Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
af653495
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af653495
编写于
5月 24, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add hrnet.py in segmentation
上级
72728391
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
670 addition
and
0 deletion
+670
-0
paddlex/cv/nets/hrnet.py
paddlex/cv/nets/hrnet.py
+474
-0
paddlex/cv/nets/segmentation/hrnet.py
paddlex/cv/nets/segmentation/hrnet.py
+196
-0
未找到文件。
paddlex/cv/nets/hrnet.py
0 → 100644
浏览文件 @
af653495
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.regularizer
import
L2Decay
from
numbers
import
Integral
from
paddle.fluid.initializer
import
MSRA
import
math
__all__
=
[
'HRNet'
]
class
HRNet
(
object
):
def
__init__
(
self
,
width
=
40
,
has_se
=
False
,
freeze_at
=
0
,
norm_type
=
'bn'
,
freeze_norm
=
False
,
norm_decay
=
0.
,
feature_maps
=
[
2
,
3
,
4
,
5
],
num_classes
=
None
):
super
(
HRNet
,
self
).
__init__
()
if
isinstance
(
feature_maps
,
Integral
):
feature_maps
=
[
feature_maps
]
assert
0
<=
freeze_at
<=
4
,
"freeze_at should be 0, 1, 2, 3 or 4"
assert
len
(
feature_maps
)
>
0
,
"need one or more feature maps"
assert
norm_type
in
[
'bn'
,
'sync_bn'
]
self
.
width
=
width
self
.
has_se
=
has_se
self
.
channels
=
{
18
:
[[
18
,
36
],
[
18
,
36
,
72
],
[
18
,
36
,
72
,
144
]],
30
:
[[
30
,
60
],
[
30
,
60
,
120
],
[
30
,
60
,
120
,
240
]],
32
:
[[
32
,
64
],
[
32
,
64
,
128
],
[
32
,
64
,
128
,
256
]],
40
:
[[
40
,
80
],
[
40
,
80
,
160
],
[
40
,
80
,
160
,
320
]],
44
:
[[
44
,
88
],
[
44
,
88
,
176
],
[
44
,
88
,
176
,
352
]],
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]],
}
self
.
freeze_at
=
freeze_at
self
.
norm_type
=
norm_type
self
.
norm_decay
=
norm_decay
self
.
freeze_norm
=
freeze_norm
self
.
feature_maps
=
feature_maps
self
.
num_classes
=
num_classes
self
.
end_points
=
[]
return
def
net
(
self
,
input
,
class_dim
=
1000
):
width
=
self
.
width
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
x
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
x
=
self
.
conv_bn_layer
(
input
=
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
la1
=
self
.
layer1
(
x
,
name
=
'layer2'
)
tr1
=
self
.
transition_layer
([
la1
],
[
256
],
channels_2
,
name
=
'tr1'
)
st2
=
self
.
stage
(
tr1
,
num_modules_2
,
channels_2
,
name
=
'st2'
)
tr2
=
self
.
transition_layer
(
st2
,
channels_2
,
channels_3
,
name
=
'tr2'
)
st3
=
self
.
stage
(
tr2
,
num_modules_3
,
channels_3
,
name
=
'st3'
)
tr3
=
self
.
transition_layer
(
st3
,
channels_3
,
channels_4
,
name
=
'tr3'
)
st4
=
self
.
stage
(
tr3
,
num_modules_4
,
channels_4
,
name
=
'st4'
)
# classification
if
self
.
num_classes
:
last_cls
=
self
.
last_cls_out
(
x
=
st4
,
name
=
'cls_head'
)
y
=
last_cls
[
0
]
last_num_filters
=
[
256
,
512
,
1024
]
for
i
in
range
(
3
):
y
=
fluid
.
layers
.
elementwise_add
(
last_cls
[
i
+
1
],
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
3
,
num_filters
=
last_num_filters
[
i
],
stride
=
2
,
name
=
'cls_head_add'
+
str
(
i
+
1
)))
y
=
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
1
,
num_filters
=
2048
,
stride
=
1
,
name
=
'cls_head_last_conv'
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
y
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc_weights'
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
# segmentation
if
self
.
feature_maps
==
"stage4"
:
return
st4
self
.
end_points
=
st4
return
st4
[
-
1
]
def
layer1
(
self
,
input
,
name
=
None
):
conv
=
input
for
i
in
range
(
4
):
conv
=
self
.
bottleneck_block
(
conv
,
num_filters
=
64
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
conv
def
transition_layer
(
self
,
x
,
in_channels
,
out_channels
,
name
=
None
):
num_in
=
len
(
in_channels
)
num_out
=
len
(
out_channels
)
out
=
[]
for
i
in
range
(
num_out
):
if
i
<
num_in
:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
self
.
conv_bn_layer
(
x
[
i
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
else
:
out
.
append
(
x
[
i
])
else
:
residual
=
self
.
conv_bn_layer
(
x
[
-
1
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
return
out
def
branches
(
self
,
x
,
block_num
,
channels
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)):
residual
=
x
[
i
]
for
j
in
range
(
block_num
):
residual
=
self
.
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
out
.
append
(
residual
)
return
out
def
fuse_layers
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)
if
multi_scale_output
else
1
):
residual
=
x
[
i
]
if
self
.
feature_maps
==
"stage4"
:
shape
=
fluid
.
layers
.
shape
(
residual
)
width
=
shape
[
-
1
]
height
=
shape
[
-
2
]
for
j
in
range
(
len
(
channels
)):
if
j
>
i
:
y
=
self
.
conv_bn_layer
(
x
[
j
],
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
if
self
.
feature_maps
==
"stage4"
:
y
=
fluid
.
layers
.
resize_bilinear
(
input
=
y
,
out_shape
=
[
height
,
width
])
else
:
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
x
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
else
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
residual
=
fluid
.
layers
.
relu
(
residual
)
out
.
append
(
residual
)
return
out
def
high_resolution_module
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
residual
=
self
.
branches
(
x
,
4
,
channels
,
name
=
name
)
out
=
self
.
fuse_layers
(
residual
,
channels
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
return
out
def
stage
(
self
,
x
,
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
x
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
multi_scale_output
==
False
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
else
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
out
def
last_cls_out
(
self
,
x
,
name
=
None
):
out
=
[]
num_filters_list
=
[
32
,
64
,
128
,
256
]
for
i
in
range
(
len
(
x
)):
out
.
append
(
self
.
bottleneck_block
(
input
=
x
[
i
],
num_filters
=
num_filters_list
[
i
],
name
=
name
+
'conv_'
+
str
(
i
+
1
),
downsample
=
True
))
return
out
def
basic_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_conv2'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
num_channels
=
num_filters
,
reduction_ratio
=
16
,
name
=
name
+
'_fc'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
num_channels
=
num_filters
*
4
,
reduction_ratio
=
16
,
name
=
name
+
'_fc'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
squeeze_excitation
(
self
,
input
,
num_channels
,
reduction_ratio
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
self
.
_bn
(
input
=
conv
,
bn_name
=
bn_name
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
return
bn
def
_bn
(
self
,
input
,
act
=
None
,
bn_name
=
None
):
norm_lr
=
0.
if
self
.
freeze_norm
else
1.
norm_decay
=
self
.
norm_decay
if
self
.
num_classes
or
self
.
feature_maps
==
"stage4"
:
regularizer
=
None
pattr_initializer
=
fluid
.
initializer
.
Constant
(
1.0
)
battr_initializer
=
fluid
.
initializer
.
Constant
(
0.0
)
else
:
regularizer
=
L2Decay
(
norm_decay
)
pattr_initializer
=
None
battr_initializer
=
None
pattr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
learning_rate
=
norm_lr
,
regularizer
=
regularizer
,
initializer
=
pattr_initializer
)
battr
=
ParamAttr
(
name
=
bn_name
+
'_offset'
,
learning_rate
=
norm_lr
,
regularizer
=
regularizer
,
initializer
=
battr_initializer
)
global_stats
=
True
if
self
.
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
input
,
act
=
act
,
name
=
bn_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
if
self
.
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
return
out
def
__call__
(
self
,
input
):
assert
isinstance
(
input
,
Variable
)
if
isinstance
(
self
.
feature_maps
,
(
list
,
tuple
)):
assert
not
(
set
(
self
.
feature_maps
)
-
set
([
2
,
3
,
4
,
5
])),
\
"feature maps {} not in [2, 3, 4, 5]"
.
format
(
self
.
feature_maps
)
res_endpoints
=
[]
res
=
input
feature_maps
=
self
.
feature_maps
out
=
self
.
net
(
input
)
if
self
.
num_classes
or
self
.
feature_maps
==
"stage4"
:
return
out
for
i
in
feature_maps
:
res
=
self
.
end_points
[
i
-
2
]
if
i
in
self
.
feature_maps
:
res_endpoints
.
append
(
res
)
if
self
.
freeze_at
>=
i
:
res
.
stop_gradient
=
True
return
OrderedDict
([(
'res{}_sum'
.
format
(
self
.
feature_maps
[
idx
]),
feat
)
for
idx
,
feat
in
enumerate
(
res_endpoints
)])
paddlex/cv/nets/segmentation/hrnet.py
0 → 100644
浏览文件 @
af653495
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
.model_utils.libs
import
sigmoid_to_softmax
from
.model_utils.loss
import
softmax_with_loss
from
.model_utils.loss
import
dice_loss
from
.model_utils.loss
import
bce_loss
import
paddlex
import
paddlex.utils.logging
as
logging
class
HRNet
(
object
):
def
__init__
(
self
,
num_classes
,
mode
=
'train'
,
width
=
18
,
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
):
# dice_loss或bce_loss只适用两类分割中
if
num_classes
>
2
and
(
use_bce_loss
or
use_dice_loss
):
raise
ValueError
(
"dice loss and bce loss is only applicable to binary classfication"
)
if
class_weight
is
not
None
:
if
isinstance
(
class_weight
,
list
):
if
len
(
class_weight
)
!=
num_classes
:
raise
ValueError
(
"Length of class_weight should be equal to number of classes"
)
elif
isinstance
(
class_weight
,
str
):
if
class_weight
.
lower
()
!=
'dynamic'
:
raise
ValueError
(
"if class_weight is string, must be dynamic!"
)
else
:
raise
TypeError
(
'Expect class_weight is a list or string but receive {}'
.
format
(
type
(
class_weight
)))
self
.
num_classes
=
num_classes
self
.
mode
=
mode
self
.
use_bce_loss
=
use_bce_loss
self
.
use_dice_loss
=
use_dice_loss
self
.
class_weight
=
class_weight
self
.
ignore_index
=
ignore_index
self
.
backbone
=
paddlex
.
cv
.
nets
.
hrnet
.
HRNet
(
width
=
width
,
feature_maps
=
"stage4"
)
def
build_net
(
self
,
inputs
):
if
self
.
use_dice_loss
or
self
.
use_bce_loss
:
self
.
num_classes
=
1
image
=
inputs
[
'image'
]
st4
=
self
.
backbone
(
image
)
# upsample
shape
=
fluid
.
layers
.
shape
(
st4
[
0
])[
-
2
:]
st4
[
1
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
1
],
out_shape
=
shape
)
st4
[
2
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
2
],
out_shape
=
shape
)
st4
[
3
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
3
],
out_shape
=
shape
)
out
=
fluid
.
layers
.
concat
(
st4
,
axis
=
1
)
last_channels
=
sum
(
self
.
backbone
.
channels
[
self
.
backbone
.
width
][
-
1
])
out
=
self
.
_conv_bn_layer
(
input
=
out
,
filter_size
=
1
,
num_filters
=
last_channels
,
stride
=
1
,
if_act
=
True
,
name
=
'conv-2'
)
out
=
fluid
.
layers
.
conv2d
(
input
=
out
,
num_filters
=
self
.
num_classes
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
'conv-1_weights'
),
bias_attr
=
False
)
input_shape
=
fluid
.
layers
.
shape
(
image
)[
-
2
:]
logit
=
fluid
.
layers
.
resize_bilinear
(
out
,
input_shape
)
if
self
.
num_classes
==
1
:
out
=
sigmoid_to_softmax
(
logit
)
out
=
fluid
.
layers
.
transpose
(
out
,
[
0
,
2
,
3
,
1
])
else
:
out
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
out
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
if
self
.
mode
==
'train'
:
label
=
inputs
[
'label'
]
mask
=
label
!=
self
.
ignore_index
return
self
.
_get_loss
(
logit
,
label
,
mask
)
elif
self
.
mode
==
'eval'
:
label
=
inputs
[
'label'
]
mask
=
label
!=
self
.
ignore_index
loss
=
self
.
_get_loss
(
logit
,
label
,
mask
)
return
loss
,
pred
,
label
,
mask
else
:
if
self
.
num_classes
==
1
:
logit
=
sigmoid_to_softmax
(
logit
)
else
:
logit
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
return
pred
,
logit
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
elif
self
.
mode
==
'eval'
:
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
return
inputs
def
_get_loss
(
self
,
logit
,
label
,
mask
):
avg_loss
=
0
if
not
(
self
.
use_dice_loss
or
self
.
use_bce_loss
):
avg_loss
+=
softmax_with_loss
(
logit
,
label
,
mask
,
num_classes
=
self
.
num_classes
,
weight
=
self
.
class_weight
,
ignore_index
=
self
.
ignore_index
)
else
:
if
self
.
use_dice_loss
:
avg_loss
+=
dice_loss
(
logit
,
label
,
mask
)
if
self
.
use_bce_loss
:
avg_loss
+=
bce_loss
(
logit
,
label
,
mask
,
ignore_index
=
self
.
ignore_index
)
return
avg_loss
def
_conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
return
bn
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录