Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
a8d23e8e
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a8d23e8e
编写于
5月 15, 2020
作者:
S
sunyanfang01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify imgaug support
上级
48598f27
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
86 addition
and
122 deletion
+86
-122
paddlex/cv/datasets/voc.py
paddlex/cv/datasets/voc.py
+16
-26
paddlex/cv/transforms/det_transforms.py
paddlex/cv/transforms/det_transforms.py
+21
-24
paddlex/cv/transforms/imgaug_support.py
paddlex/cv/transforms/imgaug_support.py
+40
-60
paddlex/cv/transforms/seg_transforms.py
paddlex/cv/transforms/seg_transforms.py
+7
-8
setup.py
setup.py
+2
-4
未找到文件。
paddlex/cv/datasets/voc.py
浏览文件 @
a8d23e8e
...
@@ -95,8 +95,8 @@ class VOCDetection(Dataset):
...
@@ -95,8 +95,8 @@ class VOCDetection(Dataset):
if
not
osp
.
isfile
(
xml_file
):
if
not
osp
.
isfile
(
xml_file
):
continue
continue
if
not
osp
.
exists
(
img_file
):
if
not
osp
.
exists
(
img_file
):
raise
IOError
(
raise
IOError
(
'The image file {} is not exist!'
.
format
(
'The image file {} is not exist!'
.
format
(
img_file
))
img_file
))
tree
=
ET
.
parse
(
xml_file
)
tree
=
ET
.
parse
(
xml_file
)
if
tree
.
find
(
'id'
)
is
None
:
if
tree
.
find
(
'id'
)
is
None
:
im_id
=
np
.
array
([
ct
])
im_id
=
np
.
array
([
ct
])
...
@@ -122,25 +122,20 @@ class VOCDetection(Dataset):
...
@@ -122,25 +122,20 @@ class VOCDetection(Dataset):
y2
=
float
(
obj
.
find
(
'bndbox'
).
find
(
'ymax'
).
text
)
y2
=
float
(
obj
.
find
(
'bndbox'
).
find
(
'ymax'
).
text
)
x1
=
max
(
0
,
x1
)
x1
=
max
(
0
,
x1
)
y1
=
max
(
0
,
y1
)
y1
=
max
(
0
,
y1
)
if
im_w
>
0.5
and
im_h
>
0.5
:
x2
=
min
(
im_w
-
1
,
x2
)
x2
=
min
(
im_w
-
1
,
x2
)
y2
=
min
(
im_h
-
1
,
y2
)
y2
=
min
(
im_h
-
1
,
y2
)
gt_bbox
[
i
]
=
[
x1
,
y1
,
x2
,
y2
]
gt_bbox
[
i
]
=
[
x1
,
y1
,
x2
,
y2
]
is_crowd
[
i
][
0
]
=
0
is_crowd
[
i
][
0
]
=
0
difficult
[
i
][
0
]
=
_difficult
difficult
[
i
][
0
]
=
_difficult
annotations
[
'annotations'
].
append
({
annotations
[
'annotations'
].
append
({
'iscrowd'
:
'iscrowd'
:
0
,
0
,
'image_id'
:
int
(
im_id
[
0
]),
'image_id'
:
int
(
im_id
[
0
]),
'bbox'
:
[
x1
,
y1
,
x2
-
x1
+
1
,
y2
-
y1
+
1
],
'bbox'
:
[
x1
,
y1
,
x2
-
x1
+
1
,
y2
-
y1
+
1
],
'area'
:
'area'
:
float
((
x2
-
x1
+
1
)
*
(
y2
-
y1
+
1
)),
float
((
x2
-
x1
+
1
)
*
(
y2
-
y1
+
1
)),
'category_id'
:
cname2cid
[
cname
],
'category_id'
:
'id'
:
ann_ct
,
cname2cid
[
cname
],
'difficult'
:
_difficult
'id'
:
ann_ct
,
'difficult'
:
_difficult
})
})
ann_ct
+=
1
ann_ct
+=
1
...
@@ -160,14 +155,10 @@ class VOCDetection(Dataset):
...
@@ -160,14 +155,10 @@ class VOCDetection(Dataset):
self
.
file_list
.
append
([
img_file
,
voc_rec
])
self
.
file_list
.
append
([
img_file
,
voc_rec
])
ct
+=
1
ct
+=
1
annotations
[
'images'
].
append
({
annotations
[
'images'
].
append
({
'height'
:
'height'
:
im_h
,
im_h
,
'width'
:
im_w
,
'width'
:
'id'
:
int
(
im_id
[
0
]),
im_w
,
'file_name'
:
osp
.
split
(
img_file
)[
1
]
'id'
:
int
(
im_id
[
0
]),
'file_name'
:
osp
.
split
(
img_file
)[
1
]
})
})
if
not
len
(
self
.
file_list
)
>
0
:
if
not
len
(
self
.
file_list
)
>
0
:
...
@@ -198,8 +189,7 @@ class VOCDetection(Dataset):
...
@@ -198,8 +189,7 @@ class VOCDetection(Dataset):
else
:
else
:
mix_pos
=
0
mix_pos
=
0
im_info
[
'mixup'
]
=
[
im_info
[
'mixup'
]
=
[
files
[
mix_pos
][
0
],
files
[
mix_pos
][
0
],
copy
.
deepcopy
(
files
[
mix_pos
][
1
][
0
]),
copy
.
deepcopy
(
files
[
mix_pos
][
1
][
0
]),
copy
.
deepcopy
(
files
[
mix_pos
][
1
][
1
])
copy
.
deepcopy
(
files
[
mix_pos
][
1
][
1
])
]
]
self
.
_pos
+=
1
self
.
_pos
+=
1
...
...
paddlex/cv/transforms/det_transforms.py
浏览文件 @
a8d23e8e
...
@@ -111,8 +111,8 @@ class Compose(DetTransform):
...
@@ -111,8 +111,8 @@ class Compose(DetTransform):
try
:
try
:
im
=
cv2
.
imread
(
im_file
).
astype
(
'float32'
)
im
=
cv2
.
imread
(
im_file
).
astype
(
'float32'
)
except
:
except
:
raise
TypeError
(
raise
TypeError
(
'Can
\'
t read The image file {}!'
.
format
(
'Can
\'
t read The image file {}!'
.
format
(
im_file
))
im_file
))
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
# make default im_info with [h, w, 1]
# make default im_info with [h, w, 1]
im_info
[
'im_resize_info'
]
=
np
.
array
(
im_info
[
'im_resize_info'
]
=
np
.
array
(
...
@@ -145,19 +145,10 @@ class Compose(DetTransform):
...
@@ -145,19 +145,10 @@ class Compose(DetTransform):
outputs
=
op
(
im
,
im_info
,
label_info
)
outputs
=
op
(
im
,
im_info
,
label_info
)
im
=
outputs
[
0
]
im
=
outputs
[
0
]
else
:
else
:
im
=
execute_imgaug
(
op
,
im
)
if
label_info
is
not
None
:
if
label_info
is
not
None
:
gt_poly
=
label_info
.
get
(
'gt_poly'
,
None
)
gt_bbox
=
label_info
[
'gt_bbox'
]
if
gt_poly
is
None
:
im
,
aug_bbox
=
execute_imgaug
(
op
,
im
,
bboxes
=
gt_bbox
)
else
:
im
,
aug_bbox
,
aug_poly
=
execute_imgaug
(
op
,
im
,
bboxes
=
gt_bbox
,
polygons
=
gt_poly
)
label_info
[
'gt_poly'
]
=
aug_poly
label_info
[
'gt_bbox'
]
=
aug_bbox
outputs
=
(
im
,
im_info
,
label_info
)
outputs
=
(
im
,
im_info
,
label_info
)
else
:
else
:
im
,
=
execute_imgaug
(
op
,
im
)
outputs
=
(
im
,
im_info
)
outputs
=
(
im
,
im_info
)
return
outputs
return
outputs
...
@@ -218,8 +209,8 @@ class ResizeByShort(DetTransform):
...
@@ -218,8 +209,8 @@ class ResizeByShort(DetTransform):
im_short_size
=
min
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_short_size
=
min
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_long_size
=
max
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_long_size
=
max
(
im
.
shape
[
0
],
im
.
shape
[
1
])
scale
=
float
(
self
.
short_size
)
/
im_short_size
scale
=
float
(
self
.
short_size
)
/
im_short_size
if
self
.
max_size
>
0
and
np
.
round
(
if
self
.
max_size
>
0
and
np
.
round
(
scale
*
scale
*
im_long_size
)
>
self
.
max_size
:
im_long_size
)
>
self
.
max_size
:
scale
=
float
(
self
.
max_size
)
/
float
(
im_long_size
)
scale
=
float
(
self
.
max_size
)
/
float
(
im_long_size
)
resized_width
=
int
(
round
(
im
.
shape
[
1
]
*
scale
))
resized_width
=
int
(
round
(
im
.
shape
[
1
]
*
scale
))
resized_height
=
int
(
round
(
im
.
shape
[
0
]
*
scale
))
resized_height
=
int
(
round
(
im
.
shape
[
0
]
*
scale
))
...
@@ -302,8 +293,8 @@ class Padding(DetTransform):
...
@@ -302,8 +293,8 @@ class Padding(DetTransform):
if
isinstance
(
self
.
target_size
,
int
):
if
isinstance
(
self
.
target_size
,
int
):
padding_im_h
=
self
.
target_size
padding_im_h
=
self
.
target_size
padding_im_w
=
self
.
target_size
padding_im_w
=
self
.
target_size
elif
isinstance
(
self
.
target_size
,
list
)
or
isinstance
(
elif
isinstance
(
self
.
target_size
,
list
)
or
isinstance
(
self
.
target_size
,
self
.
target_size
,
tuple
):
tuple
):
padding_im_w
=
self
.
target_size
[
0
]
padding_im_w
=
self
.
target_size
[
0
]
padding_im_h
=
self
.
target_size
[
1
]
padding_im_h
=
self
.
target_size
[
1
]
elif
self
.
coarsest_stride
>
0
:
elif
self
.
coarsest_stride
>
0
:
...
@@ -321,8 +312,8 @@ class Padding(DetTransform):
...
@@ -321,8 +312,8 @@ class Padding(DetTransform):
raise
ValueError
(
raise
ValueError
(
'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
.
format
(
im_w
,
im_h
,
padding_im_w
,
padding_im_h
))
.
format
(
im_w
,
im_h
,
padding_im_w
,
padding_im_h
))
padding_im
=
np
.
zeros
(
(
padding_im_h
,
padding_im_w
,
im_c
),
padding_im
=
np
.
zeros
(
dtype
=
np
.
float32
)
(
padding_im_h
,
padding_im_w
,
im_c
),
dtype
=
np
.
float32
)
padding_im
[:
im_h
,
:
im_w
,
:]
=
im
padding_im
[:
im_h
,
:
im_w
,
:]
=
im
if
label_info
is
None
:
if
label_info
is
None
:
return
(
padding_im
,
im_info
)
return
(
padding_im
,
im_info
)
...
@@ -932,8 +923,9 @@ class RandomCrop(DetTransform):
...
@@ -932,8 +923,9 @@ class RandomCrop(DetTransform):
crop_y
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
crop_y
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
crop_x
=
np
.
random
.
randint
(
0
,
w
-
crop_w
)
crop_x
=
np
.
random
.
randint
(
0
,
w
-
crop_w
)
crop_box
=
[
crop_x
,
crop_y
,
crop_x
+
crop_w
,
crop_y
+
crop_h
]
crop_box
=
[
crop_x
,
crop_y
,
crop_x
+
crop_w
,
crop_y
+
crop_h
]
iou
=
iou_matrix
(
gt_bbox
,
np
.
array
([
crop_box
],
iou
=
iou_matrix
(
dtype
=
np
.
float32
))
gt_bbox
,
np
.
array
(
[
crop_box
],
dtype
=
np
.
float32
))
if
iou
.
max
()
<
thresh
:
if
iou
.
max
()
<
thresh
:
continue
continue
...
@@ -941,16 +933,21 @@ class RandomCrop(DetTransform):
...
@@ -941,16 +933,21 @@ class RandomCrop(DetTransform):
continue
continue
cropped_box
,
valid_ids
=
crop_box_with_center_constraint
(
cropped_box
,
valid_ids
=
crop_box_with_center_constraint
(
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
if
valid_ids
.
size
>
0
:
if
valid_ids
.
size
>
0
:
found
=
True
found
=
True
break
break
if
found
:
if
found
:
if
'gt_poly'
in
label_info
and
len
(
label_info
[
'gt_poly'
])
>
0
:
if
'gt_poly'
in
label_info
and
len
(
label_info
[
'gt_poly'
])
>
0
:
crop_polys
=
crop_segms
(
label_info
[
'gt_poly'
],
valid_ids
,
crop_polys
=
crop_segms
(
np
.
array
(
crop_box
,
dtype
=
np
.
int64
),
label_info
[
'gt_poly'
],
h
,
w
)
valid_ids
,
np
.
array
(
crop_box
,
dtype
=
np
.
int64
),
h
,
w
)
if
[]
in
crop_polys
:
if
[]
in
crop_polys
:
delete_id
=
list
()
delete_id
=
list
()
valid_polys
=
list
()
valid_polys
=
list
()
...
...
paddlex/cv/transforms/imgaug_support.py
浏览文件 @
a8d23e8e
...
@@ -13,36 +13,41 @@
...
@@ -13,36 +13,41 @@
# limitations under the License.
# limitations under the License.
import
numpy
as
np
import
numpy
as
np
import
copy
def
execute_imgaug
(
augmenter
,
im
,
bboxes
=
None
,
polygons
=
None
,
def
execute_imgaug
(
augmenter
,
im
,
bboxes
=
None
,
polygons
=
None
,
segment_map
=
None
):
segment_map
=
None
):
# 预处理,将bboxes, polygons转换成imgaug格式
# 预处理,将bboxes, polygons转换成imgaug格式
import
imgaug.augmentables.
polys
as
poly
s
import
imgaug.augmentables.
kps
as
kp
s
import
imgaug.augmentables.bbs
as
bbs
import
imgaug.augmentables.bbs
as
bbs
aug_im
=
im
.
astype
(
'uint8'
)
aug_im
=
im
.
astype
(
'uint8'
)
aug_im
=
augmenter
.
augment
(
image
=
aug_im
)
return
aug_im
# TODO imgaug的标注处理逻辑与paddlex已存的transform存在部分差异
# 目前仅支持对原图进行处理,因此只能使用pixlevel的imgaug增强操作
# 以下代码暂不会执行
aug_bboxes
=
None
aug_bboxes
=
None
if
bboxes
is
not
None
:
if
bboxes
is
not
None
:
aug_bboxes
=
list
()
aug_bboxes
=
list
()
for
i
in
range
(
len
(
bboxes
)):
for
i
in
range
(
len
(
bboxes
)):
x1
=
bboxes
[
i
,
0
]
-
1
x1
=
bboxes
[
i
,
0
]
y1
=
bboxes
[
i
,
1
]
y1
=
bboxes
[
i
,
1
]
x2
=
bboxes
[
i
,
2
]
x2
=
bboxes
[
i
,
2
]
y2
=
bboxes
[
i
,
3
]
y2
=
bboxes
[
i
,
3
]
aug_bboxes
.
append
(
bbs
.
BoundingBox
(
x1
,
y1
,
x2
,
y2
))
aug_bboxes
.
append
(
bbs
.
BoundingBox
(
x1
,
y1
,
x2
,
y2
))
aug_polygons
=
None
aug_points
=
None
lod_info
=
list
()
if
polygons
is
not
None
:
if
polygons
is
not
None
:
aug_po
lygon
s
=
list
()
aug_po
int
s
=
list
()
for
i
in
range
(
len
(
polygons
)):
for
i
in
range
(
len
(
polygons
)):
num
=
len
(
polygons
[
i
])
num
=
len
(
polygons
[
i
])
lod_info
.
append
(
num
)
for
j
in
range
(
num
):
for
j
in
range
(
num
):
points
=
np
.
reshape
(
polygons
[
i
][
j
],
(
-
1
,
2
))
tmp
=
np
.
reshape
(
polygons
[
i
][
j
],
(
-
1
,
2
))
aug_polygons
.
append
(
polys
.
Polygon
(
points
))
for
k
in
range
(
len
(
tmp
)):
aug_points
.
append
(
kps
.
Keypoint
(
tmp
[
k
,
0
],
tmp
[
k
,
1
]))
aug_segment_map
=
None
aug_segment_map
=
None
if
segment_map
is
not
None
:
if
segment_map
is
not
None
:
...
@@ -56,72 +61,47 @@ def execute_imgaug(augmenter, im, bboxes=None, polygons=None,
...
@@ -56,72 +61,47 @@ def execute_imgaug(augmenter, im, bboxes=None, polygons=None,
raise
Exception
(
raise
Exception
(
"Only support 2-dimensions for 3-dimensions for segment_map"
)
"Only support 2-dimensions for 3-dimensions for segment_map"
)
aug_im
,
aug_bboxes
,
aug_polygons
,
aug_seg_map
=
augmenter
.
augment
(
unnormalized_batch
=
augmenter
.
augment
(
image
=
aug_im
,
image
=
aug_im
,
bounding_boxes
=
aug_bboxes
,
bounding_boxes
=
aug_bboxes
,
polygons
=
aug_polygons
,
keypoints
=
aug_points
,
segmentation_maps
=
aug_segment_map
)
segmentation_maps
=
aug_segment_map
,
return_batch
=
True
)
aug_im
=
unnormalized_batch
.
images_aug
[
0
]
aug_bboxes
=
unnormalized_batch
.
bounding_boxes_aug
aug_points
=
unnormalized_batch
.
keypoints_aug
aug_seg_map
=
unnormalized_batch
.
segmentation_maps_aug
aug_im
=
aug_im
.
astype
(
'float32'
)
aug_im
=
aug_im
.
astype
(
'float32'
)
if
aug_polygons
is
not
None
:
assert
len
(
aug_bboxes
)
==
len
(
lod_info
),
"Number of aug_bboxes should be equal to number of aug_polygons"
if
aug_bboxes
is
not
None
:
if
aug_bboxes
is
not
None
:
# 裁剪掉在图像之外的bbox和polygon
for
i
in
range
(
len
(
aug_bboxes
)):
aug_bboxes
[
i
]
=
aug_bboxes
[
i
].
clip_out_of_image
(
aug_im
)
if
aug_polygons
is
not
None
:
for
i
in
range
(
len
(
aug_polygons
)):
aug_polygons
[
i
]
=
aug_polygons
[
i
].
clip_out_of_image
(
aug_im
)
# 过滤掉无效的bbox和polygon,并转换为训练数据格式
converted_bboxes
=
list
()
converted_bboxes
=
list
()
converted_polygons
=
list
()
poly_index
=
0
for
i
in
range
(
len
(
aug_bboxes
)):
for
i
in
range
(
len
(
aug_bboxes
)):
# 过滤width或height不足1像素的框
if
aug_bboxes
[
i
].
width
<
1
or
aug_bboxes
[
i
].
height
<
1
:
continue
if
aug_polygons
is
None
:
converted_bboxes
.
append
([
converted_bboxes
.
append
([
aug_bboxes
[
i
].
x1
,
aug_bboxes
[
i
].
y1
,
aug_bboxes
[
i
].
x2
,
aug_bboxes
[
i
].
x1
,
aug_bboxes
[
i
].
y1
,
aug_bboxes
[
i
].
x2
,
aug_bboxes
[
i
].
y2
aug_bboxes
[
i
].
y2
])
])
continue
aug_bboxes
=
converted_bboxes
# 如若有polygons,将会继续执行下面代码
polygons_this_box
=
list
()
for
ps
in
aug_polygons
[
poly_index
:
poly_index
+
lod_info
[
i
]]:
if
len
(
ps
)
==
0
:
continue
for
p
in
ps
:
# 没有3个point的polygon被过滤
if
len
(
p
.
exterior
)
<
3
:
continue
polygons_this_box
.
append
(
p
.
exterior
.
flatten
().
tolist
())
poly_index
+=
lod_info
[
i
]
if
len
(
polygons_this_box
)
==
0
:
aug_polygons
=
None
continue
if
aug_points
is
not
None
:
converted_bboxes
.
append
([
aug_polygons
=
copy
.
deepcopy
(
polygons
)
aug_bboxes
[
i
].
x1
,
aug_bboxes
[
i
].
y1
,
aug_bboxes
[
i
].
x2
,
idx
=
0
aug_bboxes
[
i
].
y2
for
i
in
range
(
len
(
aug_polygons
)):
])
num
=
len
(
aug_polygons
[
i
])
converted_polygons
.
append
(
polygons_this_box
)
for
j
in
range
(
num
):
if
len
(
converted_bboxes
)
==
0
:
num_points
=
len
(
aug_polygons
[
i
][
j
])
//
2
aug_im
=
im
for
k
in
range
(
num_points
):
converted_bboxes
=
bboxes
aug_polygons
[
i
][
j
][
k
*
2
]
=
aug_points
[
idx
].
x
converted_polygons
=
polygons
aug_polygons
[
i
][
j
][
k
*
2
+
1
]
=
aug_points
[
idx
].
y
idx
+=
1
result
=
[
aug_im
]
result
=
[
aug_im
]
if
bboxes
is
not
None
:
if
aug_
bboxes
is
not
None
:
result
.
append
(
np
.
array
(
converted
_bboxes
))
result
.
append
(
np
.
array
(
aug
_bboxes
))
if
polygons
is
not
None
:
if
aug_
polygons
is
not
None
:
result
.
append
(
converted
_polygons
)
result
.
append
(
aug
_polygons
)
if
segment
_map
is
not
None
:
if
aug_seg
_map
is
not
None
:
n
,
h
,
w
,
c
=
aug_seg_map
.
shape
n
,
h
,
w
,
c
=
aug_seg_map
.
shape
if
len
(
segment_map
.
shape
)
==
2
:
if
len
(
segment_map
.
shape
)
==
2
:
aug_seg_map
=
np
.
reshape
(
aug_seg_map
,
(
h
,
w
))
aug_seg_map
=
np
.
reshape
(
aug_seg_map
,
(
h
,
w
))
...
...
paddlex/cv/transforms/seg_transforms.py
浏览文件 @
a8d23e8e
...
@@ -101,11 +101,10 @@ class Compose(SegTransform):
...
@@ -101,11 +101,10 @@ class Compose(SegTransform):
if
len
(
outputs
)
==
3
:
if
len
(
outputs
)
==
3
:
label
=
outputs
[
2
]
label
=
outputs
[
2
]
else
:
else
:
im
=
execute_imgaug
(
op
,
im
)
if
label
is
not
None
:
if
label
is
not
None
:
im
,
label
=
execute_imgaug
(
op
,
im
,
segment_map
=
label
)
outputs
=
(
im
,
im_info
,
label
)
outputs
=
(
im
,
im_info
,
label
)
else
:
else
:
im
,
=
execute_imgaug
(
op
,
im
)
outputs
=
(
im
,
im_info
)
outputs
=
(
im
,
im_info
)
return
outputs
return
outputs
...
@@ -391,8 +390,8 @@ class ResizeByShort(SegTransform):
...
@@ -391,8 +390,8 @@ class ResizeByShort(SegTransform):
im_short_size
=
min
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_short_size
=
min
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_long_size
=
max
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_long_size
=
max
(
im
.
shape
[
0
],
im
.
shape
[
1
])
scale
=
float
(
self
.
short_size
)
/
im_short_size
scale
=
float
(
self
.
short_size
)
/
im_short_size
if
self
.
max_size
>
0
and
np
.
round
(
if
self
.
max_size
>
0
and
np
.
round
(
scale
*
scale
*
im_long_size
)
>
self
.
max_size
:
im_long_size
)
>
self
.
max_size
:
scale
=
float
(
self
.
max_size
)
/
float
(
im_long_size
)
scale
=
float
(
self
.
max_size
)
/
float
(
im_long_size
)
resized_width
=
int
(
round
(
im
.
shape
[
1
]
*
scale
))
resized_width
=
int
(
round
(
im
.
shape
[
1
]
*
scale
))
resized_height
=
int
(
round
(
im
.
shape
[
0
]
*
scale
))
resized_height
=
int
(
round
(
im
.
shape
[
0
]
*
scale
))
...
@@ -423,8 +422,8 @@ class ResizeRangeScaling(SegTransform):
...
@@ -423,8 +422,8 @@ class ResizeRangeScaling(SegTransform):
def
__init__
(
self
,
min_value
=
400
,
max_value
=
600
):
def
__init__
(
self
,
min_value
=
400
,
max_value
=
600
):
if
min_value
>
max_value
:
if
min_value
>
max_value
:
raise
ValueError
(
'min_value must be less than max_value, '
raise
ValueError
(
'min_value must be less than max_value, '
'but they are {} and {}.'
.
format
(
'but they are {} and {}.'
.
format
(
min_value
,
min_value
,
max_value
))
max_value
))
self
.
min_value
=
min_value
self
.
min_value
=
min_value
self
.
max_value
=
max_value
self
.
max_value
=
max_value
...
@@ -761,8 +760,8 @@ class RandomPaddingCrop(SegTransform):
...
@@ -761,8 +760,8 @@ class RandomPaddingCrop(SegTransform):
h_off
=
np
.
random
.
randint
(
img_height
-
crop_height
+
1
)
h_off
=
np
.
random
.
randint
(
img_height
-
crop_height
+
1
)
w_off
=
np
.
random
.
randint
(
img_width
-
crop_width
+
1
)
w_off
=
np
.
random
.
randint
(
img_width
-
crop_width
+
1
)
im
=
im
[
h_off
:(
crop_height
+
h_off
),
w_off
:(
im
=
im
[
h_off
:(
crop_height
+
h_off
),
w_off
:(
w_off
+
crop_width
w_off
+
crop_width
),
:]
),
:]
if
label
is
not
None
:
if
label
is
not
None
:
label
=
label
[
h_off
:(
crop_height
+
h_off
),
w_off
:(
label
=
label
[
h_off
:(
crop_height
+
h_off
),
w_off
:(
w_off
+
crop_width
)]
w_off
+
crop_width
)]
...
...
setup.py
浏览文件 @
a8d23e8e
...
@@ -27,7 +27,7 @@ setuptools.setup(
...
@@ -27,7 +27,7 @@ setuptools.setup(
long_description_content_type
=
"text/plain"
,
long_description_content_type
=
"text/plain"
,
url
=
"https://github.com/PaddlePaddle/PaddleX"
,
url
=
"https://github.com/PaddlePaddle/PaddleX"
,
packages
=
setuptools
.
find_packages
(),
packages
=
setuptools
.
find_packages
(),
setup_requires
=
[
'cython'
,
'numpy'
,
'sklearn'
],
setup_requires
=
[
'cython'
,
'numpy'
],
install_requires
=
[
install_requires
=
[
"pycocotools;platform_system!='Windows'"
,
'pyyaml'
,
'colorama'
,
'tqdm'
,
"pycocotools;platform_system!='Windows'"
,
'pyyaml'
,
'colorama'
,
'tqdm'
,
'visualdl==1.3.0'
,
'paddleslim==1.0.1'
,
'visualdl==2.0.0a2'
'visualdl==1.3.0'
,
'paddleslim==1.0.1'
,
'visualdl==2.0.0a2'
...
@@ -38,6 +38,4 @@ setuptools.setup(
...
@@ -38,6 +38,4 @@ setuptools.setup(
"Operating System :: OS Independent"
,
"Operating System :: OS Independent"
,
],
],
license
=
'Apache 2.0'
,
license
=
'Apache 2.0'
,
entry_points
=
{
'console_scripts'
:
[
entry_points
=
{
'console_scripts'
:
[
'paddlex=paddlex.command:main'
,
]})
'paddlex=paddlex.command:main'
,
]})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录