape_type=None,
line_width=10, point_size=5):
mask = np.zeros(img_shape[:2], dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
draw = PIL.ImageDraw.Draw(mask)
xy = [tuple(point) for point in points]
if shape_type == 'circle':
assert len(xy) == 2, 'Shape of shape_type=circle must have 2 points'
(cx, cy), (px, py) = xy
d = math.sqrt((cx - px) ** 2 + (cy - py) ** 2)
draw.ellipse([cx - d, cy - d, cx + d, cy + d], outline=1, fill=1)
elif shape_type == 'rectangle':
assert len(xy) == 2, 'Shape of shape_type=rectangle must have 2 points'
draw.rectangle(xy, outline=1, fill=1)
elif shape_type == 'line':
assert len(xy) == 2, 'Shape of shape_type=line must have 2 points'
draw.line(xy=xy, fill=1, width=line_width)
elif shape_type == 'linestrip':
draw.line(xy=xy, fill=1, width=line_width)
elif shape_type == 'point':
assert len(xy) == 1, 'Shape of shape_type=point must have 1 points'
cx, cy = xy[0]
r = point_size
draw.ellipse([cx - r, cy - r, cx + r, cy + r], outline=1, fill=1)
else:
assert len(xy) > 2, 'Polygon must have points more than 2'
draw.polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def shapes_to_label(img_shape, shapes, label_name_to_value, type='class'):
assert type in ['class', 'instance']
cls = np.zeros(img_shape[:2], dtype=np.int32)
if type == 'instance':
ins = np.zeros(img_shape[:2], dtype=np.int32)
instance_names = ['_background_']
for shape in shapes:
points = shape['points']
label = shape['label']
shape_type = shape.get('shape_type', None)
if type == 'class':
cls_name = label
elif type == 'instance':
cls_name = label.split('-')[0]
if label not in instance_names:
instance_names.append(label)
ins_id = instance_names.index(label)
cls_id = label_name_to_value[cls_name]
mask = shape_to_mask(img_shape[:2], points, shape_type)
cls[mask] = cls_id
if type == 'instance':
ins[mask] = ins_id
if type == 'instance':
return cls, ins
return cls
def labelme_shapes_to_label(img_shape, shapes):
logger.warn('labelme_shapes_to_label is deprecated, so please use '
'shapes_to_label.')
label_name_to_value = {'_background_': 0}
for shape in shapes:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl = shapes_to_label(img_shape, shapes, label_name_to_value)
return lbl, label_name_to_value
def masks_to_bboxes(masks):
if masks.ndim != 3:
raise ValueError(
'masks.ndim must be 3, but it is {}'
.format(masks.ndim)
)
if masks.dtype != bool:
raise ValueError(
'masks.dtype must be bool type, but it is {}'
.format(masks.dtype)
)
bboxes = []
for mask in masks:
where = np.argwhere(mask)
(y1, x1), (y2, x2) = where.min(0), where.max(0) + 1
bboxes.append((y1, x1, y2, x2))
bboxes = np.asarray(bboxes, dtype=np.float32)
return bboxes
# flake8: noqa
from .canvas import Canvas
from .color_dialog import ColorDialog
from .escapable_qlist_widget import EscapableQListWidget
from .label_dialog import LabelDialog
from .label_dialog import LabelQLineEdit
from .label_qlist_widget import LabelQListWidget
from .tool_bar import ToolBar
from .zoom_widget import ZoomWidget
from qtpy import QtCore
from qtpy import QtGui
from qtpy import QtWidgets
from labelme import QT5
from labelme.shape import Shape
import labelme.utils
# TODO(unknown):
# - [maybe] Find optimal epsilon value.
CURSOR_DEFAULT = QtCore.Qt.ArrowCursor
CURSOR_POINT = QtCore.Qt.PointingHandCursor
CURSOR_DRAW = QtCore.Qt.CrossCursor
CURSOR_MOVE = QtCore.Qt.ClosedHandCursor
CURSOR_GRAB = QtCore.Qt.OpenHandCursor
class Canvas(QtWidgets.QWidget):
zoomRequest = QtCore.Signal(int, QtCore.QPoint)
scrollRequest = QtCore.Signal(int, int)
newShape = QtCore.Signal()
selectionChanged = QtCore.Signal(list)
shapeMoved = QtCore.Signal()
drawingPolygon = QtCore.Signal(bool)
edgeSelected = QtCore.Signal(bool)
CREATE, EDIT = 0, 1
# polygon, rectangle, line, or point
_createMode = 'polygon'
_fill_drawing = False
def __init__(self, *args, **kwargs):
self.epsilon = kwargs.pop('epsilon', 10.0)
super(Canvas, self).__init__(*args, **kwargs)
# Initialise local state.
self.mode = self.EDIT
self.shapes = []
self.shapesBackups = []
self.current = None
self.selectedShapes = [] # save the selected shapes here
self.selectedShapesCopy = []
self.lineColor = QtGui.QColor(0, 0, 255)
# self.line represents:
# - createMode == 'polygon': edge from last point to current
# - createMode == 'rectangle': diagonal line of the rectangle
# - createMode == 'line': the line
# - createMode == 'point': the point
self.line = Shape(line_color=self.lineColor)
self.prevPoint = QtCore.QPoint()
self.prevMovePoint = QtCore.QPoint()
self.offsets = QtCore.QPoint(), QtCore.QPoint()
self.scale = 1.0
self.pixmap = QtGui.QPixmap()
self.visible = {}
self._hideBackround = False
self.hideBackround = False
self.hShape = None
self.hVertex = None
self.hEdge = None
self.movingShape = False
self._painter = QtGui.QPainter()
self._cursor = CURSOR_DEFAULT
# Menus:
# 0: right-click without selection and dragging of shapes
# 1: right-click with selection and dragging of shapes
self.menus = (QtWidgets.QMenu(), QtWidgets.QMenu())
# Set widget options.
self.setMouseTracking(True)
self.setFocusPolicy(QtCore.Qt.WheelFocus)
def fillDrawing(self):
return self._fill_drawing
def setFillDrawing(self, value):
self._fill_drawing = value
@property
def createMode(self):
return self._createMode
@createMode.setter
def createMode(self, value):
if value not in ['polygon', 'rectangle', 'circle',
'line', 'point', 'linestrip']:
raise ValueError('Unsupported createMode: %s' % value)
self._createMode = value
def storeShapes(self):
shapesBackup = []
for shape in self.shapes:
shapesBackup.append(shape.copy())
if len(self.shapesBackups) >= 10:
self.shapesBackups = self.shapesBackups[-9:]
self.shapesBackups.append(shapesBackup)
@property
def isShapeRestorable(self):
if len(self.shapesBackups) < 2:
return False
return True
def restoreShape(self):
if not self.isShapeRestorable:
return
self.shapesBackups.pop() # latest
shapesBackup = self.shapesBackups.pop()
self.shapes = shapesBackup
self.selectedShapes = []
for shape in self.shapes:
shape.selected = False
self.repaint()
def enterEvent(self, ev):
self.overrideCursor(self._cursor)
def leaveEvent(self, ev):
self.restoreCursor()
def focusOutEvent(self, ev):
self.restoreCursor()
def isVisible(self, shape):
return self.visible.get(shape, True)
def drawing(self):
return self.mode == self.CREATE
def editing(self):
return self.mode == self.EDIT
def setEditing(self, value=True):
self.mode = self.EDIT if value else self.CREATE
if not value: # Create
self.unHighlight()
self.deSelectShape()
def unHighlight(self):
if self.hShape:
self.hShape.highlightClear()
self.hVertex = self.hShape = None
def selectedVertex(self):
return self.hVertex is not None
def mouseMoveEvent(self, ev):
"""Update line with last point and current coordinates."""
try:
if QT5:
pos = self.transformPos(ev.localPos())
else:
pos = self.transformPos(ev.posF())
except AttributeError:
return
self.prevMovePoint = pos
self.restoreCursor()
# Polygon drawing.
if self.drawing():
self.line.shape_type = self.createMode
self.overrideCursor(CURSOR_DRAW)
if not self.current:
return
color = self.lineColor
if self.outOfPixmap(pos):
# Don't allow the user to draw outside the pixmap.
# Project the point to the pixmap's edges.
pos = self.intersectionPoint(self.current[-1], pos)
elif len(self.current) > 1 and self.createMode == 'polygon' and\
self.closeEnough(pos, self.current[0]):
# Attract line to starting point and
# colorise to alert the user.
pos = self.current[0]
color = self.current.line_color
self.overrideCursor(CURSOR_POINT)
self.current.highlightVertex(0, Shape.NEAR_VERTEX)
if self.createMode in ['polygon', 'linestrip']:
self.line[0] = self.current[-1]
self.line[1] = pos
elif self.createMode == 'rectangle':
self.line.points = [self.current[0], pos]
self.line.close()
elif self.createMode == 'circle':
self.line.points = [self.current[0], pos]
self.line.shape_type = "circle"
elif self.createMode == 'line':
self.line.points = [self.current[0], pos]
self.line.close()
elif self.createMode == 'point':
self.line.points = [self.current[0]]
self.line.close()
self.line.line_color = color
self.repaint()
self.current.highlightClear()
return
# Polygon copy moving.
if QtCore.Qt.RightButton & ev.buttons():
if self.selectedShapesCopy and self.prevPoint:
self.overrideCursor(CURSOR_MOVE)
self.boundedMoveShapes(self.selectedShapesCopy, pos)
self.repaint()
elif self.selectedShapes:
self.selectedShapesCopy = \
[s.copy() for s in self.selectedShapes]
self.repaint()
return
# Polygon/Vertex moving.
self.movingShape = False
if QtCore.Qt.LeftButton & ev.buttons():
if self.selectedVertex():
self.boundedMoveVertex(pos)
self.repaint()
self.movingShape = True
elif self.selectedShapes and self.prevPoint:
self.overrideCursor(CURSOR_MOVE)
self.boundedMoveShapes(self.selectedShapes, pos)
self.repaint()
self.movingShape = True
return
# Just hovering over the canvas, 2 posibilities:
# - Highlight shapes
# - Highlight vertex
# Update shape/vertex fill and tooltip value accordingly.
self.setToolTip("Image")
for shape in reversed([s for s in self.shapes if self.isVisible(s)]):
# Look for a nearby vertex to highlight. If that fails,
# check if we happen to be inside a shape.
index = shape.nearestVertex(pos, self.epsilon / self.scale)
index_edge = shape.nearestEdge(pos, self.epsilon / self.scale)
if index is not None:
if self.selectedVertex():
self.hShape.highlightClear()
self.hVertex = index
self.hShape = shape
self.hEdge = index_edge
shape.highlightVertex(index, shape.MOVE_VERTEX)
self.overrideCursor(CURSOR_POINT)
self.setToolTip("Click & drag to move point")
self.setStatusTip(self.toolTip())
self.update()
break
elif shape.containsPoint(pos):
if self.selectedVertex():
self.hShape.highlightClear()
self.hVertex = None
self.hShape = shape
self.hEdge = index_edge
self.setToolTip(
"Click & drag to move shape '%s'" % shape.label)
self.setStatusTip(self.toolTip())
self.overrideCursor(CURSOR_GRAB)
self.update()
break
else: # Nothing found, clear highlights, reset state.
if self.hShape:
self.hShape.highlightClear()
self.update()
self.hVertex, self.hShape, self.hEdge = None, None, None
self.edgeSelected.emit(self.hEdge is not None)
def addPointToEdge(self):
if (self.hShape is None and
self.hEdge is None and
self.prevMovePoint is None):
return
shape = self.hShape
index = self.hEdge
point = self.prevMovePoint
shape.insertPoint(index, point)
shape.highlightVertex(index, shape.MOVE_VERTEX)
self.hShape = shape
self.hVertex = index
self.hEdge = None
def mousePressEvent(self, ev):
if QT5:
pos = self.transformPos(ev.localPos())
else:
pos = self.transformPos(ev.posF())
if ev.button() == QtCore.Qt.LeftButton:
if self.drawing():
if self.current:
# Add point to existing shape.
if self.createMode == 'polygon':
self.current.addPoint(self.line[1])
self.line[0] = self.current[-1]
if self.current.isClosed():
self.finalise()
elif self.createMode in ['rectangle', 'circle', 'line']:
assert len(self.current.points) == 1
self.current.points = self.line.points
self.finalise()
elif self.createMode == 'linestrip':
self.current.addPoint(self.line[1])
self.line[0] = self.current[-1]
if int(ev.modifiers()) == QtCore.Qt.ControlModifier:
self.finalise()
elif not self.outOfPixmap(pos):
# Create new shape.
self.current = Shape(shape_type=self.createMode)
self.current.addPoint(pos)
if self.createMode == 'point':
self.finalise()
else:
if self.createMode == 'circle':
self.current.shape_type = 'circle'
self.line.points = [pos, pos]
self.setHiding()
self.drawingPolygon.emit(True)
self.update()
else:
group_mode = (int(ev.modifiers()) == QtCore.Qt.ControlModifier)
self.selectShapePoint(pos, multiple_selection_mode=group_mode)
self.prevPoint = pos
self.repaint()
elif ev.button() == QtCore.Qt.RightButton and self.editing():
group_mode = (int(ev.modifiers()) == QtCore.Qt.ControlModifier)
self.selectShapePoint(pos, multiple_selection_mode=group_mode)
self.prevPoint = pos
self.repaint()
def mouseReleaseEvent(self, ev):
if ev.button() == QtCore.Qt.RightButton:
menu = self.menus[len(self.selectedShapesCopy) > 0]
self.restoreCursor()
if not menu.exec_(self.mapToGlobal(ev.pos())) \
and self.selectedShapesCopy:
# Cancel the move by deleting the shadow copy.
self.selectedShapesCopy = []
self.repaint()
elif ev.button() == QtCore.Qt.LeftButton and self.selectedShapes:
self.overrideCursor(CURSOR_GRAB)
if self.movingShape:
self.storeShapes()
self.shapeMoved.emit()
def endMove(self, copy):
assert self.selectedShapes and self.selectedShapesCopy
assert len(self.selectedShapesCopy) == len(self.selectedShapes)
# del shape.fill_color
# del shape.line_color
if copy:
for i, shape in enumerate(self.selectedShapesCopy):
self.shapes.append(shape)
self.selectedShapes[i].selected = False
self.selectedShapes[i] = shape
else:
for i, shape in enumerate(self.selectedShapesCopy):
self.selectedShapes[i].points = shape.points
self.selectedShapesCopy = []
self.repaint()
self.storeShapes()
return True
def hideBackroundShapes(self, value):
self.hideBackround = value
if self.selectedShapes:
# Only hide other shapes if there is a current selection.
# Otherwise the user will not be able to select a shape.
self.setHiding(True)
self.repaint()
def setHiding(self, enable=True):
self._hideBackround = self.hideBackround if enable else False
def canCloseShape(self):
return self.drawing() and self.current and len(self.current) > 2
def mouseDoubleClickEvent(self, ev):
# We need at least 4 points here, since the mousePress handler
# adds an extra one before this handler is called.
if self.canCloseShape() and len(self.current) > 3:
self.current.popPoint()
self.finalise()
def selectShapes(self, shapes):
self.setHiding()
self.selectionChanged.emit(shapes)
self.update()
def selectShapePoint(self, point, multiple_selection_mode):
"""Select the first shape created which contains this point."""
if self.selectedVertex(): # A vertex is marked for selection.
index, shape = self.hVertex, self.hShape
shape.highlightVertex(index, shape.MOVE_VERTEX)
else:
for shape in reversed(self.shapes):
if self.isVisible(shape) and shape.containsPoint(point):
self.calculateOffsets(shape, point)
self.setHiding()
if multiple_selection_mode:
if shape not in self.selectedShapes:
self.selectionChanged.emit(
self.selectedShapes + [shape])
else:
self.selectionChanged.emit([shape])
return
self.deSelectShape()
def calculateOffsets(self, shape, point):
rect = shape.boundingRect()
x1 = rect.x() - point.x()
y1 = rect.y() - point.y()
x2 = (rect.x() + rect.width() - 1) - point.x()
y2 = (rect.y() + rect.height() - 1) - point.y()
self.offsets = QtCore.QPoint(x1, y1), QtCore.QPoint(x2, y2)
def boundedMoveVertex(self, pos):
index, shape = self.hVertex, self.hShape
point = shape[index]
if self.outOfPixmap(pos):
pos = self.intersectionPoint(point, pos)
shape.moveVertexBy(index, pos - point)
def boundedMoveShapes(self, shapes, pos):
if self.outOfPixmap(pos):
return False # No need to move
o1 = pos + self.offsets[0]
if self.outOfPixmap(o1):
pos -= QtCore.QPoint(min(0, o1.x()), min(0, o1.y()))
o2 = pos + self.offsets[1]
if self.outOfPixmap(o2):
pos += QtCore.QPoint(min(0, self.pixmap.width() - o2.x()),
min(0, self.pixmap.height() - o2.y()))
# XXX: The next line tracks the new position of the cursor
# relative to the shape, but also results in making it
# a bit "shaky" when nearing the border and allows it to
# go outside of the shape's area for some reason.
# self.calculateOffsets(self.selectedShapes, pos)
dp = pos - self.prevPoint
if dp:
for shape in shapes:
shape.moveBy(dp)
self.prevPoint = pos
return True
return False
def deSelectShape(self):
if self.selectedShapes:
self.setHiding(False)
self.selectionChanged.emit([])
self.update()
def deleteSelected(self):
deleted_shapes = []
if self.selectedShapes:
for shape in self.selectedShapes:
self.shapes.remove(shape)
deleted_shapes.append(shape)
self.storeShapes()
self.selectedShapes = []
self.update()
return deleted_shapes
def copySelectedShapes(self):
if self.selectedShapes:
self.selectedShapesCopy = [s.copy() for s in self.selectedShapes]
self.boundedShiftShapes(self.selectedShapesCopy)
self.endMove(copy=True)
return self.selectedShapes
def boundedShiftShapes(self, shapes):
# Try to move in one direction, and if it fails in another.
# Give up if both fail.
point = shapes[0][0]
offset = QtCore.QPoint(2.0, 2.0)
self.offsets = QtCore.QPoint(), QtCore.QPoint()
self.prevPoint = point
if not self.boundedMoveShapes(shapes, point - offset):
self.boundedMoveShapes(shapes, point + offset)
def paintEvent(self, event):
if not self.pixmap:
return super(Canvas, self).paintEvent(event)
p = self._painter
p.begin(self)
p.setRenderHint(QtGui.QPainter.Antialiasing)
p.setRenderHint(QtGui.QPainter.HighQualityAntialiasing)
p.setRenderHint(QtGui.QPainter.SmoothPixmapTransform)
p.scale(self.scale, self.scale)
p.translate(self.offsetToCenter())
p.drawPixmap(0, 0, self.pixmap)
Shape.scale = self.scale
for shape in self.shapes:
if (shape.selected or not self._hideBackround) and \
self.isVisible(shape):
shape.fill = shape.selected or shape == self.hShape
shape.paint(p)
if self.current:
self.current.paint(p)
self.line.paint(p)
if self.selectedShapesCopy:
for s in self.selectedShapesCopy:
s.paint(p)
if (self.fillDrawing() and self.createMode == 'polygon' and
self.current is not None and len(self.current.points) >= 2):
drawing_shape = self.current.copy()
drawing_shape.addPoint(self.line[1])
drawing_shape.fill = True
drawing_shape.fill_color.setAlpha(64)
drawing_shape.paint(p)
p.end()
def transformPos(self, point):
"""Convert from widget-logical coordinates to painter-logical ones."""
return point / self.scale - self.offsetToCenter()
def offsetToCenter(self):
s = self.scale
area = super(Canvas, self).size()
w, h = self.pixmap.width() * s, self.pixmap.height() * s
aw, ah = area.width(), area.height()
x = (aw - w) / (2 * s) if aw > w else 0
y = (ah - h) / (2 * s) if ah > h else 0
return QtCore.QPoint(x, y)
def outOfPixmap(self, p):
w, h = self.pixmap.width(), self.pixmap.height()
return not (0 <= p.x() <= w - 1 and 0 <= p.y() <= h - 1)
def finalise(self):
assert self.current
self.current.close()
self.shapes.append(self.current)
self.storeShapes()
self.current = None
self.setHiding(False)
self.newShape.emit()
self.update()
def closeEnough(self, p1, p2):
# d = distance(p1 - p2)
# m = (p1-p2).manhattanLength()
# print "d %.2f, m %d, %.2f" % (d, m, d - m)
# divide by scale to allow more precision when zoomed in
return labelme.utils.distance(p1 - p2) < (self.epsilon / self.scale)
def intersectionPoint(self, p1, p2):
# Cycle through each image edge in clockwise fashion,
# and find the one intersecting the current line segment.
# http://paulbourke.net/geometry/lineline2d/
size = self.pixmap.size()
points = [(0, 0),
(size.width() - 1, 0),
(size.width() - 1, size.height() - 1),
(0, size.height() - 1)]
x1, y1 = p1.x(), p1.y()
x2, y2 = p2.x(), p2.y()
d, i, (x, y) = min(self.intersectingEdges((x1, y1), (x2, y2), points))
x3, y3 = points[i]
x4, y4 = points[(i + 1) % 4]
if (x, y) == (x1, y1):
# Handle cases where previous point is on one of the edges.
if x3 == x4:
return QtCore.QPoint(x3, min(max(0, y2), max(y3, y4)))
else: # y3 == y4
return QtCore.QPoint(min(max(0, x2), max(x3, x4)), y3)
return QtCore.QPoint(x, y)
def intersectingEdges(self, point1, point2, points):
"""Find intersecting edges.
For each edge formed by `points', yield the intersection
with the line segment `(x1,y1) - (x2,y2)`, if it exists.
Also return the distance of `(x2,y2)' to the middle of the
edge along with its index, so that the one closest can be chosen.
"""
(x1, y1) = point1
(x2, y2) = point2
for i in range(4):
x3, y3 = points[i]
x4, y4 = points[(i + 1) % 4]
denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1)
nua = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)
nub = (x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)
if denom == 0:
# This covers two cases:
# nua == nub == 0: Coincident
# otherwise: Parallel
continue
ua, ub = nua / denom, nub / denom
if 0 <= ua <= 1 and 0 <= ub <= 1:
x = x1 + ua * (x2 - x1)
y = y1 + ua * (y2 - y1)
m = QtCore.QPoint((x3 + x4) / 2, (y3 + y4) / 2)
d = labelme.utils.distance(m - QtCore.QPoint(x2, y2))
yield d, i, (x, y)
# These two, along with a call to adjustSize are required for the
# scroll area.
def sizeHint(self):
return self.minimumSizeHint()
def minimumSizeHint(self):
if self.pixmap:
return self.scale * self.pixmap.size()
return super(Canvas, self).minimumSizeHint()
def wheelEvent(self, ev):
if QT5:
mods = ev.modifiers()
delta = ev.angleDelta()
if QtCore.Qt.ControlModifier == int(mods):
# with Ctrl/Command key
# zoom
self.zoomRequest.emit(delta.y(), ev.pos())
else:
# scroll
self.scrollRequest.emit(delta.x(), QtCore.Qt.Horizontal)
self.scrollRequest.emit(delta.y(), QtCore.Qt.Vertical)
else:
if ev.orientation() == QtCore.Qt.Vertical:
mods = ev.modifiers()
if QtCore.Qt.ControlModifier == int(mods):
# with Ctrl/Command key
self.zoomRequest.emit(ev.delta(), ev.pos())
else:
self.scrollRequest.emit(
ev.delta(),
QtCore.Qt.Horizontal
if (QtCore.Qt.ShiftModifier == int(mods))
else QtCore.Qt.Vertical)
else:
self.scrollRequest.emit(ev.delta(), QtCore.Qt.Horizontal)
ev.accept()
def keyPressEvent(self, ev):
key = ev.key()
if key == QtCore.Qt.Key_Escape and self.current:
self.current = None
self.drawingPolygon.emit(False)
self.update()
elif key == QtCore.Qt.Key_Return and self.canCloseShape():
self.finalise()
def setLastLabel(self, text, flags):
assert text
self.shapes[-1].label = text
self.shapes[-1].flags = flags
self.shapesBackups.pop()
self.storeShapes()
return self.shapes[-1]
def undoLastLine(self):
assert self.shapes
self.current = self.shapes.pop()
self.current.setOpen()
if self.createMode in ['polygon', 'linestrip']:
self.line.points = [self.current[-1], self.current[0]]
elif self.createMode in ['rectangle', 'line', 'circle']:
self.current.points = self.current.points[0:1]
elif self.createMode == 'point':
self.current = None
self.drawingPolygon.emit(True)
def undoLastPoint(self):
if not self.current or self.current.isClosed():
return
self.current.popPoint()
if len(self.current) > 0:
self.line[0] = self.current[-1]
else:
self.current = None
self.drawingPolygon.emit(False)
self.repaint()
def loadPixmap(self, pixmap):
self.pixmap = pixmap
self.shapes = []
self.repaint()
def loadShapes(self, shapes, replace=True):
if replace:
self.shapes = list(shapes)
else:
self.shapes.extend(shapes)
self.storeShapes()
self.current = None
self.repaint()
def setShapeVisible(self, shape, value):
self.visible[shape] = value
self.repaint()
def overrideCursor(self, cursor):
self.restoreCursor()
self._cursor = cursor
QtWidgets.QApplication.setOverrideCursor(cursor)
def restoreCursor(self):
QtWidgets.QApplication.restoreOverrideCursor()
def resetState(self):
self.restoreCursor()
self.pixmap = None
self.shapesBackups = []
self.update()
from qtpy import QtWidgets
class ColorDialog(QtWidgets.QColorDialog):
def __init__(self, parent=None):
super(ColorDialog, self).__init__(parent)
self.setOption(QtWidgets.QColorDialog.ShowAlphaChannel)
# The Mac native dialog does not support our restore button.
self.setOption(QtWidgets.QColorDialog.DontUseNativeDialog)
# Add a restore defaults button.
# The default is set at invocation time, so that it
# works across dialogs for different elements.
self.default = None
self.bb = self.layout().itemAt(1).widget()
self.bb.addButton(QtWidgets.QDialogButtonBox.RestoreDefaults)
self.bb.clicked.connect(self.checkRestore)
def getColor(self, value=None, title=None, default=None):
self.default = default
if title:
self.setWindowTitle(title)
if value:
self.setCurrentColor(value)
return self.currentColor() if self.exec_() else None
def checkRestore(self, button):
if self.bb.buttonRole(button) & \
QtWidgets.QDialogButtonBox.ResetRole and self.default:
self.setCurrentColor(self.default)
from qtpy.QtCore import Qt
from qtpy import QtWidgets
class EscapableQListWidget(QtWidgets.QListWidget):
def keyPressEvent(self, event):
if event.key() == Qt.Key_Escape:
self.clearSelection()
import re
from qtpy import QT_VERSION
from qtpy import QtCore
from qtpy import QtGui
from qtpy import QtWidgets
QT5 = QT_VERSION[0] == '5' # NOQA
from labelme.logger import logger
import labelme.utils
# TODO(unknown):
# - Calculate optimal position so as not to go out of screen area.
class LabelQLineEdit(QtWidgets.QLineEdit):
def setListWidget(self, list_widget):
self.list_widget = list_widget
def keyPressEvent(self, e):
if e.key() in [QtCore.Qt.Key_Up, QtCore.Qt.Key_Down]:
self.list_widget.keyPressEvent(e)
else:
super(LabelQLineEdit, self).keyPressEvent(e)
class LabelDialog(QtWidgets.QDialog):
def __init__(self, text="Enter object label", parent=None, labels=None,
sort_labels=True, show_text_field=True,
completion='startswith', fit_to_content=None, flags=None):
if fit_to_content is None:
fit_to_content = {'row': False, 'column': True}
self._fit_to_content = fit_to_content
super(LabelDialog, self).__init__(parent)
self.edit = LabelQLineEdit()
self.edit.setPlaceholderText(text)
self.edit.setValidator(labelme.utils.labelValidator())
self.edit.editingFinished.connect(self.postProcess)
if flags:
self.edit.textChanged.connect(self.updateFlags)
layout = QtWidgets.QVBoxLayout()
if show_text_field:
layout.addWidget(self.edit)
# buttons
self.buttonBox = bb = QtWidgets.QDialogButtonBox(
QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel,
QtCore.Qt.Horizontal,
self,
)
bb.button(bb.Ok).setIcon(labelme.utils.newIcon('done'))
bb.button(bb.Cancel).setIcon(labelme.utils.newIcon('undo'))
bb.accepted.connect(self.validate)
bb.rejected.connect(self.reject)
layout.addWidget(bb)
# label_list
self.labelList = QtWidgets.QListWidget()
if self._fit_to_content['row']:
self.labelList.setHorizontalScrollBarPolicy(
QtCore.Qt.ScrollBarAlwaysOff
)
if self._fit_to_content['column']:
self.labelList.setVerticalScrollBarPolicy(
QtCore.Qt.ScrollBarAlwaysOff
)
self._sort_labels = sort_labels
if labels:
self.labelList.addItems(labels)
if self._sort_labels:
self.labelList.sortItems()
else:
self.labelList.setDragDropMode(
QtWidgets.QAbstractItemView.InternalMove)
self.labelList.currentItemChanged.connect(self.labelSelected)
self.edit.setListWidget(self.labelList)
layout.addWidget(self.labelList)
# label_flags
if flags is None:
flags = {}
self._flags = flags
self.flagsLayout = QtWidgets.QVBoxLayout()
self.resetFlags()
layout.addItem(self.flagsLayout)
self.edit.textChanged.connect(self.updateFlags)
self.setLayout(layout)
# completion
completer = QtWidgets.QCompleter()
if not QT5 and completion != 'startswith':
logger.warn(
"completion other than 'startswith' is only "
"supported with Qt5. Using 'startswith'"
)
completion = 'startswith'
if completion == 'startswith':
completer.setCompletionMode(QtWidgets.QCompleter.InlineCompletion)
# Default settings.
# completer.setFilterMode(QtCore.Qt.MatchStartsWith)
elif completion == 'contains':
completer.setCompletionMode(QtWidgets.QCompleter.PopupCompletion)
completer.setFilterMode(QtCore.Qt.MatchContains)
else:
raise ValueError('Unsupported completion: {}'.format(completion))
completer.setModel(self.labelList.model())
self.edit.setCompleter(completer)
def addLabelHistory(self, label):
if self.labelList.findItems(label, QtCore.Qt.MatchExactly):
return
self.labelList.addItem(label)
if self._sort_labels:
self.labelList.sortItems()
def labelSelected(self, item):
self.edit.setText(item.text())
def validate(self):
text = self.edit.text()
if hasattr(text, 'strip'):
text = text.strip()
else:
text = text.trimmed()
if text:
self.accept()
def postProcess(self):
text = self.edit.text()
if hasattr(text, 'strip'):
text = text.strip()
else:
text = text.trimmed()
self.edit.setText(text)
def updateFlags(self, label_new):
# keep state of shared flags
flags_old = self.getFlags()
flags_new = {}
for pattern, keys in self._flags.items():
if re.match(pattern, label_new):
for key in keys:
flags_new[key] = flags_old.get(key, False)
self.setFlags(flags_new)
def deleteFlags(self):
for i in reversed(range(self.flagsLayout.count())):
item = self.flagsLayout.itemAt(i).widget()
self.flagsLayout.removeWidget(item)
item.setParent(None)
def resetFlags(self, label=''):
flags = {}
for pattern, keys in self._flags.items():
if re.match(pattern, label):
for key in keys:
flags[key] = False
self.setFlags(flags)
def setFlags(self, flags):
self.deleteFlags()
for key in flags:
item = QtWidgets.QCheckBox(key, self)
item.setChecked(flags[key])
self.flagsLayout.addWidget(item)
item.show()
def getFlags(self):
flags = {}
for i in range(self.flagsLayout.count()):
item = self.flagsLayout.itemAt(i).widget()
flags[item.text()] = item.isChecked()
return flags
def popUp(self, text=None, move=True, flags=None):
if self._fit_to_content['row']:
self.labelList.setMinimumHeight(
self.labelList.sizeHintForRow(0) * self.labelList.count() + 2
)
if self._fit_to_content['column']:
self.labelList.setMinimumWidth(
self.labelList.sizeHintForColumn(0) + 2
)
# if text is None, the previous label in self.edit is kept
if text is None:
text = self.edit.text()
if flags:
self.setFlags(flags)
else:
self.resetFlags(text)
self.edit.setText(text)
self.edit.setSelection(0, len(text))
items = self.labelList.findItems(text, QtCore.Qt.MatchFixedString)
if items:
if len(items) != 1:
logger.warning("Label list has duplicate '{}'".format(text))
self.labelList.setCurrentItem(items[0])
row = self.labelList.row(items[0])
self.edit.completer().setCurrentRow(row)
self.edit.setFocus(QtCore.Qt.PopupFocusReason)
if move:
self.move(QtGui.QCursor.pos())
if self.exec_():
return self.edit.text(), self.getFlags()
else:
return None, None
from qtpy import QtWidgets
class LabelQListWidget(QtWidgets.QListWidget):
def __init__(self, *args, **kwargs):
super(LabelQListWidget, self).__init__(*args, **kwargs)
self.canvas = None
self.itemsToShapes = []
self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
def get_shape_from_item(self, item):
for index, (item_, shape) in enumerate(self.itemsToShapes):
if item_ is item:
return shape
def get_item_from_shape(self, shape):
for index, (item, shape_) in enumerate(self.itemsToShapes):
if shape_ is shape:
return item
def clear(self):
super(LabelQListWidget, self).clear()
self.itemsToShapes = []
def setParent(self, parent):
self.parent = parent
def dropEvent(self, event):
shapes = self.shapes
super(LabelQListWidget, self).dropEvent(event)
if self.shapes == shapes:
return
if self.canvas is None:
raise RuntimeError('self.canvas must be set beforehand.')
self.parent.setDirty()
self.canvas.loadShapes(self.shapes)
@property
def shapes(self):
shapes = []
for i in range(self.count()):
item = self.item(i)
shape = self.get_shape_from_item(item)
shapes.append(shape)
return shapes
from qtpy import QtCore
from qtpy import QtWidgets
class ToolBar(QtWidgets.QToolBar):
def __init__(self, title):
super(ToolBar, self).__init__(title)
layout = self.layout()
m = (0, 0, 0, 0)
layout.setSpacing(0)
layout.setContentsMargins(*m)
self.setContentsMargins(*m)
self.setWindowFlags(self.windowFlags() | QtCore.Qt.FramelessWindowHint)
def addAction(self, action):
if isinstance(action, QtWidgets.QWidgetAction):
return super(ToolBar, self).addAction(action)
btn = ToolButton()
btn.setDefaultAction(action)
btn.setToolButtonStyle(self.toolButtonStyle())
self.addWidget(btn)
class ToolButton(QtWidgets.QToolButton):
"""ToolBar companion class which ensures all buttons have the same size."""
minSize = (60, 60)
def minimumSizeHint(self):
ms = super(ToolButton, self).minimumSizeHint()
w1, h1 = ms.width(), ms.height()
w2, h2 = self.minSize
self.minSize = max(w1, w2), max(h1, h2)
return QtCore.QSize(*self.minSize)
from qtpy import QtCore
from qtpy import QtGui
from qtpy import QtWidgets
class ZoomWidget(QtWidgets.QSpinBox):
def __init__(self, value=100):
super(ZoomWidget, self).__init__()
self.setButtonSymbols(QtWidgets.QAbstractSpinBox.NoButtons)
self.setRange(10, 1000)
self.setSuffix(' %')
self.setValue(value)
self.setToolTip('Zoom Level')
self.setStatusTip(self.toolTip())
self.setAlignment(QtCore.Qt.AlignCenter)
def minimumSizeHint(self):
height = super(ZoomWidget, self).minimumSizeHint().height()
fm = QtGui.QFontMetrics(self.font())
width = fm.width(str(self.maximum()))
return QtCore.QSize(width, height)
[flake8]
exclude = .anaconda3/*,.anaconda2/*,venv/*
ignore = H304
from __future__ import print_function
import distutils.spawn
import os.path
from setuptools import find_packages
from setuptools import setup
import shlex
import subprocess
import sys
PY3 = sys.version_info[0] == 3
PY2 = sys.version_info[0] == 2
assert PY3 or PY2
here = os.path.abspath(os.path.dirname(__file__))
version_file = os.path.join(here, 'labelme', '_version.py')
if PY3:
import importlib
version = importlib.machinery.SourceFileLoader(
'_version', version_file
).load_module().__version__
else:
assert PY2
import imp
version = imp.load_source('_version', version_file).__version__
del here
install_requires = [
'matplotlib',
'numpy',
'Pillow>=2.8.0',
'PyYAML',
'qtpy',
'termcolor',
]
# Find python binding for qt with priority:
# PyQt5 -> PySide2 -> PyQt4,
# and PyQt5 is automatically installed on Python3.
QT_BINDING = None
try:
import PyQt5 # NOQA
QT_BINDING = 'pyqt5'
except ImportError:
pass
if QT_BINDING is None:
try:
import PySide2 # NOQA
QT_BINDING = 'pyside2'
except ImportError:
pass
if QT_BINDING is None:
try:
import PyQt4 # NOQA
QT_BINDING = 'pyqt4'
except ImportError:
if PY2:
print(
'Please install PyQt5, PySide2 or PyQt4 for Python2.\n'
'Note that PyQt5 can be installed via pip for Python3.',
file=sys.stderr,
)
sys.exit(1)
assert PY3
# PyQt5 can be installed via pip for Python3
install_requires.append('PyQt5')
QT_BINDING = 'pyqt5'
del QT_BINDING
if sys.argv[1] == 'release':
if not distutils.spawn.find_executable('twine'):
print(
'Please install twine:\n\n\tpip install twine\n',
file=sys.stderr,
)
sys.exit(1)
commands = [
'python tests/docs_tests/man_tests/test_labelme_1.py',
'git tag v{:s}'.format(version),
'git push origin master --tag',
'python setup.py sdist',
'twine upload dist/labelme-{:s}.tar.gz'.format(version),
]
for cmd in commands:
subprocess.check_call(shlex.split(cmd))
sys.exit(0)
def get_long_description():
with open('README.md') as f:
long_description = f.read()
try:
import github2pypi
return github2pypi.replace_url(
slug='wkentaro/labelme', content=long_description
)
except Exception:
return long_description
setup(
name='labelme',
version=version,
packages=find_packages(),
description='Image Polygonal Annotation with Python',
long_description=get_long_description(),
long_description_content_type='text/markdown',
author='Kentaro Wada',
author_email='www.kentaro.wada@gmail.com',
url='https://github.com/wkentaro/labelme',
install_requires=install_requires,
license='GPLv3',
keywords='Image Annotation, Machine Learning',
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'Natural Language :: English',
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
],
package_data={'labelme': ['icons/*', 'config/*.yaml']},
entry_points={
'console_scripts': [
'labelme=labelme.main:main',
'labelme_draw_json=labelme.cli.draw_json:main',
'labelme_draw_label_png=labelme.cli.draw_label_png:main',
'labelme_json_to_dataset=labelme.cli.json_to_dataset:main',
'labelme_on_docker=labelme.cli.on_docker:main',
],
},
data_files=[('share/man/man1', ['docs/man/labelme.1'])],
)
#!/usr/bin/env python
from __future__ import print_function
import os.path as osp
import re
import shlex
import subprocess
import sys
here = osp.dirname(osp.abspath(__file__))
cmd = 'help2man labelme'
man_expected = subprocess.check_output(shlex.split(cmd)).decode().splitlines()
man_file = osp.realpath(osp.join(here, '../../../docs/man/labelme.1'))
with open(man_file) as f:
man_actual = f.read().splitlines()
patterns_exclude = [
r'^\.TH .*',
r'^config file.*',
r'^\.\\.*',
]
PASS = 1
for line_expected, line_actual in zip(man_expected, man_actual):
for pattern in patterns_exclude:
if re.match(pattern, line_expected) or re.match(pattern, line_actual):
break
else:
if line_expected != line_actual:
print(repr('> {}'.format(line_expected)), file=sys.stderr)
print(repr('< {}'.format(line_actual)), file=sys.stderr)
PASS = 0
if not PASS:
print(
'Please run:\n\n\thelp2man labelme > {}\n'.format(man_file),
file=sys.stderr,
)
assert PASS
../../../examples/tutorial/apc2016_obj3.jpg
\ No newline at end of file
../../../examples/tutorial/apc2016_obj3.json
\ No newline at end of file
import os.path as osp
import shutil
import tempfile
import labelme.app
import labelme.config
import labelme.testing
here = osp.dirname(osp.abspath(__file__))
data_dir = osp.join(here, 'data')
def test_MainWindow_open(qtbot):
win = labelme.app.MainWindow()
qtbot.addWidget(win)
win.show()
win.close()
def test_MainWindow_open_json(qtbot):
filename = osp.join(data_dir, 'apc2016_obj3.json')
labelme.testing.assert_labelfile_sanity(filename)
win = labelme.app.MainWindow(filename=filename)
qtbot.addWidget(win)
win.show()
win.close()
def test_MainWindow_annotate_jpg(qtbot):
tmp_dir = tempfile.mkdtemp()
filename = osp.join(tmp_dir, 'apc2016_obj3.jpg')
shutil.copy(osp.join(data_dir, 'apc2016_obj3.jpg'),
filename)
output_file = osp.join(tmp_dir, 'apc2016_obj3.json')
config = labelme.config.get_default_config()
win = labelme.app.MainWindow(
config=config,
filename=filename,
output_file=output_file,
)
qtbot.addWidget(win)
win.show()
def check_imageData():
assert hasattr(win, 'imageData')
assert win.imageData is not None
qtbot.waitUntil(check_imageData) # wait for loadFile
label = 'shelf'
points = [
(26, 70),
(176, 730),
(986, 742),
(1184, 102),
]
shape = label, points, None, None, 'polygon', {}
shapes = [shape]
win.loadLabels(shapes)
win.saveFile()
labelme.testing.assert_labelfile_sanity(output_file)
import numpy as np
from labelme.utils import draw as draw_module
from labelme.utils import shape as shape_module
from .util import get_img_and_lbl
# -----------------------------------------------------------------------------
def test_label_colormap():
N = 255
colormap = draw_module.label_colormap(N=N)
assert colormap.shape == (N, 3)
def test_label2rgb():
img, lbl, label_names = get_img_and_lbl()
n_labels = len(label_names)
viz = draw_module.label2rgb(lbl=lbl, n_labels=n_labels)
assert lbl.shape == viz.shape[:2]
assert viz.dtype == np.uint8
viz = draw_module.label2rgb(lbl=lbl, img=img, n_labels=n_labels)
assert img.shape[:2] == lbl.shape == viz.shape[:2]
assert viz.dtype == np.uint8
def test_draw_label():
img, lbl, label_names = get_img_and_lbl()
viz = draw_module.draw_label(lbl, img, label_names=label_names)
assert viz.shape[:2] == img.shape[:2] == lbl.shape[:2]
assert viz.dtype == np.uint8
def test_draw_instances():
img, lbl, label_names = get_img_and_lbl()
labels_and_masks = {l: lbl == l for l in np.unique(lbl) if l != 0}
labels, masks = zip(*labels_and_masks.items())
masks = np.asarray(masks)
bboxes = shape_module.masks_to_bboxes(masks)
captions = [label_names[l] for l in labels]
viz = draw_module.draw_instances(img, bboxes, labels, captions=captions)
assert viz.shape[:2] == img.shape[:2]
assert viz.dtype == np.uint8
import os.path as osp
import numpy as np
import PIL.Image
from labelme.utils import image as image_module
from .util import data_dir
from .util import get_img_and_data
def test_img_b64_to_arr():
img, _ = get_img_and_data()
assert img.dtype == np.uint8
assert img.shape == (907, 1210, 3)
def test_img_arr_to_b64():
img_file = osp.join(data_dir, 'apc2016_obj3.jpg')
img_arr = np.asarray(PIL.Image.open(img_file))
img_b64 = image_module.img_arr_to_b64(img_arr)
img_arr2 = image_module.img_b64_to_arr(img_b64)
np.testing.assert_allclose(img_arr, img_arr2)
def test_img_data_to_png_data():
img_file = osp.join(data_dir, 'apc2016_obj3.jpg')
with open(img_file, 'rb') as f:
img_data = f.read()
png_data = image_module.img_data_to_png_data(img_data)
assert isinstance(png_data, bytes)
from .util import get_img_and_data
from labelme.utils import shape as shape_module
def test_shapes_to_label():
img, data = get_img_and_data()
label_name_to_value = {}
for shape in data['shapes']:
label_name = shape['label']
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
cls = shape_module.shapes_to_label(
img.shape, data['shapes'], label_name_to_value)
assert cls.shape == img.shape[:2]
def test_shape_to_mask():
img, data = get_img_and_data()
for shape in data['shapes']:
points = shape['points']
mask = shape_module.shape_to_mask(img.shape[:2], points)
assert mask.shape == img.shape[:2]
import json
import os.path as osp
from labelme.utils import image as image_module
from labelme.utils import shape as shape_module
here = osp.dirname(osp.abspath(__file__))
data_dir = osp.join(here, '../data')
def get_img_and_data():
json_file = osp.join(data_dir, 'apc2016_obj3.json')
data = json.load(open(json_file))
img_b64 = data['imageData']
img = image_module.img_b64_to_arr(img_b64)
return img, data
def get_img_and_lbl():
img, data = get_img_and_data()
label_name_to_value = {'__background__': 0}
for shape in data['shapes']:
label_name = shape['label']
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
n_labels = max(label_name_to_value.values()) + 1
label_names = [None] * n_labels
for label_name, label_value in label_name_to_value.items():
label_names[label_value] = label_name
lbl = shape_module.shapes_to_label(
img.shape, data['shapes'], label_name_to_value
)
return img, lbl, label_names
from qtpy import QtCore
from qtpy import QtWidgets
from labelme.widgets import LabelDialog
from labelme.widgets import LabelQLineEdit
def test_LabelQLineEdit(qtbot):
list_widget = QtWidgets.QListWidget()
list_widget.addItems([
'cat',
'dog',
'person',
])
widget = LabelQLineEdit()
widget.setListWidget(list_widget)
qtbot.addWidget(widget)
# key press to navigate in label list
item = widget.list_widget.findItems('cat', QtCore.Qt.MatchExactly)[0]
widget.list_widget.setCurrentItem(item)
assert widget.list_widget.currentItem().text() == 'cat'
qtbot.keyPress(widget, QtCore.Qt.Key_Down)
assert widget.list_widget.currentItem().text() == 'dog'
# key press to enter label
qtbot.keyPress(widget, QtCore.Qt.Key_P)
qtbot.keyPress(widget, QtCore.Qt.Key_E)
qtbot.keyPress(widget, QtCore.Qt.Key_R)
qtbot.keyPress(widget, QtCore.Qt.Key_S)
qtbot.keyPress(widget, QtCore.Qt.Key_O)
qtbot.keyPress(widget, QtCore.Qt.Key_N)
assert widget.text() == 'person'
def test_LabelDialog_addLabelHistory(qtbot):
labels = ['cat', 'dog', 'person']
widget = LabelDialog(labels=labels, sort_labels=True)
qtbot.addWidget(widget)
widget.addLabelHistory('bicycle')
assert widget.labelList.count() == 4
widget.addLabelHistory('bicycle')
assert widget.labelList.count() == 4
item = widget.labelList.item(0)
assert item.text() == 'bicycle'
def test_LabelDialog_popUp(qtbot):
labels = ['cat', 'dog', 'person']
widget = LabelDialog(labels=labels, sort_labels=True)
qtbot.addWidget(widget)
# popUp(text='cat')
def interact():
qtbot.keyClick(widget.edit, QtCore.Qt.Key_P) # enter 'p' for 'person' # NOQA
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
QtCore.QTimer.singleShot(500, interact)
label, flags = widget.popUp('cat')
assert label == 'person'
assert flags == {}
# popUp()
def interact():
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
QtCore.QTimer.singleShot(500, interact)
label, flags = widget.popUp()
assert label == 'person'
assert flags == {}
# popUp() + key_Up
def interact():
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Up) # 'person' -> 'dog' # NOQA
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
qtbot.keyClick(widget.edit, QtCore.Qt.Key_Enter) # NOQA
QtCore.QTimer.singleShot(500, interact)
label, flags = widget.popUp()
assert label == 'dog'
assert flags == {}
......@@ -10,7 +10,7 @@
飞桨全流程开发客户端,集飞桨核心框架、模型库、工具及组件等深度学习开发全流程所需能力于一身,不仅为您提供一键安装的客户端,开源开放的技术内核更方便您根据实际生产需求进行直接调用或二次开发,是提升深度学习项目开发效率的最佳辅助工具
飞桨全流程开发客户端,集成飞桨核心框架、模型库、工具及组件等核心模块,打通深度学习开发全流程。不仅提供一键安装的客户端,开源开放的技术内核更方便您根据实际生产需求进行直接调用或二次开发,为开发者提供飞桨全流程开发的最佳实践
PaddleX由PaddleX Client可视化前端和PaddleX Core后端技术内核两个部分组成。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册